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Abstract

The inverse geodesic length (IGL) is a well-known and
widely used measure of network performance. It equals the
sum of the inverse distances of all pairs of vertices. In network
analysis, IGL of a network is often used to assess and evaluate
how well heuristics perform in strengthening or weakening a
network. We consider the edge-deletion problem MINIGL-
ED. Formally, given a graph G, a budget k, and a target in-
verse geodesic length T , the question is whether there exists
a subset of edges X with |X| ≤ ck, such that the inverse
geodesic length of G−X is at most T .
In this paper, we design algorithms and study the complexity
of MINIGL-ED. We show that it is NP-complete and can-
not be solved in subexponential time even when restricted to
bipartite or split graphs assuming the Exponential Time Hy-
pothesis. In terms of parameterized complexity, we consider
the problem with respect to various parameters. We show
that MINIGL-ED is fixed-parameter tractable for parameter
T and vertex cover by modeling the problem as an integer
quadratic program. We also provide FPT algorithms param-
eterized by twin cover and neighborhood diversity combined
with the deletion budget k. On the negative side we show that
MINIGL-ED is W[1]-hard for parameter tree-width.

1 Introduction
Network analysis, in particular the strategic aspect of net-
work analysis, has attained profound interest in recent years
due to its relevance across many fields of research, including
Artificial Intelligence (e.g., (Aziz, Gaspers, and Najeebul-
lah 2017; Michalak, Rahwan, and Wooldridge 2017)). One
fundamental problem within this area is the identification of
most critical vertices and edges of a network (Michalak et
al. 2013; Chen et al. 2012; Zheng, Dunagan, and Kapoor
2011). The problem enjoys a vast area of applications in-
cluding containing the spread of an epidemic (see, e.g.,
(Kovács and Barabási 2015)), weakening a terrorist network
(see, e.g., (Aziz, Gaspers, and Najeebullah 2017)), prevent-
ing the spread of a contagion in a computer network (see,
e.g., (Kuhlman et al. 2013)) and blocking rumors or ”fake
news” in social networks (see, e.g., (Zhang et al. 2016)).

We focus on the problem of weakening a covert network
by identifying and deleting or monitoring the links that are
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critical for a high performance of the network. The prob-
lem of weakening a covert network has mostly been con-
sidered with respect to vertex deletion (see, e.g., (Michalak
et al. 2013; Aziz, Gaspers, and Najeebullah 2017; Aziz et
al. 2018; Gaspers and Lau 2018)). A common trend here
– seemingly influenced by social network analysis and epi-
demiology (see, e.g., (Carley, Reminga, and Kamneva 2003;
Valente 2012) and (Kovács and Barabási 2015; Zhang et
al. 2012)) – is to rank the vertices with respect to their
importance and eliminate them in the order of maximum
score (Michalak et al. 2013; 2015; Szczepanski, Michalak,
and Rahwan 2015)). While the assumption that a node can
be eliminated sounds realistic for social and epidemic net-
works, it might not be as practical for covert networks due
to various geopolitical reasons.

Quantifying the performance of a network has been a
topic of interest in network analysis, and several measures
have been proposed. Some of the most frequently used mea-
sures of network performance are component order connec-
tivity (size of the largest connected component) (Gross et al.
2013; Drange, Dregi, and van’t Hof 2014), clustering co-
efficient (probability that two nodes are connected if both
are connected to a common third node) (Watts and Stro-
gatz 1998) and inverse geodesic length (IGL). We choose
to quantify the network performance by IGL. Formally,
IGL(G) =

∑
{u,v}⊆V

1
dist(u,v) . Our choice is dictated by

the frequent use of IGL as a measure of network perfor-
mance across various fields, such as AI (e.g. (Aziz, Gaspers,
and Najeebullah 2017)), network security (e.g. (Holme et al.
2002)), social networks (e.g. (Morone and Makse 2015)) and
game theory (e.g. (Holme et al. 2002; Michalak et al. 2015;
Szczepanski, Michalak, and Rahwan 2015)). Moreover, La-
tora and Marchiori (2001) found IGL to be effective on
small-world graphs and studied several networks systems to
show that it is the underlying general principle of construc-
tion for several real-world networks including transporta-
tion, communication and neural networks.

A practical example to demonstrate how a higher IGL
value indicates better network performance is of a commu-
nication network where the quality of the signal degrades
when the distance between the nodes increases. We consider
the problem of minimizing the IGL of a graph by allowing a
limited number of edge deletions. One interpretation in this
case is that the deletion of edges corresponds to surveillance
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of communication channels.

MINIMIZE IGL BY EDGE DELETION (MINIGL-ED)
Input: Graph G, integer k, rational number T .
Question: Does there exist X ⊆ E(G), such that

|X| ≤ k and IGL(G−X) ≤ T ?

We perform an extensive complexity analysis of the prob-
lem. We show that MINIGL-ED is NP-complete and cannot
be solved in subexponential time even when restricted to bi-
partite and split graphs under standard assumptions. In terms
of parameterized complexity we show that the problem is
W[1]-hard with respect to parameter tree-width. On the pos-
itive side we provide FPT algorithms for MINIGL-ED with
respect to parameter target inverse geodesic length T and
vertex cover τ . We also provide FPT algorithms parameter-
ized by twin cover number and neighborhood diversity when
combined with the deletion budget k.

Our choice of parameters is motivated by real-word
datasets (see Table 1) and follows the trends of the exist-
ing literature. Both tree-width and vertex cover number are
among the most widely studied structural parameters (Fel-
lows et al. 2008; Fomin et al. 2014) while neighborhood di-
versity (Lampis 2012; Ganian 2012) and twin cover (Ganian
2015) are less restrictive generalizations of vertex cover that
are more appropriate for dense graphs.

Overall, we note that MINIGL-ED is computationally
hard even on restricted classes where many NP-complete
problems can be solved in polynomial time. However, cer-
tain parameterizations of the problem provide algorithms of
practical interest.

2 Preliminaries
We consider finite, undirected, simple graphs denoted as
G = (V,E). We denote the set of vertices and edges of
G as V (G) and E(G) respectively, with n = |V (G)| and
m = |E(G)|. For any graph terminologies or notations
used but not defined here we refer to (Diestel 2010). Let
u, v ∈ V (G) with u 6= v. The distance between u and v
in G, denoted by distG(u, v) (shorthand dist(u, v)), is the
number of edges on a shortest path between u and v. The ith
neighborhood of a vertex v is the set of vertices at distance i
from v and is denoted byN i(v). We denoteN(v) = N1(v).
A pair of vertices at finite distance is connected.

Let S ⊆ V (G). The graph induced on a vertex set S is
denoted as G[S] i.e., V (G[S]) = S and E(G[S]) = {e ∈
E : e ⊆ S}. We denote by G−S′ the graph that is obtained
by deleting all the edge in edge set S′ from G. The IGL
impact IGLimp of a an edge e is given by IGLimp(e) =
IGL(G)−IGL(G−{e}). We also utilize this notion for sets
of edges. A d-regular graph is a graph where each vertex has
d neighbors. A bipartite graph is a graph whose vertex set
can be partitioned into two independent sets. A split graph is
a graph whose vertex set can be partitioned into a clique K
and an independent set I . Such a partition (K, I) is known
as a split partition. Throughout this article we assume thatK
is a maximal clique in a given split partition (K, I).

Two vertices u and v are twins if N(u) \ {v} = N(v) \
{u}. They are true twins if they are twins and uv ∈ E(G),

Table 1: Covert networks (UCINET Software 2017) with
number of vertices (n), edges (m), vertex cover number (τ ),
twin cover number (Γ), neighborhood diversity (η) and IGL.

Dataset n m τ Γ η IGL
FIFA 450 5022 422 40 67 36500.67
Drug Net 293 192 76 63 147 3497.22
9/11 Hijackers 61 124 27 26 52 639.05
Siren 44 103 18 9 21 475.17
Cocaine Jake 38 50 8 8 19 295.08
Montreal Gangs 35 78 12 12 29 801.32
Togo 33 47 10 7 20 242.0
Cielnet 25 35 7 7 15 141.03
Greece 18 30 6 6 5 37.50

the edge uv is called a twin edge. A set of vertices C ⊆
V (G) is a twin cover of G, if for every edge xy ∈ E(G),
either xy is incident to a vertex in C or xy is a twin edge
(Ganian 2015). Given a graph G and an integer k, the TWIN
COVER problem is to determine whether there exists a twin
cover of G of size at most k (Ganian 2015). We denote the
twin cover number of a graph by Γ (i.e., Γ = |C|). A graph
G has neighborhood diversity η, if there exists a partition of
V (G) into at most η sets, such that the vertices in each set are
twins, such a partition is called the neighborhood partition of
G and can be computed in polynomial time (Lampis 2012).

Let Π be a parameterized decision problem. We say Π is
in FPT (Fixed Parameter Tractable), if there is an algorithm
solving any instance x with parameter k in time f(k) · |x|c,
where f(k) is an arbitrary function of k and c is a constant.
The class W [1] is a class of parameterized decision prob-
lems closed under so-called parameterized reductions. Any
W [1]-hard problem is unlikely to have an FPT algorithm.
We refer to (Downey and Fellows 2013) for a detailed expo-
sition of parameterized complexity. A kernel, or kerneliza-
tion algorithm for a parameterized problem is a polynomial
time algorithm producing an equivalent instance of the same
parameterized problem such that the size of the resulting in-
stance is upper bounded by a function of the input param-
eter. The exponential time hypothesis (ETH) is a conjecture
coined by Impagliazzo and Paturi (2001) that implies that
3-SAT has no 2o(n

′)-time algorithm, where n′ is the number
of variables in the input instance.

Proofs that are omitted or only sketched are deferred to
the full version of the paper.

3 NP-hardness and ETH lower bounds
In this section we consider the classical computational com-
plexity of MINIGL-ED. We show that MINIGL-ED is NP-
complete and cannot be solved in subexponential time even
when restricted to bipartite graphs or split graphs. Notice
that the NP-completeness of MINIGL-ED will follow from
Theorems 3.1 and 3.2. It also follows from a natural con-
nection with the CLUSTER EDGE DELETION (CED) prob-
lem. CED is a well-known NP-complete problem (Shamir,
Sharan, and Tsur 2004), where given a graph G and an in-
teger k, the question is whether there exists a set of edges
X ⊆ E(G) of size at most k, such that G − X is a dis-
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(a) (V,E) (b) (A∪B∪A′, E) (c) (I ∪ κ ∪ κ′, E)

Figure 1: Figures (b) and (c) depict a bipartite and split graph
obtained by transforming the 3-regular graph in (a).

joint union of cliques. Given an instance (G, k) of CED,
we can obtain an equivalent instance (G, k, T = m − k) of
MINIGL-ED where m = |E(G)|.

In this section we show that MINIGL-ED remains NP-
complete when restricted to bipartite graphs. Moreover, as-
suming that ETH holds, this bipartite restriction cannot be
solved in time 2o(n). We provide a reduction from the VER-
TEX COVER (VC) problem on 3-regular graphs. It is known
that VC cannot be solved in time 2o(n+m) even when re-
stricted to 3-regular graphs (Sandeep and Sivadasan 2015)
unless the ETH fails.
Theorem 3.1. The restriction of MINIGL-ED to bipartite
graphs is NP-complete and cannot be solved in time 2o(n)

unless the ETH fails.

Proof. Let (G, k) be an instance of VERTEX COVER on 3-
regular graphs. Without loss of generality, we assume that
k < n and therefore, 3k < 2m. We construct an instance
(G′, k′, T ) for MINIGL-ED as follows: define V (G′) =
A ∪ A′ ∪ B, where A = V (G), A′ = {ve, v′e : e ∈ E(G)}
and B = E(G). Define E(G′) = {v1v2 : v1 ∈ A′, v2 ∈
B} ∪ {vive : vi ∈ A, ve ∈ B, vi ∈ e}. See Figure 1b
for a basic example of this construction. Set k′ = 3k and
T = T (k, 2m− 3k, 0) where;

T (α0, β1, β2) = 2m
2

+ β1 + 2β2 +
1

2
(2m(n− α0)

+
m(5m− 3)

2
+ β2) +

1

3
(m(n− α0)− β1 − 2β2)

+
1

4
(
(n− α0)(n− α0 − 1)

2
− β2). (1)

Here α0 denotes the number of isolated vertices in A and βi
denotes the number of vertices in B with i neighbors in A.
This concludes our construction. Before we move to the for-
mal proof, we establish that in order to minimize IGL(G′)
deleting edges between A and B is at least as good as delet-
ing edges between A′ and B.

Let L = (A × B) ∩ E(G′), R = (A′ × B) ∩ E(G′)
and X ⊆ E(G′) be the set of edges in the solution. Let us
first assume that |R∩X| < 3, notice that each such deletion
only increases the distance between its end points from 1 to
3 and this decreases the IGL by 2/3. We can replace each
edge in R ∩ X with any edge in L \ X as it decreases the
IGL value by at least the same amount. Now suppose that
|R ∩ X| ≥ 3. Again deleting each such edge decreases the
IGL by 2/3, unless we have a vertex b ∈ B such that |N(b)∩
A′| = 0 or a vertex a ∈ A′ such that |N(a)| = 0. Since
|X| ≤ 3k, 3k < 2m and |N(b′) ∩ A′| = 2m where b′ ∈

B, such a vertex b does not exist. Also note that each pair
of vertices b, b′ ∈ B are connected to each other through
2m distinct paths of length 2, and as 3k < 2m the distance
between any pair of vertices in B cannot be increased. This
also implies that the distance between a pair of vertices in
A cannot be increased by deleting edges in R. On the other
hand, it requires at least m edge deletions to isolate a vertex
in A′. Since |X| ≤ 3k and 3k < 2m, we can isolate at most
1 vertex in A′, even if |R∩X| = 3k. Observe that, isolating
a vertex a ∈ A′ decreases the IGL bym+ 1

2 (m+n−1). But
then for each set of 3 edges in R ∩ X we can replace them
with edges in L\X such that the number of isolated vertices
in A is maximized. This way we can isolate k vertices in A.
Since isolating each vertex inA decreases the IGL by at least
4
3m + 1

4 (n − k + 11), deleting m edges in L decreases the
IGL by at least m3 ( 4m

3 + 1
4 (n− k + 11)), which is at least

as much as deleting any combination of edges in R.
We now show that (G′, k′, T ) is a Yes-instance of

MINIGL-ED iff (G, k) is a Yes-instance for VERTEX
COVER. Suppose (G′, k′, T ) is a Yes-instance and there ex-
ists a set X ′ ⊆ E(G′) such that IGL(G′ − X ′) ≤ T and
|X ′| = k′. Without loss of generality, we assume that X ′ ⊆
L. Let G′′ = G′ −X ′, γ0 = |{x ∈ A : |N(x) ∩ B| = 0}|,
δ1 = |{x ∈ B : |N(x) ∩ A| = 1}| and δ2 = |{x ∈ B :
|N(x)∩A| = 2}|. We have, IGL(G′′) = T (γ0, δ1, δ2). Let
us now obtain the values of γ0, δ1 and δ2. In order to obtain
IGL(G′′) ≤ T , we will show below that we need to delete
edges such that γ0 ≥ k, δ1 ≤ 2m − 3k and δ2 = 0. In
other words we need to choose X ′ such that at least k ver-
tices are isolated in A. Since each vertex in A has degree
3 and k′ ≤ 3k, we can isolate a set C ′ of at most k ver-
tices in A. Moreover, in order to obtain δ2 = 0, we need to
isolate the vertices in C ′ such that there is no vertex in B
with two neighbors in A. But then the isolated vertices in A
form a vertex cover of G. Hence we have that (G, k) is a
Yes-instance for VERTEX COVER.

It remains to show that removing k′ edges from G′ op-
timally gives an IGL of T (k, 2m − 3k, 0). Given that m
and n carry over from the original instance and are part of
the input, we observe that in order to minimize the IGL, it
is sufficient to first, maximize α0, and secondly minimize
T ′ = 19β2

12 + 2β1

3 + 0β0, where T ′ is obtained by restrict-
ing T (α0, β1, β2) to the terms that only contain β1 and/or
β2. Notice that it takes one edge deletion to decrease β2 and
increase β1 by 1, and it also takes one edge deletion to de-
crease β1 and increase β0 by 1. Moreover, the first kind of
edge deletion decreases T ′ by β2 − β1 = 11

12 and the second
kind of edge deletion decreases T ′ by β1 − 0 = 2

3 . This im-
plies that it is optimal to prefer edge deletions that minimize
the value of β2. Since k′ = 3k, T ′ is minimized by perform-
ing edge deletions such that β2 = 0, β1 = 2m − 3k and
β0 = 3k−m. On the other hand, since each vertex in A has
degree 3, we have that α0 ≤ k.

Conversely, suppose (G, k) is a Yes-instance for VERTEX
COVER and there exists a vertex cover X ⊆ V (G) such that
|X| = k. Then by deleting edges incident to the vertices
corresponding to X in G′, we isolate k vertices in A and
there is no vertex in B with two neighbors in A. Thus we
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have that (G′, k′, T ) is a Yes-instance for MINIGL-ED.

We further obtain that MINIGL-ED remains NP-hard and
cannot be solved in subexponential time (assuming the
ETH), even when restricted to split graphs. This can be done
by a reduction from VERTEX COVER on 3-regular graphs
that is similar in spirit to the reduction in Theorem 3.1 and
is depicted in Figure 1c.

Theorem 3.2. The restriction of MINIGL-ED to split
graphs is NP-complete and cannot be solved in time 2o(n)

unless the ETH fails.

4 Parameterized Algorithms
Here we provide parameterized algorithms for MINIGL-ED
with respect to several parameters. Notice that if m > k +
T then we have a No-instance for MINIGL-ED, as each
edge contribute at least 1 to the IGL. Thus, MINIGL-ED
has a kernel of size O(k + T ). Consequently, we have that
MINIGL-ED is FPT for parameter k + T .

Next, we show that MINIGL-ED remains FPT when pa-
rameterized by T , even if the value of k is unbounded.

4.1 Parameter T
We provide an FPT algorithm that given an instance
(G, k, T ) of MINIGL-ED in polynomial time, outputs a so-
lution or concludes that G has a vertex cover of size at most
2T . We will see in Theorem 4.4 that MINIGL-ED is FPT
when parameterized by the vertex cover number. Our algo-
rithm will rely on some reduction rules based on the follow-
ing notions.

A matching M in a graph is a set of edges M ⊆ E such
that no two edges inM share a vertex. A matchingM is said
to be maximum if for any other matching M ′, |M | ≥ |M ′|.
A maximum matching can be computed in polynomial time
(Micali and Vazirani 1980). Let M be a maximum matching
ofG. It is know thatG−V (M) is an independent set, where
V (M) denotes the set of vertices incident to the edges inM .
Let m′ = |E(G)| − k.

Our reduction rules are applied in the same order as they
are defined here;

Reduction Rule 4.1. If m′ > T return No.

Reduction Rule 4.2. If |M | ≥ m′ return Yes.

Reduction rule 4.1 is correct as a graph on m edges has
IGL at least m. Consider reduction rule 4.2, if |M | ≥ m′

then we have a set of edges M ′ ⊆M , such that |M ′| = m′.
By deleting the set of k edges E(G) \M ′ in G we obtain,
IGL(G[V (M ′)]) = m′. Thus, due to reduction rule 4.1,
IGL(G[V (M ′)]) = m′ ≤ T . Hence (G, k, T ) is a Yes-
instance.

After applying reduction rules 4.1 and 4.2, G has a maxi-
mum matching M of size less than m′. Notice that V (M) is
a vertex cover of G where |V (M)| ≤ 2m′ ≤ 2T . Thus;

Theorem 4.3. MINIGL-ED is FPT for parameter T .

We observe that the above argument also establishes that
MINIGL-ED is FPT for parameter m′ since the reduced in-
stance has a vertex cover of size at most 2m′.

4.2 Parameter τ
We now turn to structural parameters and consider the well-
known parameter vertex cover number. Note that VERTEX
COVER is NP-complete but FPT parameterized by the ver-
tex cover number (Chen, Kanj, and Xia 2010). Therefore we
may as well assume that a vertex cover of minimum size
is provided as part of the input. It is known that in a graph
G with vertex cover number τ , the diameter of each con-
nected component in G is at most 2τ (Aziz et al. 2018). We
provide an FPT algorithm for MINIGL-ED parameterized
by vertex cover number using an integer quadratic program
(IQP). An IQP is an optimization problem whose input is an
ξ× ξ integer matrix Q, µ× ξ integer matrices A and W and
µ-dimensional integer vectors b and c. The task is to solve
the following optimization problem:

minimize ytrQy

subject to Ay ≤ b
Wy = c

y ∈ Zξ.

Note that the constraints are linear, whereas the objective
function can be quadratic.

Lokshtanov (2015) showed that there exists an algorithm
that given an instance of IQP, runs in time f(ξ, α)nO(1) and
outputs an optimal solution y ∈ Zξ, where α is the maxi-
mum absolute value in A and Q.

Theorem 4.4. MINIGL-ED is FPT for parameter vertex
cover number.

Proof. Let (G, k, T ) be an instance of MINIGL-ED with
G = (V,E), and let C be a smallest vertex cover in G with
|C| = τ . To find a set of edges that need to be deleted
in E(G[C]), we enumerate all subsets F of E(G[C]) and
guess the set F ′ that need to be part of our solution. Since
|E(G[C])| ≤ τ2, we need to enumerate at most 2τ

2

subsets
of edges. Set C = C \ F , G = G− F and k = k − |F |.

Since C is a vertex cover, we have that I = V (G) \ C is
an independent set. We partition I into a set of equivalence
classes P such that any two vertices u, v are in the same
equivalence class Pi ∈ P , if N(u) = N(v). Notice that
|P| ≤ 2τ . Clearly, P can be computed in time O∗(2τ ).

Observe that when we delete an edge uv incident to a
vertex u ∈ Pi, u moves from Pi to Pj , where N(Pj) =
N(Pi)\{v}. Similarly, if we delete at least one edge incident
to each vertex in Pi, we have that |Pi| = 0. As each vertex
in Pi moves to another equivalence class in P and we say
that Pi is vanished. Considering this observation we define
a set of vanishing functions of the form f : [2v] → {0, 1},
where if a class Pi vanishes after deleting edges in X then
f(i) = 0 otherwise f(i) = 1. The number of such functions
is bounded by 2|P| = 22τ , and all such functions f can be
constructed and enumerated in the same time. For shorthand
we denote f(i) by fi.

Observe that it might take more than one edge dele-
tion to move a vertex u ∈ Pi to Pj , where Pi, Pj ∈ P .
To adequately describe this, we introduce a function µ :
[2τ ], [2τ ] → Z, where µ(i, j) = 0 if either i = j or
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N(Pj) 6⊆ N(Pi). This means that a vertex from class Pi
can never move to Pj . On the other hand, if i 6= j and
N(Pj) ⊆ N(Pi) then µ(i, j) = |N(Pi)| − |N(Pj)|. This
denotes the number of edges incident to a vertex in Pi that
need to be deleted to move it to Pj . For shorthand, we will
denote µ(i, j) by µi,j .

We now construct an IQP for computing the minimum
IGL of a graph G with a vertex cover C, equivalence classes
P and functions f and µ. Let variables xi and yi,j respec-
tively represent the number of vertices in each equivalence
class Pi and the number of vertices that move from Pi to Pj ,
after deleting the edges in an optimal solution X .

We consider the following integer quadratic program that
finds the optimal edge set X that minimizes IGL(G−X).

minimize OBJ

subject to xi = 0 0 ≤ i ≤ 2
τ
, fi = 0

yi,j = 0 0 ≤ i, j ≤ 2
τ
, µi,j = 0

0 ≤ yi,j ≤ k 0 ≤ i, j ≤ 2
τ
, µi,j > 0

xi = |Pi|+
∑
j∈[2τ ]

(yj,i − yi,j) 0 ≤ i ≤ 2
τ

∑
i∈[2τ ]

xi = n− τ

∑
i,j∈[2τ ]

yi,j · µi,j ≤ k,

where OBJ is a function, defined below, which represents
the IGL of G after deleting the edges in X as defined by the
variables xi and yi,j .

Since the function f determines which equivalence
classes vanish, we can compute the distances between every
pair of non-vanishing equivalence classes and vertex cover
vertices. This is exactly the distance in the graph G′ ob-
tained from G by deleting all vanishing equivalence classes
and merging each remaining equivalence class into a sin-
gle vertex. We denote by δ(x, y) the distance between x
and y in G′ (x and y are either vertices from C or equiva-
lence classes from P represented by vertices). We have that
δ(Pi, Pi) =∞ if N(Pi) = ∅ and δ(Pi, Pi) = 2 otherwise.

We now define OBJ ′, which is the inverse geodesic
length of the graph obtained after deleting X:

OBJ
′

:=
∑
u∈C

∑
v∈C\{u}

1

δ(u, v)
+
∑
u∈C

∑
i∈[2τ ]
f(i)=1

xi

δ(u, Pi)

+
∑
i∈[2τ ]
f(i)=1

xi · (xi − 1)

2 · δ(Pi, Pi)
+

∑
i∈[2τ ]
f(i)=1

∑
i∈[2τ ]\{i}
f(j)=1

xi · xj
δ(Pi, Pj)

Since the coefficients ofOBJ need to be integers, we define
OBJ by multiplying OBJ ′ by the least common multiple
of the integers 1 to 2τ . We observe that all coefficients that
multiply the variables xi are bounded by a function of τ .

Enumerating all subsets of the edge set of the original
vertex cover requires O(2τ

2

) running time, and there are at
most 22τ possible vanishing functions f , resulting in at most
2τ

2 · 22τ calls to the IQP. The IQP itself however contains
2τ + 2τ · 2τ variables, with a maximum integer coefficient
upper bounded by a function of τ . Thus, due to the result of
(Lokshtanov 2015), we obtain that our formulated IQPs are
all FPT with respect to τ . Hence, MINIGL-ED is FPT for
parameter vertex cover number (τ ).

4.3 Parameter Γ + k

In this section we consider the twin cover number of the
graph along with the deletion budget k as a parameter. The
TWIN COVER problem is known to be NP-complete (Ga-
nian 2015). However, it is fixed parameter tractable parame-
terized by the size of the twin cover and can be computed in
time O(|E|+ Γ · |V | + 1.2738Γ) (Ganian 2015). Therefore,
it is safe to assume that the input contains a smallest twin
cover of the input graph.

Notions Let (G, k, T ) be an instance of MINIGL-ED and
C be a twin cover ofGwith |C| = Γ. LetPc be a partition of
V (G)\C into a set of equivalence classes {P1, P2, . . . , Pq},
such that, for any two vertices u, v ∈ V (G) \ C, if N(u) ∩
C = N(v) ∩ C, then u and v belong to the same equiva-
lence class. There are at most 2Γ equivalence classes in Pc
one corresponding to each subset of C. Ganian (2015) noted
that G[V (G) \ C] is a disjoint union of cliques. In particu-
lar, for each Pi ∈ Pc, G[Pi] is a disjoint union of cliques.
Let {Ps,Pl} be a partition of the equivalence classes in Pc
where Ps = {Pa ∈ Pc : |Pa| ≤ k} and Pl = Pc \ Ps.
Denote by Zk(Pi) and Zl(Pi) the set of cliques of size
at most k and at least k + 1 in Pi, respectively. Denote
Vs =

⋃
Pi∈Ps Pi, VZk =

⋃
Pi∈Pl V (Zk(Pi)), Ei(Pi) =

{uv | {u, v} ∩ V (Pi) 6= ∅}, Es = {uv | {u, v} ∩ Vs 6= ∅},
and EZk = {uv | {u, v} ∩ VZk 6= ∅}. Lastly, denote
Zmin(Pi) = minZi∈Zl(Pi) |Zi| andEl(Pi) = {uv | {u, v}∩
(Pi \ V (Zk(Pi))) 6= ∅ and {u, v} ∩ C 6= ∅}. In the de-
scription of the algorithm, when we state that the algorithm
guesses an object, this means that the algorithm branches
into all possible values that this object can take. Using these
notations, we outline Algorithm 1.

Before we discuss about the correctness of the algorithm,
we note that when we delete an edge uv ∈ E(G) where
{u, v} 6⊆ C,C does not remain a valid twin cover ofG−uv.
However, a valid twin cover can be obtained by setting C =
{u, v} ∪ C. In other words, after each such edge deletion,
the twin cover can grow in size by up to 2. Resultantly, after
k deletions we may have a twin cover C of size Γ + 2k.
Similarly, observe that each such edge deletion increases the
number of equivalence classes by 1. Consequently, after k
edge deletions, we may have 2Γ + k equivalence classes.

Correctness Clearly, Steps 1, 4 and 5 are exhaustive while
Steps 2, 3, 7, 10 and 11 are trivial. In Step 8, for each equiv-
alence class Pi ∈ Pl the algorithm picks k∗ ≤ k edges
that need to be removed from EZk(Pi). Although the size
of the cliques in Zk(Pi) is bounded by k, the number of
such cliques is unbounded. However, as we can delete at
most k edges, we can only consider k cliques each of size
1, 2, . . . , k. Hence the set of edges we consider for deletion
isE′Zk(Pi) ⊆ EZk(Pi), where |E′Zk(Pi)| ≤ k((Γ+2k)(1+

2 + 3 + . . .+k) + (1 + 3 + 6 + . . .+ k·(k−1)
2 )) ≤ O(k7 ·Γ).

We now establish the following results in order to prove the
correctness of Step 9.
Lemma 4.4.1. Given a graph G, a twin cover C of G, an
equivalence class Pi ∈ Pl (as defined in Notions) and a
pair of edges uv and xy where {uv, xy} ⊆ El(Pi) with
uv∩C = ∅ and xy∩C 6= ∅, IGL(G−xy) ≤ IGL(G−uv).
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Proof. Since each clique Zi ∈ Zl(Pi) has size at least
k + 1, deleting an edge uv ∈ E(Zi) only increase the dis-
tance between u and v from 1 to 2, while all other pairwise
distances remain unchanged. On the other hand, by defini-
tion of twin cover for any two vertices x1, x2 ∈ V (Zi),
N(x1) ∩ C = N(x2) ∩ C. Resultantly, deleting an edge xy
where x ∈ V (Zi) and y ∈ N(V (Zi)) increases the distance
between x and y from 1 to 2. However it also increases any
shortest path, which starts(or ends) at x and passes through
y, by 1. Thus, IGL(G− xy) ≤ IGL(G− uv).

Given the above result, we know that in Step 9 the algo-
rithm branches on each equivalence class Pi ∈ Pl to choose
an equivalence class. For the chosen class Pi the algorithm
deletes an edge of the form xy where x ∈ Pi and y ∈ C. As
|C| ≤ Γ + 2k, y can be chosen exhaustively by branching
over all neighbors of Pi. However, it remains to show, how
the algorithm chooses x, as the number of cliques in Zl(Pi)
is unbounded. The following lemma shows that it is optimal
to choose x greedily from Zmin(Pi).
Lemma 4.4.2. Given a graph G, a twin cover C of G, an
equivalence class Pi ∈ Pl and a pair of edges wy and
xy where {wy, xy} ⊆ El(Pi) with y ∈ C, w ∈ (Pi \
V (Zmin(Pi))) and x ∈ V (Zmin(Pi)), IGL(G − xy) ≤
IGL(G− wy).

Proof. Suppose that N(Pi) = {y}. Since both w and x be-
long to the cliques of size at least k + 1, deleting the edges
wy and xy increase the distance between the end points of
the edges from 1 to 2 and increase the distance to the vertices
that are connected to them via a shortest path through y by 1.
However, since y is the only neighbor of Pi, the shortest path
between each pair of vertices in V (Zl(Pi)) except for those
that belong to the same clique passes through y. This means
that deleting an edge of the form vy, for v ∈ V (Zi) andZi ∈
Zl(Pi), increases the distance between each pair of vertices
uv where u ∈ (V (Zl(Pi)) \ V (Zi)) from 2 to 3. We know
that, |V (Zl(Pi))\V (Zmin(Pi))| ≥ |V (Zl(Pi))\V (Zj)| for
all Zj ∈ Zl(Pi). Thus IGL(G−xy) ≤ IGL(G−wy).

Theorem 4.5. MINIGL-ED can be solved in O(Γ2k ·
(k(2Γ + k)(Γ + 3k))k · k2Γ+k · (k7 ·Γ)k · (Γ + 2k)k), where
Γ is the neighborhood diversity of the input graph.

5 Parameter η + k
We now show that MINIGL-ED is FPT parameterized by
the neighborhood diversity η of the graph and the deletion
budget k combined.
Theorem 5.1. MINIGL-ED can be solved inO((η+k)2k),
where η is the neighborhood diversity of the input graph.

Proof sketch. Let (G, k, T ) be an instance of MINIGL-ED
and Vd = {V1, V2, · · · , Vη} be a neighborhood partition of
G with η = |Vd|. We branch on each pair of neighborhood
partitions Vi, Vj ∈ Vd (without excluding the pairs where
i = j) and arbitrarily delete an edge uiuj where ui ∈ Vi
and uj ∈ Vj . After the edge is deleted we recompute the
neighborhood partition by creating a new partition V ′i for
the endpoints of the deleted edge.

Input : GraphG, integer k, target IGL T , and twin cover C ofG
Parameter: Γ = |C|, k
Output : “yes” if (G, k, T ) is a Yes-instance for MINIGL-ED, and “no”

otherwise

1 Guess which subset C′ ⊆ E(C) to delete;
2 Compute Pc over V (G) \ C;
3 Guess the number of edges k′ ≤ k to delete fromEs ;
4 Guess which edges to delete fromEs;
5 ∀Pi ∈ Pl guess the number of edges k′′ ≤ k − k′ to delete fromEi(Pi);
6 foreach Pi ∈ Pl do
7 Guess the number of edges k∗ ≤ k′′ to delete fromEZk (Pi);
8 Guess which edges to delete fromEZk (Pi);
9 Guess which k′′ − k∗ edges to delete fromEl(Pi);

10 if IGL(G) ≤ T then return yes ;
11 return no;

Algorithm 1: MINIGL-ED parameterized Γ + k.

6 Parameterized Intractability
In this section we present a W[1]-hardness result for
MINIGL-ED for parameter tree-with (tw). We provide a
parameterized reduction from the EQUITABLE COLORING
(EC) problem. In EC, given a graph G and an integer
r, the question is, does there exist a partitioning V =
(V1, V2, . . . , Vr) of V (G) into r independent sets such that
the numbers of vertices in any two independent sets Vi, Vj
differ by at most one? It is know that EC is W[1]-hard for pa-
rameter tree-width combined with the number of partitions
r (Fellows et al. 2011).

Theorem 6.1. MINIGL-ED is W[1]-hard for parameter
tw + kd.

Proof. Let (G, r) be an instance of EC where G has tree-
width tw. Assume without loss of generality that l = n

r is
an integer, where n = |V (G)|. We construct an instance
(G′, k = n(r − 1), T ) of MINIGL-ED where G′ is defined
as follows;

• create a set W of n vertices that contains a vertex corre-
sponding to each vertex in V (G),

• create a set G = {G1, G2, . . . , Gr} of r graphs where
each Gi ∈ G is a copy of G, denote UG =

⋃r
i=1 V (Gi),

• create a set R containing r vertices corresponding to each
color in {1, 2, . . . , r} (or shortly, [r]).

• create a setQv of n3 vertices corresponding to each vertex
v ∈ UG and connect them to v, denote Q = |Qv|,

• create a set Hw of n6 vertices corresponding to each ver-
tex w ∈W and connect them to w, denote H = |Hw|,

• connect each vertex w ∈ W to its corresponding vertex
wi in each Gi ∈ G,

• for all i ∈ [r] connect each vertex in Gi ∈ G to r vertices
in R that correspond to a color i in [r].

Let UQ =
⋃
v∈UG Qv and UH =

⋃
w∈W Hw. It can be

shown that tw(G′) ≤ O(r2 · tw(G)). We set k = n(r − 1)
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Figure 2: Depiction of (a) input graph G (b) vertices with H and Q leaves (c) graph G′ obtained by transforming G.

and

T =
1

120

(
10H

2 · n(l− 4) + 6H · n(5n+ 4l + 21)

+ 10n · r(4H + 6Q(r + 2) + 3n+ 12r + 3) + 20m(2l + 3r)

+ 5n(8n+ 3l + 21) + 10l
2
(3H + 4) + 30r

2
(r − 1)

)
. (2)

Let us now show that (G, r) is Yes-instance if and only
if (G′, k, T ) is a Yes-instance. Suppose, (G, r) is a Yes-
instance and there exist a partition V = {V1, V2, . . . , Vr}
such that for each Vi ∈ V , |Vi| = l. We know that each
Vi ∈ V is an independent set and for any pair of parts
Vi, Vj ∈ V , Vi ∩ Vj = ∅. Therefore, we have a set of vertex
covers {τ1, τ2, . . . , τr} where each τi = V (G) \ Vi. Now,
in each graph Gi ∈ G, for every vertex vi that correspond
to a vertex v ∈ τi, add the edge viw to X , where w ∈ W .
Observe that for each vi ∈ Gi |N(vi)∩W | = 1. Notice that
IGL(G′ −X) = T . Thus, (G′, k, T ) is a Yes-instance.

Conversely, suppose (G′, k, T ) is a Yes-instance and there
exist a set X ⊆ E(G) such that IGL(G′ − X) ≤ T . Let
E = {Et, Eu, Eq, Eg, Eb} be a partition of E(G′) where
Eu = (W × UG) ∩ E(G′)), Eg = E(G[UG]), Eb = (R ×
UG)∩E(G′), Et = E(G[UH ∪W ]), Eq = E(G[UQ∪UG].
Denote n′ = |V (G′)| = n(H + 1) + nr(Q + 1) + r2 and
K = G′ − (UH ∪ W ) where K consists of r isomorphic
connected components K1,K2, . . . ,Kr.

Claim 6.1.1. Let (G′, k, T ) be an instance of MINIGL-ED.
If X is an optimal solution, then X ⊆ Eu.

Intuition. Observe that the endpoints of each edge inEg and
Eb are connected through many short alternative paths. Sim-
ilarly, deleting an edge in Et or Eq isolates a single vertex
from G′. Comparatively, each edge in Eu has two high de-
gree vertices as it endpoints that do not have a short alter-
native path. Also, deleting k edges from Eu can divide the
graph in up to r connected components.

Now that we have established that we must choose X ⊆
Eu, we need to find the optimal set of edges inEu. We know
that |Eu| = n · r and k′ = n(r− 1), this implies that we can
delete all but n edges inEu. LetEwu denotes the set of edges
in Eu that are incident to w ∈W . Observe that the edges in
Ewu connect w to its corresponding vertices in r copies ofG.
Thus for each w ∈W , |Ewu | = r.

Claim 6.1.2. Let X ⊆ Eu be an optimal solution for
MINIGL-ED instance (as defined in Notions) on G′ then
∀ w ∈W in G′ −X , |Ewu | = 1.

Intuition. We validate this by considering the following
three cases for a vertex wi ∈ W in G′ −X; (1) |Ewiu | = 0,
(2) |Ewiu | = 1 and (3) |Ewiu | > 1. We know that |W | =
|Eu| − k = n. Consequently, if we have a vertex wi ∈ W
with |Ewiu | = 0, then there exist a vertex wj ∈ W with
|Ewju | > 1. Thus, case (1) implies case (3). Now, observe
that each vertex wi ∈ W with |Ewiu | > 1 joins two com-
ponents Ki,Kj ∈ K. However, if for each vertex wi ∈ W ,
|Ewiu | = 1, then the graph has r connected components.

Due to Claim 6.1.2, we have that G′ − X is divided into
r connected components C1, C2, . . . , Cr, each containing a
subgraph of the formKi ∈ K. Notice that if a pair of vertices
wi, wj ∈ W are in the same connected component Ci, their
distance is at most 4. Thus, every distinct connected pair
of vertices in V (Ci) ∩ W , adds at least H2

6 + 2H
5 to the

IGL of G′ − X . Therefore, we must choose X such that
each component Ci in G′ −X contains the least number of
vertices from W . Consequently, each connected component
Ci contains a set Li ⊆W of at most l = n

r vertices.
Furthermore, inside each connected component Ci, the

IGL of G′ −X can be reduced by maximizing the distance
between the vertices in Li. Observe that each vertex w ∈ Li
is connected to its corresponding vertex in Gi (Gi is a copy
of G in Ci) and each pair of vertices in Gi are at distance
at most 2. Therefore, the distance between a pair of vertices
in Li can be maximized by choosing X such that the N(Li)
is an independent set. But this is only possible if G has at
least r disjoint independent sets of size l. Thus, (G, r) is a
Yes-instance for EC.

7 Future Directions
Our results point to natural future directions: approximation
and heuristic algorithms; a probabilistic version of the prob-
lem where each edge is associated by a probability, denot-
ing the uncertainty with which it can be removed. Moreover,
tractability for parameter k can also be considered. Notice
that the NP and W [1] hardness results obtained here will
also apply to the probabilistic version.
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