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Abstract

We consider the problem of how decision making can be fair
when the underlying probabilistic model of the world is not
known with certainty. We argue that recent notions of fairness
in machine learning need to explicitly incorporate parameter
uncertainty, hence we introduce the notion of Bayesian fair-
ness as a suitable candidate for fair decision rules. Using bal-
ance, a definition of fairness introduced in (Kleinberg, Mul-
lainathan, and Raghavan 2016), we show how a Bayesian per-
spective can lead to well-performing and fair decision rules
even under high uncertainty.

Introduction
Fairness is an important property of algorithmic systems in
settings where decisions are made that affect individuals in
a population, for example in the context of loan decisions,
college admissions, hiring decision, or bail decisions.

Recognizing this, there has been considerable emphasis
in recent work on developing definitions of fairness in the
context of machine learning algorithms. In this paper, we
take a closer look at informational aspects of fairness. In
particular, by adopting a Bayesian viewpoint, we explicitly
take into account model uncertainty, something that turns
out to be crucial for fairness.

Uncertainty about the underlying probabilistic model of
the world has two main effects. Firstly, many notions of fair-
ness have been defined with respect to latent variables, in-
cluding model parameters. This means that we need to take
into account uncertainty about these latent variables and pa-
rameters. Secondly, in many problems our decisions deter-
mine the data that we will collect in the future. Ignoring un-
certainty may magnify subtle biases in our model.

By viewing fairness through a Bayesian perspective, we
avoid these problems. In particular, we demonstrate that
Bayesian policies can allow for suitable trade offs to be
made between utility and fairness, taking into account un-
certainty about model parameters.

We consider a setting where a decision maker (DM)
makes a sequence of decisions through some chosen policy
π to maximize her expected utility u. However, the DM must
trade off utility with some fairness criterion f . We assume
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the existence of some underlying probability law P , so that
the decision problem, when P is known, can be written as:

max
π

(1− λ)Eπ
P u− λEπ

P f, (1)

where λ is the DM’s trade-off between fairness and utility.1
We adopt a Bayesian viewpoint and assume the DM has be-
lief β over some family of distributions P , {Pθ | θ ∈ Θ },
which may contain the actual law, i.e. Pθ∗ = P for some θ∗.

The DM’s policy π defines the actions at ∈ A the DM
takes at different (discrete) times t depending on the avail-
able information. More precisely, at time t the DM observes
some data xt ∈ X , and depending on her belief βt makes
a decision at ∈ A, so that π(at | βt, xt) defines a proba-
bility over actions for every possible belief and observation.
The DM has a utility function, modeled here with structure
u : A × Y → R, where Y is a set of outcomes (in a loan
setting, was the loan repaid on time?). The fairness concept
we focus on is a Bayesian version of balance (Kleinberg,
Mullainathan, and Raghavan 2016), which is also a gener-
alization of the equality of opportunity (Hardt, Price, and
Srebro 2016).

The amount of uncertainty about the model parameters di-
rectly influences the interpretation of the balance condition.
Informally, the more uncertain we are, the more stochastic
the decision rule will need to be.

Our contributions. In this paper, we develop a Bayesian
framework for fairness that recognizes that there can be a
high degree of uncertainty about model parameters and la-
tent variables, and especially when not a lot of data has been
collected, or in sequential settings. In particular, we propose
that the DM should take into account how unfair she would
be under all possible models, weighted by their probability.
Fairness is a property of the decision rule with respect to the
true model, and it is this that is used to measure fairness. On
the other hand, the appropriate way to achieve fairness de-
pends on the DM’s information, and it is this that is used to
derive algorithms. In order to work without model approx-
imations, we illustrate the approach in a simple setting. We
show that the policies that are obtained are qualitatively and

1We do not consider the alternative constrained problem,
i.e. max {Eπ

P u | Eπ
P f ≤ ϵ }, in the present paper.
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quantitatively different when we consider uncertainty and
adopt a Bayesian viewpoint in comparison to when we do
not.

Given that the Bayesian approach to fairness takes into
account uncertainty and makes explicit consideration of the
DM’s information, we can also use the approach to select
policies that influence the data we collect, and thus our
knowledge about the model. This is an important informa-
tional feedback effect, and one that a Bayesian methodology
can provide in a principled way. We provide experimental
results on the COMPAS dataset (Larson et al. 2016) as well
as artificial data, showing the robustness of the Bayesian
approach, and comparing against methods that define fair-
ness measures according to a single, marginalized model
(e.g. (Hardt, Price, and Srebro 2016)). While we mainly treat
the non-sequential setting, where the data is fixed, we can
also accommodate sequential, bandits-style settings, as ex-
plained in later sections. The results there provide a vivid il-
lustration of what can go wrong with a certainty-equivalent
approach to achieving fairness.

All missing proofs and details can be found in our supple-
mentary materials.

Related work. Algorithmic fairness has been studied
quite extensively in recent work. But we are not aware
of work that adopts a Bayesian perspective. For instance,
(Dwork et al. 2012; Chouldechova 2016; Corbett-Davies
et al. 2017; Kleinberg, Mullainathan, and Raghavan 2016;
Kilbertus et al. 2017) studied fairness under a setting where
the model is known. (Corbett-Davies et al. 2017) have con-
sidered how to satisfy fairness considerations while also
maximizing expected utility. In this paper, we focus on no-
tions of fairness related to notions of conditional indepen-
dence, the specifics of which are discussed in the next sec-
tion.

(Dwork et al. 2012) consider an individual-fairness ap-
proach, and look for decision rules that are smooth in a sense
that similar individuals are treated similarly.

The recent work of (Russell et al. 2017) considers the
problem of uncertainty from the point of view of causal
modeling, with the three main differences to the present
work being: (a) they consider a PAC-like setting, rather
than the Bayesian framework; (b) we show that the effect
of uncertainty remains important even without varying the
counterfactual assumptions; and (c) the Bayesian frame-
work easily admits a sequential setting. (Jabbari et al. 2016)
and (Joseph et al. 2016) study fairness in sequential decision
making settings, but not from a Bayesian viewpoint.

There is also research on questions of fairness in other
machine learning contexts, such as clustering (Chierichetti
et al. 2017), natural language processing (Blodgett and
O’Connor 2017) and recommendation systems (Celis and
Vishnoi 2017).

Preliminaries
(Chouldechova 2016) considers the problem of fair predic-
tion with disparate impact. She defines an action (a “statis-
tic” in her paper) a as test-fair with respect to the outcome

y and sensitive variable z if y is independent of z under the
action and parameter θ, i.e. if y ⊥⊥ z | a, θ. While the author
does not explicitly discuss the distribution Pθ, it is implicitly
assumed to be that of the true model. We slightly generalize
the definition of disparate impact as follows:
Definition 1 (Calibrated decision rule). A decision rule
π(a | x) is calibrated with respect to some distribution Pθ

if y, z are independent for all actions a taken, i.e. if
Pπ
θ (y, z | a) = Pπ

θ (y | a)Pπ
θ (z | a), (2)

where Pπ
θ is the distribution induced by Pθ and the decision

rule π.
(Kleinberg, Mullainathan, and Raghavan 2016) also con-

sider two balance conditions (one for each label class),
which we re-interpret as follows. Here, we simplify the no-
tation of the decision rule so that π(a | x) corresponds to the
probability of taking action a given observation x.
Definition 2 (Balanced decision rule). A decision rule π(a |
x) is balanced with respect to some distribution Pθ if a, z
are independent for all y, i.e. if

Pπ
θ (a, z | y) = Pπ

θ (a | y)Pπ
θ (z | y), (3)

where Pπ
θ is the distribution induced by Pθ and the decision

rule π.
As with (Chouldechova 2016), (Kleinberg, Mullainathan,

and Raghavan 2016) also work with the true model. We will
slightly generalize the definition, stating balance with re-
spect to any model parameter.

It is known that calibration and balance cannot
be achieved simultaneously for non-trivial environments
(Kleinberg, Mullainathan, and Raghavan 2016; Choulde-
chova 2016). This is also true for our more general defini-
tions, as we show in Theorem S1 in the Supplementary ma-
terial.

From a practitioner’s perspective, we must choose either
calibration or balance. We work with a generalized version
of the balance condition, because balance gracefully extends
to settings with uncertainty. In particular, balance involves
equality in the expectation of a score function (when writ-
ing the probabilities as the expectations of a 0-1 indicator
function; also depending on an observation x) under differ-
ent values of a sensitive variable z, conditioned on the true
(but latent) outcome y. Consequently, balance can always be
satisfied—by using a randomized decision rule that is inde-
pendent of x. This is not the case for the calibration con-
dition under model uncertainty, because calibration criteria
depends highly on the details of a model.

Bayesian Formulation
We first introduce a concrete, statistical decision problem.
The true (latent) outcome y is generated independently of
the DM’s decision, with a probability distribution that de-
pends on the available information x. There also exists a
sensitive attribute variable z, which may be dependent on
x.2

2Depending on the application scenario, z may actually be a
subset of x and thus directly observable, while in other scenarios
it may be latent. Here we focus on the case where z is not directly
observed.
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Figure 1: A Bayesian decision problem with observations x,
outcome y, action a, sensitive variable z, utility u, unknown
parameter θ, belief β and policy π. The joint distribution
of x, y, z is fully determined by the unknown parameter θ,
while the conditional distribution of actions a given obser-
vations x is given by the selected policy π. The DM’s utility
function is u, while the fairness of the policy depends on the
problem parameters.

Definition 3 (Statistical decision problem). See Figure 1 for
the decision diagram. The DM observes x ∈ X , then takes
a decision a ∈ A and obtains utility u(y, a) depending on
a true (latent) outcome y ∈ Y generated from some dis-
tribution Pθ(y | x). The DM has a belief β ∈ B in the
form of a probability distribution on parameters θ ∈ Θ on
a family P , {Pθ(y | x) | θ ∈ Θ } of distributions. In the
Bayesian case, the belief β is a posterior formed through
a prior and available data. The DM has a utility function
u : Y × A → R, with utility depending on the DM’s action
and the outcome.

For simplicity, we will assume that X , A, and Y , are finite
sets, whereas Θ is a subset ofRn. We focus on Bayesian de-
cision rules, i.e. rules whose decisions depend upon a pos-
terior belief β. The Bayes-optimal decision rule, ignoring
fairness, is defined below.

Definition 4 (Bayes-optimal decision rule). The Bayes-
optimal decision rule π∗ : B × X → A is a deterministic
policy that maximizes the utility in expectation, i.e. takes
action π∗(β, x) ∈ argmaxa∈A uβ(a | x), with uβ(a |
x) ,

∑
y u(y, a)Pβ (y | x), where Pβ (y | x) ,

∫
Θ
Pθ(y |

x) dβ(θ) is the marginal distribution over outcomes condi-
tional on the observations according to the DM’s belief β.

The Bayes-optimal decision rule does not directly depend
on the sensitive variable z. We are interested in settings with
multiple time periods. At time t, the DM observes xt and
makes a decision at using policy πt and obtains some in-
stantaneous payoff Ut = u(yt, at) and fairness violation Ft.
The DM’s utility is the sum of instantaneous payoffs over
time, U ,

∑T
t=1 u(yt, at) and she is interested in finding a

policy maximising U in expectation.
Although the Bayes-optimal decision rule brings the high-

est expected reward to the DM, it may be unfair. In the se-
quel, we will define analogs of the balance notion of fairness
in terms of decision rules π, and investigate appropriate de-
cision rules, that possibly result in randomized policies. In
particular, we shall consider a utility function that combines
the DM’s utility with the societal benefit that comes from
fairness, and search for Bayes-optimal decision rules with
respect to this new, combined utility.

In particular, we define a Bayesian analogue of the maxi-

mization problem (1) as:

max
π

(1− λ)Eπ
β u− λEπ

β f

=max
π

∫
Θ

[(1− λ)Eπ
θ u− λEπ

θ f ] dβ(θ). (4)

To make this concrete, in the sequel we shall define the
appropriate Bayesian version of the balance condition.

Bayesian Balance
In the Bayesian setting, we would like our decisions to take
into account their impact on all possible models. That is,
fairness is measured with respect to the true model.

It turns out that sometimes only a trivial decision rule can
satisfy a strong form of balance in a setting with model un-
certainty. In particular, what if we insist that balance must
hold exactly, for all possible model parameters?
Theorem 1. A trivial decision rule of the form π(a | x) =
pa can always satisfy balance for a Bayesian decision prob-
lem. However, it may be the only balanced decision rule,
even when a non-trivial balanced policy can be found for
every possible θ ∈ Θ.

The proof, as well as an example illustrating this result,
are in the supplementary materials.

For this reason, we consider the the p-norm of the devia-
tion from fairness with respect to our belief β:
Definition 5 (Bayesian Balance). We say that a decision rule
π is (α, p)-Bayes-balanced with respect to belief β if:

f(π) ,
∫
Θ

∑
a,y,z

⏐⏐⏐⏐∑
x

π(a|x)[Pθ(x, z|y)

− Pθ(x|y)Pθ(z|y)]
⏐⏐⏐⏐p dβ(θ) ≤ αp. (5)

This definition captures the expected deviation from bal-
ance of policy π, for a Bayesian DM under their belief β. It
measures the deviation of policy π from perfect balance with
respect to each possible parameter θ, and weighs this devi-
ation according to the probability of that model. This pro-
vides a graceful trade-off between achieving near-balance in
the most likely models, while avoiding extreme unfairness
in less likely ones.

Why not use a single point estimate for the model, instead
of the full Bayesian approach? This would entail simply
measuring balance (and utility) with respect to the marginal
model, Pβ ,

∫
Θ
Pθ dβ(θ).

Definition 6 (Marginal balance). A decision rule π(·) is
(α, p)-marginal-Balanced with respect to belief β if ∀a, y, z:∑
a,y,z

⏐⏐⏐⏐∑
x

π(a|x) [Pβ(x, z|y)− Pβ(x|y)Pβ(z|y)]
⏐⏐⏐⏐p ≤ α.

(6)

One problem with this definition, which we will see in
our experimental results, is that the decision policy may be
very unfair towards other, high-probability models that are
different from the marginal model.
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Still, both balance conditions can provide a bound on bal-
ance with respect to the true model. For this, denote the true
underlying model as θ∗, and define the (ϵ, δ)-accurate belief.
Definition 7. We call β(θ) an (ϵ, δ)-accurate belief with re-
spect to the true model θ∗ ∈ Θ, if with β-probability at least
1− δ, ∀x, y, z:

|Pθ(x|y, z)− Pθ∗(x|y, z)| ≤ ϵ, |Pθ(x|y)− Pθ∗(x|y)| ≤ ϵ,

i.e. the set Θϵ for which the above conditions hold has mea-
sure β(Θϵ) ≥ 1− δ.

Under some conditions, the balance achieved through ei-
ther definition provides an approximation to balance under
the true model, as shown by the following theorem.
Theorem 2. If a decision rule satisfies either (α, 1)-
marginal-balance or (α, 1)-Bayes-balance for β or both,
and β is (ϵ, δ)-accurate, then the resulting decision rule is a

(α+ 2|A| · |Z| · |Y| · (ϵ+ δ), 1)-balanced

decision rule w.r.t. the true model θ∗.
This theorem says that if our belief β is concentrated

around the true model Pθ∗ , and our decision rule is fair with
respect to either definition, then it is also fair with respect to
the true model.

The Sequential setting
We can also extend the approach to a sequential setting,
where the information learned by the DM about the envi-
ronment depends on the action.

For example, if we approve a loan, we will only later dis-
cover if the loan is paid off on time. This information will
in turn affect our future decisions. Analogous to other se-
quential decision making problems such as Markov decision
processes (Puterman 1994), we need to solve the following
optimization problem over a time horizon T :

max
π

Eβ1

[
T∑

t=1

(1− λ)Ut − λFt

]
, (7)

where π now must explicitly map future beliefs βt to proba-
bilities over actions. If the data that the DM obtains depends
on her decisions at, then she must consider adaptive poli-
cies, as the next belief depends on the data obtained by the
policy.

We can reformulate the maximization problem so as to
explicitly include the future changes in belief:

V ∗(βt) , sup
πt

Eπt

βt
[(1− λ)Ut − λFt]

+
∑
βt+1

V ∗(βt+1)Pπt

βt
(βt+1), (8)

under the mild assumption that the set of reachable next be-
liefs is finite (easily satisfied when the set of outcomes is
finite). This now features the tradeoff between explore (ob-
taining new knowledge) and exploit (maximizing utility).

However, just as in the bandits case (c.f. Duff 2002), the
above computation is intractable, as the policy space is expo-
nential in T . For this reason, in this paper we only consider

myopic policies that select a policy (and decision) that is op-
timal for the current step t, trading utility and fairness as
well as the value of the information at any particular single
step. A specific instance of this type of sequential version of
the problem is a later section.

Algorithms
We compare the Bayesian framework with the simpler,
marginal-model approach. In particular, for the Bayesian
framework, we directly optimize (4). Using the marginal
simplification, we maximize (1) with respect to the marginal
model Pβ .

Balance gradient descent
We have a family of models {Pθ } with a corresponding sub-
jective distribution β(θ). In order to derive algorithms, we
shall focus on the quantity:

C(π, θ) ,
∑
y,z

∑
x

π(a | x)∆θ(x, y, z)

p
, (9)

This isthe deviation from balance for decision rule π un-
der parameter θ, where

∆θ(x, y, z) , Pθ(x, z | y)− Pθ(x | y)Pθ(z | y). (10)

Given this, the Bayesian balance of the policy is f(π) =∫
Θ
C(π, θ) dβ(θ).

In order to find a rule that trades-off utility for balance,
we maximize a convex combination of the expected utility
and deviation specified in (4). In particular, we look for a
parametrized rule πw solving the following unconstrained
maximization problem:

max
πw

∫
Θ

Vθ(πw) dβ(θ),

Vθ(πw) , (1− λ)Eπw

θ u− λC(πw, θ) (11)

To perform this maximization, we use parametrized poli-
cies and stochastic gradient descent. In particular, for a finite
set X and Y , the policies can be defined in terms of param-
eters wxa = π(a | x). Then we can perform stochastic gra-
dient descent as detailed in the Supplementary materials, by
sampling θ ∼ β, and calculating the gradient for each sam-
pled θ. For the marginal decision rule, we employ the same
approach, but instead of sampling the parameters from the
posterior, we use the parameters of the marginal model.

Experiments
We study the utility-fairness trade-off on artificial and real
data sets. We compare our approach, which uses a deci-
sion rule based on the full Bayesian problem, to classical
approaches such as (Hardt, Price, and Srebro 2016) which
optimize the DM’s policy with respect to a single model.
We show that the Bayesian approach gracefully handles fair-
ness, even with high model uncertainty, while a marginal ap-
proach can be blatantly unfair. For an unbiased comparison,
we assume the same prior parameter distribution. We con-
sider a model where posteriors can be calculated in closed-
form, in order to focus on the choice of policy. However, our
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algorithm is generally applicable, and could be combined for
example with MCMC inference.

Performance is evaluated with respect to the actual bal-
ance and utility achieved: for the synthetic data this is mea-
sured according to the actual data-generating distribution,
while for the COMPAS data this is the empirical distribu-
tion on a holdout set.

The algorithm for optimizing policies uses stochastic gra-
dient descent. In particular, the Bayesian policy minimizes
(5) by sampling θ from the posterior distribution β and then
taking a step in the gradient direction. The marginal policy
simply performs steepest gradient descent for the marginal
model.

The results shown in Figures 2–5 display the performance
of the corresponding Bayesian or marginal decision rule for
different value of λ as more data is acquired. In the first two
experiments, we assume that no matter what the decision of
the DM is, zt, yt are always observed after the DM’s deci-
sion and so the model is fully updated. In that setting, it is
not necessary for the DM to take into account the informa-
tion generated by actions. However, in the third experiment,
described below, the values of zt and yt are only observed
when the DM makes the decision at = 1, and the DM faces
a generalized exploration problem.

The model we employ throughout is a discrete Bayesian
network model, with finite X ,Y,Z,A. The models are thus
described through multinomial distributions that capture the
dependency between different random variables. The avail-
able data is used to calculate a posterior distribution β(θ).
From this, we calculate both a marginal balanced rule as well
as a Bayesian balanced rule. The former uses the marginal
model directly, while the latter uses k = 16 samples from
the posterior distribution.3 We tested these approaches both
on synthetic data and on the COMPAS dataset. The conju-
gate prior distribution to this model is a Dirichlet-product.
The graphical model is fully connected, and the model uses
the factorization Pθ(x, y, z) = Pθ(y | x, z)Pθ(x | z)Pθ(z).
We used this simple modeling choice throughout the paper,
apart from the small experiment on synthetic data in the fol-
lowing section (Experiments on synthetic data). In all cases
where a Dirichlet prior was used, the Dirichlet prior param-
eters were set equal to 1/2.

Experiments on synthetic data
Here we consider a discrete decision problem, with |X | = 8,
|Y| = |Z| = |A| = 2, and u(y, a) = I {y = a}. We gen-
erate 100 observations from this model. We perform the ex-
periment 10 times, each time generating data from a fully
connected, discrete Bayesian network with uniformly ran-
domly selected parameters. Unlike the rest of the paper, in
this example, the prior distribution has finite support on only
8 models. This means that the posterior will have effectively
converged to the true model after 100 observations.

As can be seen in Figure 2, the relative performance of
the Bayesian approach w.r.t. the marginal approach increases

3We found empirically that 16 was a sufficient number for sta-
ble behaviour and efficient computation. For k = 1 the algorithm
reduces to an approximation of Thompson sampling.

as we put more emphasis on fairness (Figure 2 (a) cares
nothing about fairness.). In some cases (e.g. Figure 2 (c)),
value for the marginal approach decreases at the beginning
and eventually reaches the same value as the Bayesian ap-
proach after enough data has been observed. This conforms
with our hypothesis that one should take into account model
uncertainty. The fact that both approaches converge toward
the maximum value is in accordance with our formal results
(Theorem 2).

Finally, Figure 3 and its extended version (Figure S1 in
supplementary materials) more clearly shows how well the
two different solutions perform with respect to the utility
fairness trade-off. As we vary λ and the amount of data, both
methods achieve the same utility. However the Bayesian ap-
proach consistently achieves lower fairness violations for
similar U .

Experiments on COMPAS data
For the COMPAS dataset, we consider a discretization
where fields such as the number of offenses are converted
to binary features.4 We used the first 6000 observations for
training and the remaining 1214 observations for validation.
Two attributes are sensitive (sex, race), while six attributes
(relating to prior convictions and age) are used for the pol-
icy. With discretization, there are a total of 12 distinct val-
ues for the sensitive attributes and 141 for the features that
are used for the underlying model. The task is to predict re-
cidivism over the next two years, with DM utility function
u(a, y) = I {a = y}.

Figure 4 and its extended version (Figure S2 in the supple-
mentary materials) show the results of applying our analysis
to the COMPAS dataset used by ProPublica. Since in this
case the true model is unknown, the results are calculated
with respect to the marginal model estimated on the holdout
set. In this scenario we can see that when we only focus on
classification performance, the marginal and Bayesian deci-
sion rules perform equally well. However, when we place
more emphasis on fairness, we observe that the Bayesian
approach dominates. 5

Sequential allocation
Suppose now that the DM, at each time t, observes xt and
has a choice of actions at ∈ {0, 1}. Both actions are to
predict whether yt ∈ {0, 1} and have the following side-
effect: the DM only observes yt, zt upon decision at = 1,
and otherwise only observes xt. The utility is not directly
observed by the DM, and is measured against the empirical
model in the holdout set, as before. We use the same COM-
PAS dataset, and the results are broadly similar, apart from

4We arrived at the specific discretization through cross validat-
ing the performance of a discrete Bayesian classifier over possible
discretizations.

5The measured performance performance may not monoton-
ically increase with respect to the (rather small) holdout set.
Even if we had converged to the true model, measuring with re-
spect to an empirical estimate is problematic, as it will be ϵ-
close to the true model. This is particularly important for fairness
considerations.
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Figure 2: Synthetic data. Test of the effect of the amount of data on the decisions of the Bayesian balance versus marginal
balance approach, for different values of the λ parameter, with evaluation with respect to the true model. As more weight is
placed on guaranteeing fairness, we see that the Bayesian approach is better able to guarantee fairness for the true model. The
plots show the average performance over 10 runs, with an initially uniform prior over a set of 8 models, one of which is the
correct one. In this setting |A| = |Y| = |Z| = 2 and |X | = 8.
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Figure 3: Synthetic data, utility-fairness trade-off. This plot is generated from the same data as Figure 2. However, now we
are plotting the utility and fairness of each individual policy separately. In all cases, it can be seen that the Bayesian policy
achieves the same utility as the non-Bayesian policy, while achieving a lower fairness violation.

the fact that the Bayesian decision rule appears to remain
consistent and robust (blue and solid lines in Figure 5) in
this setting, while the marginal one’s performance degrades.
This is because the Bayesian decision rule explicitly takes
uncertainty into account, while the marginal decision rule
does not. The results are shown in Figure 5 and its extended
version (Figure S3 in supplementary materials). The larger
discrepancy between the Bayesian case in Figure 5(a) im-
plies that explicitly modelling uncertainty is also crucial for
utility in this case.

Conclusion

Existing fairness criteria can be hard to satisfy or verify in a
learning setting because they are defined for the true model.
Recognizing this, we develop a Bayesian framework for fair-
ness, which allows a decision maker to explicitly reason
about uncertainty about the true model and thus the extent
to which a decision will, or will not be, fair. Beyond this,
the Bayesian approach is helpful because it points to the im-
portance of the informational aspects of fairness, and in par-
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Figure 4: COMPAS dataset. Demonstration of balance on the COMPAS dataset. The plots show the value measured on the
holdout set for the Bayes and Marginal balance. Figures (a-c) show the utility achieved under different choices of λ as we we
observe each of the 6,000 training data points. Utility and fairness are measured on the empirical distribution of the remaining
data and it can be seen that the Bayesian approach dominates as soon as fairness becomes important, i.e. λ > 0.
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Figure 5: Sequential allocation Performance measured with respect to the empirical model of the holdout COMPAS data, when
the DM’s actions affect which data will be seen. This means that whenever a prisoner was not released, then the dependent
variable y will remain unseen. For that reason, the performance of the Bayesian approach dominates the classical approach
even when fairness is not an issue, i.e. λ = 0.

ticular for sequential decisions and the role that they play in
both their current actions but their ability to censor or enable
additional information acquisition.
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