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Abstract

The Electrocardiogram (ECG) is performed routinely by
medical personnel to identify structural, functional and elec-
trical cardiac events. Many attempts were made to automate
this task using machine learning algorithms including clas-
sic supervised learning algorithms and deep neural networks,
reaching state-of-the-art performance. The ECG signal con-
veys the specific electrical cardiac activity of each subject
thus extreme variations are observed between patients. These
variations are challenging for deep learning algorithms, and
impede generalization. In this work, we propose a semi-
supervised approach for patient-specific ECG classification.
We propose a generative model that learns to synthesize
patient-specific ECG signals, which can then be used as addi-
tional training data to improve a patient-specific classifier per-
formance. Empirical results prove that the generated signals
significantly improve ECG classification in a patient-specific
setting.

1 Introduction
Patient-specific modeling (PSM) is the development of com-
putational models of human pathophysiology that are in-
dividualized to patient-specific data (Neal and Kerckhoffs
2010). In the last years, PSM has been gaining attention
from the research community due to the potential to im-
prove diagnosis. Today, medical diagnosis is based on rough
averages derived from clinical trials which might not apply
directly to a specific patient condition (Kent and Hayward
2007). PSM can be used to optimize an individual’s diagno-
sis and reach higher accuracies.

In this work, we focus on PSM in the field of cardiol-
ogy. Electrocardiography (ECG) is a non-invasive tool used
for diagnosis and follow-up of cardiac anomalies, functional
disorders and cardiac arrhythmias. Any anomaly regarding
the heart rhythm or the morphological pattern of the cardiac
heart beats as sampled by the ECG, can indicate acute func-
tional emergencies such as acute Myocardial Ischemia or
acute rhythm disturbances, meaning an arrhythmia. With the
ongoing shortage of trained cardiologists and with the wide-
spread use of home ECGs to monitor patients with cardiac
risks, a need to develop fully automated ECG classification
mechanisms has arisen. Many studies were conducted in
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an attempt to reach high performance in ECG classification
(Kass and Clancy 2006). Such models were used to reduce
interpretation errors by identifying life-threatening arrhyth-
mias or as systems to alert about potential risks to patients.

Most methods today for ECG classification focus on
applying classical supervised machine learning methods
(Chazal and Reilly 2007; Ye, Kumar, and Coimbra 2012;
Escalona-Moran et al. 2014) and manual feature engineer-
ing. Lately, deep learning models (Al Rahhal et al. 2016)
were successfully applied and reached state-of-the-art re-
sults reducing the need for feature engineering. However,
in practice, neither of these methods have been able to scale
well across different patient’s types of ECGs (Kiranyaz,
Ince, and Gabbouj 2016). The changing nature of the ECG
signal dynamics and morphological characteristics are sig-
nificantly different across patients, and strongly depend on
the patient’s physical condition. Given the high variability
between patients and internal-variability of heartbeat classi-
fication for same patients, building deep ECG models that
might be used in practice has been limited.

To scale deep learning to perform personalized ECG
classification, subject-specific labeled examples are needed.
However, labeling a sufficient amount of ECG samples for
each patient is an infeasible task. In this work, we over-
come this sparseness of data by learning to synthetically
generate personalized ECG signals of different arrhythmias
that exhibit similar morphological characteristics to those of
the subject of classification. Those are then used to train
deep learning models which are better adapted to the sub-
ject. To learn patient-specific signals, we devise a novel
generative algorithm – Personalized Generative Adversar-
ial Networks (PGANs). PGANs learn to generate personal-
ized arrhythmia-specific ECG signals without any need for
subject-specific ECG labeling. This is achieved by learning
to generate ECGs that mimic the patient’s atrial and ven-
tricular depolarization and repolarization patterns during the
specific arrhythmia, which are learned in an unsupervised
way from a few minutes of unlabeled ECG signals of the
patient.

GANs (Goodfellow et al. 2014) are a class of machine
learning algorithms used in an unsupervised machine learn-
ing, usually implemented by two deep networks (a gener-
ator and a discriminator). The two networks compete with
each other in a zero-sum game framework. The generator at-
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tempts to learn a latent representation of a distribution, in a
way such that the discriminative network, trained to discrim-
inate between instances from the true data distribution and
the ones produced by the generator, will have a high loss.
As the ECG signals of the subject are not labeled, training a
GAN on a specific type of the patient’s arrhythmia class is
not possible.

In this work, we present PGANs composed of a generator
and a discriminator network per an arrhythmia class trained
on a large patient population but optimized using a special-
ized loss function to mimic the morphology of the subject’s
cardiac signal. We leverage the fact that an ECG signal is
represented as a series of waves due to atrial and ventricu-
lar depolarization and repolarization: a P wave followed by
a QRS set and finally a T wave. We identify those special
waves in the patient’s unlabeled ECG signal and optimize
the adversarial network to generate waves similar to the ar-
rhythmia as exhibited across all patients but with the special
morphological cardiac signal of the subject of classification
during his personalized arrhythmia. The generated signals
are then used as an additional training data for a deep learner.
We present empirical results on gold-standard ECG datasets.

Our contribution in this work is threefold: (1) We present
the problem of personalized ECG classification, and present
an algorithm requiring no patient-specific labeled examples.
Specifically, we present PGAN, a personalized adversar-
ial generative algorithm, to generate patient-specific ECG
signals by training on arrhythmia present in labeled data
over a general population and optimized to mimic the spe-
cific patient’s morphological cardiac waves. (2) We empiri-
cally show that utilizing the synthetically generated person-
alized ECG instances significantly improves personalized
ECG classification using deep learning techniques. To the
best of our knowledge, this is the first application, where
the instances generated by an adversarial network have been
shown to improve supervised classification tasks outside the
domain of image synthesis. (3) We share our code online for
further research and experimentation: https://bitbucket.org/
tomerGolany/ecg dl

2 Related Work
Extracting interval features and using prior knowledge on
the ECG morphology (De Chazal, O’Dwyer, and Reilly
2004) is one of the leading methods for ECG beat-level clas-
sification. Each ECG signal is separated to heartbeats us-
ing heartbeat detection techniques (Afonso et al. 1999). For
each heart beat, features related to the heart beat intervals
and ECG morphology are calculated. The combined fea-
tures are then fed into supervised machine-learning models
based on linear discriminants (LDs) (Nasrabadi 2007).

In recent years, the application of deep learning models
to ECG classification has become popular. It was applied
for numerous tasks, such as Cardiologist-Level Arrhyth-
mia Detection (Rajpurkar et al. 2017) and ECG heartbeat
classification (Güler and Übeylı 2005; Prasad and Sahambi
2003). One of the best methods today for ECG heartbeat-
level classification is described by (Al Rahhal et al. 2016).
They leverage a denoising autoencoder (DAE) to learn fea-
tures in an unsupervised way from the training data and then

use a large number of hidden layers and neurons at each
layer to learn a sparse representation of the input. This
sparse representation of each signal is fed through a soft-
max layer in order to classify the signal into one of the five
possible beats. We show that superior results are reached
by applying a simple LSTM model on ECG gold-standard
dataset. Due to its simplicity, superior performance and
success in other fields involving temporal sequences (Venu-
gopalan et al. 2015), (Gers, Schraudolph, and Schmidhu-
ber 2002),(Sak, Senior, and Beaufays 2014) we utilize this
model as the leading deep model for ECG classification.
Patient-specific ECG classification have been addressed in
the last few years (Kiranyaz, Ince, and Gabbouj 2016;
Jiang and Kong 2007) as means of improving ECG classifi-
cation as it was shown in the past (Kiranyaz, Ince, and Gab-
bouj 2016) that the variability between patients is too high
for most supervised model to reach satisfactory results on a
per-patient basis. The common methods for patient-specific
ECG classification require significant labeling of beats of the
ECG of the specific patient. However, such labeling still re-
quires a cardiologist making it hard to scale for the growing
population of home ECG users and adapt to the changing in-
patient morphology. In our work, we present a framework
that requires no patient-specific labeling of data. We first
learn to synthetically generated patient-specific ECG via a
novel GAN-based framework. We first adapt GAN to work
produce native ECG signals and then show how to adapt it to
a specific patient morphology. Those are then used to train
an LSTM model for the specific patient.

3 ECG Background

Electrocardiography (ECG) is a non-invasive tool used for
diagnosis and follow up of cardiac anomalies, functional dis-
orders and cardiac arrhythmias. Each beat of the heart can
be observed as a series of deflections away from the base-
line on the ECG. These deflections reflect the time evolu-
tion of electrical activity in the heart which initiates mus-
cle contraction. A full heart beat is also known as cardiac
cycle, the period of time that begins with contraction of
the atria and ends with ventricular relaxation. A single si-
nus (normal) cycle of the ECG, corresponding to one heart
beat, is traditionally labeled with the letters P,Q,R,S and T
on each of its turning points (see figure1. Each such point
has unique patterns which define the cardiac cycle, as de-
scribed by (De Luna, Batchvarov, and Malik 2006). In nor-
mal resting hearts, the physiologic rhythm of the heart is nor-
mal sinus rhythm (NSR). Normal sinus rhythm produces the
prototypical pattern of P wave, QRS complex, and T wave.
Generally, deviation from normal sinus rhythm is considered
a cardiac arrhythmia. The average length of all type of heart-
beats is 600 ms, 200 ms before the R peak and 400 ms after.
Cardiac cycles can be partitioned to different classes which
can represent either normal heart beats or arrhythmias. The
P,Q,R,S,T wave patterns varies between classes of arrhyth-
mias. We will focus on 3 type of heart-beats: Supraven-
tricular ectopic beats, Ventricular ectopic beats and Fusion
beats.
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Figure 1: An ECG waves with P,Q,R,S and T waves.

Feature Extraction
There are many techniques to analyze an ECG signal, de-
tect its cardiac cycles and extract the P, Q, R, S, T features
from each cardiac cycle. We used a common method im-
plemented in NeuroKit (Makowski 2016). This method is
based on filtering and finding local maximals in different ar-
eas around each cardiac cycle. We first detect R-peaks as
suggested by (Hamilton and Tompkins 1986), and identify
the P, Q, R, S, T waves of each cardiac-cycle by finding lo-
cal maximals and minimals around each R-peak.

Preprocessing
Before extracting cardiac-cycles and its wave values from
an ECG signal, preprocessing the whole signal in order to
remove noise is necessary. Among all proposals for reduc-
ing noise in ECG signals, the simplest and most widely used
is the application of recursive digital filters of the finite im-
pulse response (FIR) (Luz et al. 2016).

4 Personalized Generative Adversarial Nets
(PGANs) for ECG

In this section, we introduce the framework of ECG GAN
optimized for a specific patient ECG signal. We first
present a general framework for ECG signal generation us-
ing GANs, adapted to the domain of ECG generation. One
of the difficulties of creating realistic ECG is sustaining a
natural medical cardiac morphology. We therefore devise
a novel loss function for the task utilized by the generator.
We discuss the details of implementation and optimization
of the generator and the discriminator. We call this adapted
GAN framework – ECG GAN. We then present the Person-
alized ECG Generative Adversarial Network (PGAN) that
extends the ECG GAN with morphological signals derived
from patient-specific unlabeled data. The generated ECG
signals are then used to train a deep network (Section 5).
We empirically show (Section 7) that the additional gener-
ated labeled examples significantly improve the ECG classi-
fication in a patient-specific setting.

ECG GAN Framework
We formulate the generative adversarial nets for ECG heart
beats generation as follows. Let HB(n) = [hb1, . . . , hbN ]
be an ECG signal taken from a patient in one lead, sliced to

heartbeats (cardiac cycles), where hb(i) = {v1, . . . , v216}
represents the voltage values of a single heart-beat. The
216 points represent 200 ms before the R-peak and 400
ms after the R-peak, where the sampling rate is 360 sam-
ples per second. All heart-beats are taken from the same
type of arrhythmia. For a given heart-beat hbi, we define
W (hbi) = [Pi, Qi, Ri, Si, Ti] to be the wave values of the
cardiac cycle. We denote the underlying beats distribution of
a given class as a conditional probability p(hb|Y ;W (hb)),
which reflects the distribution of heart-beats given that it is
taken from arrhythmia type Y and has feature wave W (hb).
Given a set of heart-beats {hb1, . . . hbK} taken from P pa-
tients, we aim to learn the two following models:

Discriminator As in classic GANs architecture, the dis-
criminator D(G(z), hb; θD), aims to discriminate between a
real heart-beat hb and a generated heart-beat G(z) from the
generator. D(hb) outputs a single scalar representing the
probability that hb came from a real patient rather then pg .

Generator G(hb|z; θG), which tries to approximate the
underlying true ECG heart beat distribution p(hb|Y,W ) and
generates ECG heart beats with waves similar to W and
most likely from class Y. We alter the classic GANs Gen-
erator’s architecture with a specialized loss function to gen-
erate waves similar to natural wave features (P, Q, R, S, and
T values) exhibited in the training data.

Generator G and discriminator D act as two opponents:
generator G would try to fit p(hb|Y,W ) perfectly and gen-
erate relevant heart-beats similar to real heart-beats of the
desired class to deceive the discriminator, while discrimi-
nator D, on the contrary, would try to detect whether these
heart-beats are real heart-beats from the data or the ones gen-
erated by its counterpart G. Formally, G and D are playing
the following two-player minimax game with value func-
tion V (G,D):

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x)]+

Ez∼pdata(z)
[log(1−D(G(z))]

(1)

Based on Eq. 1, the optimal parameters of the gen-
erator and the discriminator can be learned by alternately
maximizing and minimizing the value function V (G,D).
In each iteration, discriminator D is trained with positive
samples from p(hb|Y ) and negative samples from gener-
ator G(hb|Y ; θG). Each iteration generator G is updated
twice with policy gradient under the guidance of D (detailed
later in this section) while the discriminator is updated once.
Competition between G and D drives both of them to im-
prove their methods until G is indistinguishable from the
true connectivity distribution. We discuss the implementa-
tion and optimization of D and G as follows.

ECG Discriminator Architecture Given positive ECG
heart-beat samples from real patients and negative ECG
heart-beat samples from the generator, the objective for the
discriminator is to maximize the log-probability of assigning
the correct labels to both positive and negative samples. The
real heart-beats are taken from 30 minuets ECG records of
real patients, sampled at 360 Hz. preprocessing is applied to
the ECG signals received as input (as described in Section 3)
and they are sliced to single heart-beats.
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ECG Discriminator Optimization The ECG heart-beats
are then fed through four conventional layers. All weights
were initialized from a zero-centered Normal distribution
with a standard deviation of 0.02. Between each layer we
perform batch normalization and apply a LeakyReLU acti-
vation function, where the slope of the leak is set 0.2. The
final layer is a sigmoid layer which classifies whether the
heart-beat is from the real data or from the generator (fake).
Formally, the discriminator loss function is a sum of two
cross-entropy functions H:

Loss(D) = H(hbreal, 1) +H(hbg, 0)

= [−1 ∗ logD(hbreal)− (1− 1)log(1−D(hbreal))]+

[−0 ∗ logD(hbg)− (1− 0)log(1−D(hbg))]

= −logD(hbreal)− log(1−D(hbg))
(2)

Where hbg ∼ pdata(hb), i.e., hbreal is an ECG heart beat
taken from the real training data, and hbg is an ECG heart-
beat generated from the generator network, hbg = G(z),
where z ∼ N(µ, σ) is a Gaussian distribution with µ = 0
and σ = 1.

ECG Generator Architecture The ECG GAN Genera-
tor architecture differs from that of the classic GAN by at-
tempting to keep natural morphological wave features (P, Q,
R, S, and T values), Figure 3 describes the new architec-
ture. The generator input layer draws 100 random numbers
from a Gaussian distribution z ∼ N(µ, σ) with µ = 0 and
σ = 1 , which are then fed to a dense layer. The output
of the dense layer is funneled through three de-convolution
layers. Between each layer batch normalization (Ioffe and
Szegedy 2015) is performed followed by a ReLU activation
function. Instead of generating one cardiac cycle, the final
layer of the generator is a dense layer with 216*3 neurons
which produces an output vector of size 216*3 (step (1)).
The output dimensions of the generator corresponds to the
same dimensions of three cardiac cycle, i.e., the generator
generates three cardiac cycles. We consider only the middle
cardiac-cycle as the generated ECG signal (step (2)), and use
the two other cycles to calculate the wave features P, Q, R,
S, T (Section 3), which are then used in the loss function
described below.

ECG Generator Optimization The Generator loss func-
tion is defined by a combination of the classical cross-
entropy loss, which tries to generate cardiac-cycles that will
fool the discriminator, and a Mean Square Error (MSE)
function which tries to generate fake heart-beats which are
more morphologically similar to real heart-beats. The MSE
loss function constrains the generated heart-beat wave val-
ues, P, Q, R, S, T to be as close as possible to the wave
values extracted from real heart-beats in the training data.

Cross-Entropy Loss: in contrast to the discriminator, the
generator aims to minimize the log-probability that the dis-
criminator correctly assigns negative labels to the samples
generated by G. Specifically, we optimize the generator net-
work by feeding its output into the discriminator network
and optimizing the generator’s weights in a way that the dis-
criminator network will predict that the generated ECG heart

beat is real. Therefore, we feed the examples from the gener-
ator into the discriminator and label them as real (y = 1). We
then perform Adam optimization to correct only the weights
of the generator. Formally, the cross-entropy loss function
of the generator is as following:

LossH(G) = H((hbg, 1)) = H((G(z), 1))

= [−1 ∗ logD(G(z))− (1− 1)log(1−D(G(z)))]

= −logD(G(z))

(3)

Where hbg = G(z) is an ECG heartbeat generated from
the generator network, and z ∼ N(µ, σ) is a Gaussian dis-
tribution with µ = 0 and σ = 1. We set the hyperparameters
as suggested by (Radford, Metz, and Chintala 2015).

MSE loss: In order to improve the generator’s ability to
generate fake heart-beats which are more morphologically
similar to real heart-beats, we constrain the generated heart-
beat wave values, P, Q, R, S, T to be as close as possible to
the wave values extracted from real heart-beats in the train-
ing data. The P, Q, R, S, T values are calculated by the al-
gorithm described in section 3. We add a penalty to the loss
function for how far the waves from the output of the gen-
erator are from the wave values extracted from the training
data (Figure 4). We define the MSE generator loss as:

Lossmse(G) = MSE(Pdata, Pg)+

MSE(Qdata, Qg) +MSE(Rdata, Rg)

+MSE(Sdata, Sg) +MSE(Tdata, Tg)

(4)

where, : MSE(Y, Ŷ ) = 1
n

∑n
i=1(Yi − Ŷi)

2, and Y is the
vector of observed values of the variable being predicted,
and Pdata, Qdata, Rdata, Sdata, Tdata are calculated from
the training data.

The total loss function of the generator is the sum of the
two above loss functions:

Loss(G) = Lossmse(G) + LossH(G) (5)
The optimization is performed using Adam optimizer

(Kingma and Ba 2014) and a learning rate of 0.0002 as
suggested for training GAN models in (Radford, Metz, and
Chintala 2015). The generator weights are trained twice
each iteration while the discriminator is trained once as sug-
gested in (Radford, Metz, and Chintala 2015).

Personalized ECG GAN
To address the variance between different patients which
causes lower ECG classification accuracies, we propose an
alternative method of training the ECG GAN in a way that it
will learn to generate heart-beats which are closer to a spe-
cific patient ECG morphology. The two underlying princi-
ples of PGANs are as follows:

1. Learning a GAN model per patient. Intuitively, we would
like to create an ECG GAN that generates waves similar
to the wave features (P, Q, R, S, and T values) of the pa-
tient. Specifically, we try to extract the wave features as
exhibited during the arrhythmia the generator attempts to
generate. We suggest a model which leverages unclassi-
fied beats of the subject of classification. Those beats are
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Figure 2: Feature extraction pipeline. Extract wave features
of heart beats from specific patients in the test set.
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Figure 3: Generator model pipeline. The generator creates
three cardiac cycles in order to extract wave features from
the middle cardiac cycle

extracted from the beginning of the ECG signal recorded
from the patient. We feed the patient’s beats to a pre-
trained LSTM classifier (see Section 5 for details of the
model) tuned for predicting arrhythmia classes over a gen-
eral patient population. That is, the classifier is trained
beforehand using training data over all patients (exclud-
ing the specific patient of classification). We then feed to
the trained LSTM the heart-beats from the specific patient
(Figure 2). We select 50 heart-beats from the specific-
patient which were predicted by the LSTM classifier with
the highest probability to belong to the class we would
like to generate with the generator (step (3)). From those
50 heart-beats we extract the P, Q, R, S, T wave values
(step (4)). The values are used in the generator MSE loss.

2. Constraining the generator to produce ECG signals with
properties of the specific patient. In order to improve the
generator’s ability to generate heart-beats which are more
close to real heart-beats, and specifically close to the pa-
tient’s heart beats, we try to constrain the generated heart-
beat wave values, P, Q, R, S, T to be close as possible
to the wave values extracted from the patient, while still
close enough to the real training data, so the discrimina-
tor will be fooled. This time the MSE loss of the genera-
tor adds penalty to the loss function for how far they are
from the wave feature values extracted from the specific
test patient rather from the training data. By that we ap-
proximate the generated cardiac-cycle morphology to the
specific-patient morphology (see Figure 4). The generator

loss is now:
Loss(G) = H(D(G), 1) +MSE(Psubj , Pg)+

MSE(Qsubj , Qg) +MSE(Rsubj , Rg)+

MSE(Ssubj , Sg) +MSE(Tsubj , Tg)

Where H(D(G), 1) is the cross-entropy loss function
from before and the second part is mean-square error be-
tween the wave values generated from the generator and
wave values from subject’s heart-beats.
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Figure 4: Description of the ECG patient-specific Discrimi-
nator and the two parts of its loss function. The discrimina-
tor takes as input real heart-beat from the training data and a
fake heart-beat from the output of the generator. Each heart-
beat is fed through 4 convolution layers. The last layer is
a feed-forward layer with sigmoid activation which outputs
the probability that the input heart-beat was taken from the
real data or from the generator output. The new loss function
for the generator is as follows: the first part is the original
GAN loss function which is the cross-entropy loss function.
The second part is an MSE function which penalizes for how
far the wave features of the generated heart beat are from the
wave features extracted from those of the subject’s.

5 Patient-Specific Deep ECG Classification
In Section 4, we described PGAN – a framework for gen-
erating ECG signals that exhibit both a certain arrhythmia
and are adapted to a specific patient. In this section, we
discuss how those patient-specific ECGs are used to train
a deep learner ECG classifier showed in Section 7 to em-
pirically reach better results in patient-specific ECG clas-
sification. Figure 5 presents the architecture of the LSTM
model, which was found to have superior results on ECG
gold-standard dataset. The system is trained over a large
corpus of 66000 heart-beats (Section 7). We filter each sig-
nal as described in Section 3 (step (2)). The filtering is nec-
essary in order to detect correctly the R-peaks and P, Q, S,
T of each cardiac cycle(Described in section 3). and slice
the signal to cardiac-cycles around each R-peak (step (3)).
The sliced heart-beats are fed to an LSTM classifier (step(4))
with 2 layers of 512 neurons each. The last layer is a softmax
layer which classifies the heart-beats to 5 different arrhyth-
mia classes (step(5)). Once the model is trained, we con-
tinue its training with the additional generated ECG signals
of the patient of classification. We provide several empiri-
cal results showing how the classifier performance improves
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Figure 5: Proposed LSTM model to classify heart-beats to 5
type of arrhythmias.

as a function of the number of the synthesized ECG signals
added (Section 7).

6 Experimental Evaluation
ECG Dataset
Our framework consists of ECG recordings taken from the
MIT-BIH database (Moody, Mark, and Goldberger 2001).
MIT-BIH arrhythmia database is the most popular public
dataset in discovering and clustering arrhythmias. It is con-
sidered the gold-standard evaluation data for ECG classi-
fication tasks (Moody, Mark, and Goldberger 2001). The
database contains 48 half-hour ECG records, obtained from
patients studied by the BIH Arrhythmia Laboratory between
1975 and 1979. Each record contains two 30-minutes ECG
lead signals digitized at 360 samples per second. The
database contains annotations for both heartbeat class infor-
mation and timing information verified by independent ex-
pert. A total of 109,492 labeled heartbeats. In this work, we
consider three classes of arrhythmia, and neglect two classes
– the normal heart beats and the unclassified beats. We ex-
cluded those classes from our work as they have low medical
value and small amount of training data (below 100).

Experimental Methodology
We follow the dataset partitioning as described by
(De Chazal, O’Dwyer, and Reilly 2004) and (Al Rahhal et
al. 2016). Both follow the AAMI recommendations for the
ECG classification task. This partition makes sure that pa-
tients data is not mixed between the training and the testing
sets. In agreement with the AAMI recommended practice,
the four recordings containing paced beats were removed
from the dataset. We train an LSTM model in a leave-one-
out fashion, each time extracting a different specific patient
for a test. We report the area under the curve (AUC) the
ROC using the beats annotations ground truth reported from
experts and the scores of each classifier for each class. For
the test, we only consider patients with more than 800 heart-
beats from the desired class.

Models Evaluated
We present results for the following models classifying one
class of arrhythmia:

No ECG Generation LSTM model (Section 5) trained on
all patients with no additional synthesized ECG examples.

Non-Personalized ECG Generation
1. Vanilla GAN – LSTM model trained on all patients with

additional synthesized ECG examples from a classical
GAN model.

2. DCGAN – LSTM model trained on all patients with addi-
tional synthesized ECG examples from a DCGAN (Rad-
ford, Metz, and Chintala 2015) model. As DCGAN have
shown superior performance on several tasks (Radford,
Metz, and Chintala 2015; Yeh et al. 2017) we present re-
sults on generated examples from this class of generative
adversarial networks.

3. ECG GAN – LSTM model trained on all patients with
additional synthesized ECG examples from our proposed
ECG GAN model (Section 4) but with no adaptation to
the specific test patient.

Personalized ECG Generation
1. Personalized LSTM – We devised a personalized LSTM

model following a transfer learning schema (Donahue et
al. 2013). We train the LSTM on all patients and add pre-
dicted ECG samples from the specific patient (similarly
to the methodology presented in Section 4). On average
800-1000 patient-specific beats are added.

2. Personalized GAN – To understand the contribution of
learning ECG features morphology during personalized
ECG synthesis, we devise the Personalized GAN ap-
proach. An LSTM model is trained on all patients with
additional synthesized ECG from a personalized GAN
model. The GAN model is a vanilla GAN without learn-
ing ECG morphology, a done by the ECG GAN. The
personalized GAN discriminator is trained on all train-
ing patients and in addition predicted ECG samples from
the specific patient are added (similarly to the methodol-
ogy presented in Section 4) (i.e., with additional 800-1000
patient-specific beats).

3. Personalized DCGAN – We wish to study the contribu-
tion of the specific generator architecture to the classifi-
cation. DCGAN is considered state of the art for image
generation. We therefore devise a model which is simi-
lar to Personalized GAN but with a DCGAN architecture.
That is, the LSTM is trained with synthesized examples
from a personalized DCGAN.

4. PGAN – LSTM model trained on all patients with ad-
ditional synthesized ECG examples from our proposed
PGAN model (Section 4).

The number of synthetically generated beats by the gener-
ative networks, which were added to the training set, is a
parameter of the model. We experimented with the follow-
ing values: 0, 500, 1000, 5000, 8000, 10000, 15000, 20000.

7 Results
Figures 6–8, present our results for the 3 arrhythmia classes.

Personalized vs Non-Personalized LSTM
Across all classes the results for the Personalized LSTM
reached AUC values significantly lower of that of the Non-
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Personalized LSTM. The heartbeat class which had the high-
est gap of AUC between the non-personalized to the person-
alized LSTM had a gap of 0.15 and the heartbeat class which
had the lowest gap of AUC between the Non-personalized to
the personalized LSTM had a gap of 0.1. For all classes
the AUC of the non-personalized LSTM was better then
the Personalized LSTM. We conclude that adding a small
amount of predicted examples from the specific-patient ECG
adds too much noise to the LSTM training. Achieving more
samples requires longer ECG monitoring which reduces the
medical value of such a system. The ability of the genera-
tive models to add significant amounts of training examples
carries higher promise as shown in next experiments.

The Effect of ECG Synthesis
We study the effect of adding synthesized ECG signals
on the classifier ability to distinguish between one heart-
beat class versus the rest of the classes. We observe
that the LSTM model trained with added synthetic exam-
ples from any GAN model significantly outperforms the
LSTM model trained without synthetic examples added for
the S(supraventricular) and F(Fusion) heartbeats. For the
V(ventricular ectopic) heart-beats, we see that the LSTM
classifier performed very well without adding synthetic
heart-beats to the training set, achieving AUC of 0.99. The
LSTM kept the high score when adding synthetic heart-beats
from all type of GANs. We observe there is no monotonic-
ity in performance as a function of number of synthesized
examples added. There were some events where the syn-
thetic heart-beats achieved lower AUC. For most models we
see that the performance first drops and then fluctuates till
reaches better performance than the LSTM trained with no
synthesized examples. This is due to the randomness of
the generator creation of heart-beats. We observe the im-
provement is more significant in arrhythmia classes, which
are composed of several medical conditions. We conjecture
that those classes are harder to learn given the same amount
of training generated by the PGAN. We conclude that the
practice of adding synthesized examples to the training of
the LSTM model significantly improves its performance for
heartbeat classification when tuning the number of synthe-
sized examples added.

The Effect of Adapting to ECG Morphology
The ECG GAN (Section 4) presents a novel loss functions
whose goal is to adapt its output to ECG morphology with
natural P, Q, R, S, T waves. We observe that for the F and V
heart-beat class, the classification with ECG-GAN synthe-
sized ECG significantly outperforms the classic GAN and
DCGAN, but does not perform as well for S beats. In the S
beats, the variation between the train and test patients is the
highest compared to other beats classes. We conclude that
learning to adapt to natural ECG morphology is important
for better classification, but the need to adapt to a specific-
patient morphology is crucial. PGAN solves this issue by
leverages our proposed ECG-GAN model and adapts it to
the specific-patient morphology with patient-specific P, Q,
R, S, T waves.

The Effect of Personalization
We wish to study the effect of adding personalized ver-
sus non personalized ECG signals. The personalized GAN
and DCGAN don’t outperform the non personalized mod-
els across all classes (we only observe a gain on F beats).
We observe that PGAN outperforms all non-personalized
models across all classes, reaching the following state-of-
the-art performance: F beats: 0.95 AUC; S beats: 0.85
AUC; V beats: 0.99 AUC. Additionally, it reaches supe-
rior performance compared to all personalized models. We
note that the variance of the classification performance is
low and goes between 0.01 - 0.05 in the different heart-beat
classes. We conclude that adding personalized ECG signals
improves ECG classification. However, the method of gen-
erating the personalized ECG is of high importance.

Figure 6: Average AUC comparison on LSTM which clas-
sifies heart-beat of type F - Fusion beats

Figure 7: Average AUC comparison on LSTM which clas-
sifies heart-beat of type S - supraventricular ectopic beats

Figure 8: Average AUC comparison on LSTM which clas-
sifies heart-beat of type V - ventricular ectopic beats
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8 Conclusions
In this work, we study the problem of personalized ECG
classification, which is of high importance due to high vari-
ability across patients. We present a general framework for
generating natural ECG signals by constraining the gener-
ative model to produce natural P, Q, R, S, T waves. We
evaluate the performance on LSTM classifier for ECG clas-
sification and show that it reaches high results compared to
non-constrained generative models. We then present PGAN,
a personalized adversarial generative algorithm, to gener-
ate patient-specific ECG signals by training on arrhythmia
present in labeled data over a general population and op-
timized to mimic the specific patient’s morphological car-
diac waves. We empirically show that utilizing the synthet-
ically generated personalized ECG instances significantly
improves personalized ECG classification using deep learn-
ing techniques.
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