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Abstract

The formation of a complex network is highly driven by
multi-aspect node influences and interactions, reflected on
network structures and the content embodied in network
nodes. Limited work has jointly modeled all these aspects,
which typically focuses on topological structures but over-
looks the heterogeneous interactions behind node linkage
and contributions of node content to the interactive hetero-
geneities. Here, we propose a multi-aspect interaction and
influence-unified evolutionary coupled system (MAI-ECS)
for network representation by involving node content and
linkage-based network structure. MAI-ECS jointly and itera-
tively learns two systems: a multi-aspect interaction learning
system to capture heterogeneous hidden interactions between
nodes and an influence propagation system to capture multi-
aspect node influences and their propagation between nodes.
MAI-ECS couples, unifies and optimizes the two systems to-
ward an effective representation of explicit node content and
network structure, and implicit node interactions and influ-
ences. MAI-ECS shows superior performance in node clas-
sification and link prediction in comparison with the state-
of-the-art methods on two real-world datasets. Further, we
demonstrate the semantic interpretability of the results gen-
erated by MAI-ECS.

Introduction
Complex networks are ubiquitous; precisely representing a
complex network is critical for understanding and develop-
ing networking applications yet challenging due to intricate
network structures, node information and influence, and in-
teractions between nodes (Cui et al. 2018; Cai, Zheng, and
Chang 2018). As the citation network in Figure 1 illustrates,
each paper p owns its content information, including title,
abstract and other information, and plays various influences
on other papers w.r.t. such aspects as research topic unique-
ness, method novelty, and experimental advantage. Accord-
ingly, different citation network structures are formed under
different scenarios, as shown in Figure 1(a) and Figure 1(b).
While the network structures reflect different node connec-
tions (citations) between three context papers p1, p2 and p3

and the target paper pt in scenarios (a) and (b), it is impor-
tant to understand the underlying node interactions and the
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Figure 1: Two scenarios in citation networks: different net-
work structures driving by different node influences and in-
teractions between nodes.

roles of node information in influencing node interactions,
which are hidden behind each network structure. For exam-
ple, the influences of each paper and the multi-aspect inter-
actions between context papers and between the target pa-
per and context papers in scenario (a) may be quite different
from that in scenario (b), even though both scenarios share
the same node content of each paper. It is important for us to
understand the multi-aspect node influences and the multi-
aspect interactions between nodes that drive the formation
of connections.

The above example illustrates a critical perspective in
complex networks and systems, i.e., representing multi-
aspect and heterogeneous interactions and influences be-
tween nodes (objects), in order to understand some intrinsic
characteristics and fundamental complexities: explicit and
implicit heterogeneities and coupling relations in complex
networks and systems (Cao 2014; 2015; Zhang et al. 2018a).
This requires to involve, model and integrate (1) explicit and
heterogeneous sources of node content information (e.g., pa-
per’s title and/or abstract) and network topological structure
(e.g., paper citations), and (2) implicit and heterogeneous as-
pects of node influences (e.g., a paper’s topic uniqueness and
design novelty) and node interactions (e.g., a paper cites the
algorithm introduced in another paper). However, the above
significantly challenges existing research on network em-
bedding and representation. To the best of our knowledge, no
work has been reported to jointly disclose and model these
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aspects.
Most of existing plain network representation methods (Li

et al. 2014; Tang et al. 2015; Grover and Leskovec 2016) aim
to preserve the network structure. Some recent methods tend
to integrate topological and content information by extend-
ing existing plain network representation methods. For ex-
ample, TriDNR (Pan et al. 2016) conducts random walk on
node text to build an independent term in its objective func-
tion. However, it models the network structure and node con-
tent separately through a weighted combination, which fails
to jointly consider the information from network structure
and node content. Although CANE (Tu et al. 2017) builds
context-aware network embedding, it only models the differ-
ent semantic aspects of node content without considering the
multi-aspect node influence or the multi-aspect interactions
between nodes. The work in (Gao and Huang 2018) uses two
Autoencoders on network structure and node content sepa-
rately and combines them through alignment on their consis-
tent information. However, the above methods overlook the
multi-aspect interactions between node pairs or only model
the different attentions within node content.

To model the explicit and implicit information and multi-
aspect heterogeneous interactions discussed above in a com-
plex network, we here propose a multi-aspect interaction and
influence-unified evolutionary coupled system (MAI-ECS),
as shown in Figure 2. MAI-ECS involves both node con-
tent and network structure information, and couples a multi-
aspect interaction learning system (MAI-LS) to model the
hidden and various interactions between nodes with a multi-
aspect influence propagation system (MAI-PS) to generate
the implicit and multi-aspect node influences. The MAI-LS
decomposes a node linkage (an edge in a network) into sev-
eral hidden interactive relations to explain why the linkage
forms, and then MAI-PS discloses a node’s various influ-
ences on others in terms of node attributes (e.g., content)
and its multiple roles in forming a topological structure. The
two coupled systems (Geiser 2014) in MAI-ECS are alter-
nately optimized to form an evolutionary learning system,
until producing the desired network representation.

We apply MAI-ECS to node classification and link predic-
tion on two real-world data sets, showing significant perfor-
mance improvement over the start-of-the-art baselines. We
further demonstrate the semantic meaning of learned multi-
aspect influence and multi-aspect interactions, indicating the
interpretability of MAI-ECS.

Related Work
Plain Network Representation A typical solution to rep-
resent nodes or edges is to factorize graph Laplacian eigen-
maps or the node proximity matrix directly (Yin, Gao, and
Lin 2016; He and Niyogi 2004). With deep learning, re-
cently a lot of methods try to incorporate deep learning mod-
els to learn node representation. Among them, the most rep-
resentative way is to combine the random walk and word
embedding, such as Skip-gram and CBOW (Mikolov et
al. 2013). DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
and Node2vec (Grover and Leskovec 2016) build context
through the random walk and feed the contexts into a Skip-
gram model. LINE (Tang et al. 2015) and SDNE (Wang,

Cui, and Zhu 2016) tend to learn representations from local
network structure while other methods aim to capture the
global structure and community patterns, such as GraRep
(Cao, Lu, and Xu 2015) and M-NMF (Wang et al. 2017).
Other method (Hu et al. 2019) considers the context influ-
ence in multiple networks and applies into recommender
systems. Only considering the structure information cannot
capture the implicit and heterogeneous aspects of node in-
fluence and interactions. Further, the random walk and deep
learning model are treated as two independent parts in these
methods. This means the two parts cannot optimize each
other, which is not suitable for jointly learning node content
and network structure.

Attributed Network Representation Due to the hetero-
geneity and couplings (Cao 2014) between node content in-
formation and network topological information, only a lim-
ited number of methods are able to import content informa-
tion into network representation. Text-associated DeepWalk
(TADW) (Yang et al. 2015) firstly attempts to incorporate
node text information into node representation through ma-
trix factorization. TriDNR (Pan et al. 2016)] further exploits
node labels to make node representations better for node
classification. The method in (Zhang et al. 2018b) also mod-
els the node text through attribute-aware Skip-gram model.
Then the node text and network structure information are
combined w.r.t. a weight parameter, which is largely affected
by the performance and generalizability of the method. UPP-
SNE (Zhang et al. 2017) incorporates user profile with net-
work structure by mapping them into the same space. In this
work, the user profile attributes and the network structure
are assumed highly interrelated so the nodes in a context
are represented by their attribute vectors. All these meth-
ods also conduct random walk to collect contexts and use
a deep model to learn representation. The node content in-
formation is forced to fit the topological structure without
considering the multi-aspect node influence or interactions
brought by node attributes. CANE (Tu et al. 2017) considers
the node context’s influence on the node content information
and use mutual attention mechanism to build context-aware
embedding. However, only modeling the aspects in content
cannot capture the implicit aspects of node influence or in-
teractions. The method in (Gao and Huang 2018) tries to
modify autoencoder to align the structure information and
node attributes, which only keeps the consistent information
and leads to information loss.

Problem Formalization
A network with node content is denoted as G = (V, E , C),
where V = {vi}Ni=1 denotes the node set, ei,j ∈ E denotes
an edge, (vi, vj , wij), with weight wij between source node
vi and target node vj , and ci ∈ C is vi’s content informa-
tion which may be a text, an image or an attribute vector.
The MAI-ECSMΘ aims to learn a network representation
N = {Y, S̄,R; Θ} where yi ∈ Y is a low-dimensional
vector (with the length K) for each node, s̄i ∈ S̄ is the
stable multi-aspect influence state vector with L aspects
(s̄i ∈ [0, 1]L) for each node, ri→j ∈ R denotes the multi-
aspect interaction score vector for each edge, and Θ denotes
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Figure 2: The MAI-ECS for jointly learning multi-aspect in-
fluences and interactions in a complex network.

model parameters.
MΘ consists of two coupled systems: Mh is a multi-

aspect influence propagation system based on the transition
configuration R fed byMf ;Mf is a multi-aspect interac-
tion learning system to refine the configuration R according
to the stable influential states S̄ fed byMh. We aim to ob-
tain the desired network representation N via an evolution-
ary learning process overMh andMf .

Multi-aspect Evolutionary Coupled Systems
Here, we present the details of the coupled evolution process
to learn the underlying multi-aspect interactions. As illus-
trated in Figure 2, the learning process of the coupled sys-
tems can be formalized as the following evolutionary equa-
tions, where k denotes the evolutionary iteration:{

Mf : R(k+1) = fΘ(S̄(k),R(k)|G)

Mh : S̄(k+1) = h(R(k+1), S̄(k)|G)

(1)

(2)

The above two coupled equations outline the evolutionary
dynamics betweenMf andMh. MAI-LSMf aims to learn
multi-aspect interaction scores R(k) for all edges, which is
largely dependent on the multi-aspect influence states S̄(k)

for all nodes. In turn, MAI-PSMh updates the stable multi-
aspect influence states S̄(k+1) according to the refined tran-
sition configuration based on R(k). Therefore, this is an
asymptotic evolution process over the coupled systemsMf

and Mh to learn the optimized network representation N .
In the following subsections, we introduce Mf and Mh,
and the evolutionary learning algorithm based on these two
coupled systems.

Multi-aspect Interaction Learning System
According to Eq. 1, MAI-LS takes the latest stable multi-
aspect influence states S̄(k) as the input to learn the multi-
aspect interaction scores, which consists of two submodels:
node representation model and interaction scoring model.

Node Representation Model Without loss of generality,
we present the node content w.r.t. textual data. Other con-
tent can be represented by their representations, e.g., VGG
features (Simonyan and Zisserman 2014) for images. First,
we map each word j in a node text content ci into a pre-
trained word embedding wj ∈ RK×1 (Pennington, Socher,

and Manning 2014). Then, the text embedding ti is encoded
by the attention mechanism (Hu et al. 2018):

ti =
∑

wj∈ci

αjwj (3)

where the attention weight αj is learned through a two-layer
attention network:

αj = softmax(tanh(Wtwj + bt)) (4)

softmax(xk) = exk/
∑

j e
xj and Wt ∈ R1×K and bt ∈ R

is the bias term.
Then, we associate an embedding vector ei ∈ RK×1 for

each node vi to learn the topological structure information.
Since the content embedding ti and structure embedding ei

are characterized by different properties, we combine them
as the node representation yi to capture more comprehensive
information in the network:

yi = L2norm(ei ⊕ ti) (5)

where L2norm denotes L2 normalization and ⊕ denotes
a merging operation, e.g., concatenation. In this paper, we
adopt the addition operation which results in the best perfor-
mance in our experiments.

Interaction Scoring Model As discussed in the introduc-
tion, each observed edge ei,j can be regarded as the for-
mation of the underlying interactions between a node pair
(vi, vj) w.r.t. different aspects. The multi-aspect interac-
tion scores are relevant to the properties of interactive node
pair (vi, vj), which are encoded by the node representations
(yi,yj), and their influential states (s̄i, s̄j), which are gen-
erated by MAI-PS to depict the interaction aspects and their
strengths.

First, we measure the compatibility of interactions ac-
cording to the node properties encoded by yi and yj :

yi,j = yi � yj (6)

where � denotes the element-wise product.
Then, we encode the attraction of node vj on node vi for

directed interaction and mutual attraction between vj and vi
for undirected interaction according to the nodes’ influential
states s̄i and s̄j :

xi,j =

{
Wss̄j if (vi, vj) is directed
Wss̄i �Wss̄j otherwise

(7)

where Ws ∈ RL×L. In the case of directed interactions, the
formation of an interaction is mainly relevant to the influ-
ence of the target node, e.g., a citation is formed due to the
influence of its target paper. In the case of an undirected or
bi-directional interaction, its formation is driven by the in-
fluence of both nodes, e.g., the collaboration between two
influential authors.

As a result, the overall interaction score SOi,j between
(vi, vj) is measured by summing over yi,j and xi,j :

SOi,j =
∑

yi,j +
∑

xi,j = y>i yj + s̄>i Ws>Wss̄j (8)
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Moreover, we need to determine the interaction aspect be-
tween node pair (vi, vj). First, we score the interaction for
each aspect as follows:

SAl,i,j = Wy>
l yi,j + Wx>

l xi,j + bl (9)

where Wy
l ∈ RK×1 and Wx

l ∈ RL×1 are the parameters
for measuring the score of aspect l. In the same way, we
obtain the scores for all aspects.

These aspects of scores imply the probability of the in-
teraction aspects, which can be viewed as a mixture model
of the interactions over multiple aspects. As a result, the as-
signment of the interaction aspects, ai,j ∈ {1, · · · , L}, can
be drawn from the following categorical distribution:

ai,j ∼ π({SAl,i,j}l=1,··· ,L) (10)

where the probability mass function is defined as:

πl = softmax(tanh(SAl,i,j)), l = 1, · · · , L (11)

However, the assignment ai,j is a discrete random variable
which cannot work with other continuous variables due to
the absence of the gradient for backpropagation (Jang, Gu,
and Poole 2016) in a neural network. As a workaround, we
adopt the Gumbel-SoftMax (Jang, Gu, and Poole 2016) to
conduct a soft sampling for discrete values:

al,i,j =
exp ((log πl + gl)/τ)∑L

k=1 exp ((log πk + gk)/τ)
(12)

where g = − log(− log(u)) and u ∼ uniform(0, 1). In
this paper, we set the temperature parameter τ = 0.1, which
tends to output a one-hot-like assignment, that is, only one
aspect has the mass close to 1 and the masses of other as-
pects are close to 0. Accordingly, we get a relaxed discrete
version of multi-aspect interaction score vector ri→j ∈ R,
where only one aspect score tends to be preserved:

ri→j
l = max(al,i,jSAl,i,j , 0), l = 1, · · · , L (13)

Multi-aspect Influence Propagation System
So far we have learned multi-aspect interaction scores R(k)

(cf. Eq. 13) from MAI-LSMf . Correspondingly, the multi-
aspect influence of each node is changed with the updated
multi-aspect interactions in the network. According to Eq.
2, MAI-PSMh takes R(k) to configure the influence propa-
gation dynamical system. This dynamical system is defined
in terms of the following state space equations:

S
(k)
:,l (n+ 1) = TlS

(k)
:,l (n) (14)

S
(k)
:,l (0) = S̄

(k−1)
:,l . (15)

S
(k)
:,l (n) denotes the influential states w.r.t. aspect l for all

nodes, where n denotes the propagation time step in the dy-
namical system. SinceMh is a multi-aspect influence prop-
agation system, we have L transition matrices {Tl}Ll=1.

Given an aspect l, transition matrix Tl ∈ [0, 1]N×N is
configured as follows:

Tl =
(1− d)

N
11> + d(Pl + Dl) (16)

where 1 ∈ RN×1 is all-one vector and d is the damping ratio
to prevent sticking in local network neighborhoods. We set
d = 0.95 in the experiments. The matrix Dl is set to handle
the dangling nodes that do not have any outlink in aspect l:

Dl[:,i] =


1

N
1, if vi is dangling node

0, otherwise.
(17)

Pl is configured according to multi-aspect interaction scores
R(k). The transition probability pi→j from vi to vj is pro-
portional to the corresponding ri→j

l .

pi→j =


ri→j
l∑N

i=1 r
i→j
l

, if (vi, vj) ∈ E and ai,j = l

0, otherwise.
(18)

where ai,j = l means that we only consider the interaction
on the sampled interaction aspect (cf. Eq. 10) since ri→j

l is
a softly sampled score (cf. Eq. 13). As a result, we have Pl:

Pl =


p1→1 p2→1 . . . pN→1

p1→2 . . .
...

... pi→j

p1→N . . . pN→N

 . (19)

Under the above settings for Tl, this influence propaga-
tion dynamical system sets up a Markov chain for each as-
pect l. According to Markov’s theorem: a Markov chain is
ergodic if there is a positive probability to pass from any
state to any other state in one step. Obviously, Tl satisfies
the condition of ergodicity, which guarantees the stable state
S̄:,l for each influential aspect within finite time steps.

Eq. 14 implies the power method (Saad 2011) to find S̄.
Since Pl is very sparse, the total number of nonzero entries
over all {Pl} is |E|, i.e., the number of edges, the influence
state matrix S(n) for all aspects can be computed in O(|E|)
CPU time or in O(1) GPU time for each power iteration.

Evolutionary Learning Process
The coupled systems MAI-LSMf and MAI-PSMh set up
the evolutionary dynamics over the network. Notice that an
observed structure of a network is evolved from some previ-
ous structure with fewer edges. That is, given a masked net-
work structure with masked edges E− ⊂ E , the evolutionary
dynamics tend to drive it to recover the target network struc-
ture, as demonstrated in Figure 3. Inspired by this idea, we
set up an evolutionary objective for MAI-LSMf and MAI-
PSMh based on sampled masked network structures.

Given a masked network structure, the evolutionary direc-
tion is driven by the interaction between nodes. Therefore,
given a source node vi and any two other nodes vj , vk, we
have the following orders of the interaction strengths:
Oi,j � Oi,k, if wi,j > wi,k

Oi,j � Oi,k, if (vi, vj) ∈ E and (vi, vk) /∈ E
Oi,j � Oi,k, if (vi, vj) ∈ E− and (vi, vk) /∈ E

(20)
(21)

(22)
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Figure 3: The evolutionary learning process.

Eq. 20 specifies the interaction order according to the weight
of edges; Eq. 21 specifies the interaction order according to
the presence of edges; and Eq. 22 specifies the interaction
order according to the possibility to form new edges.

According to the above order relationships, we can set up
the following objective over 〈vi, vj , vk〉:{

SO
i,j > SO

i,k, if Oi,j � Oi,k

SA
i,j |al,i,j > SA

i,k|al,i,j , if Oi,j � Oi,k

(23)

(24)

where SO
i,j is overall interaction score given by Eq. 8 and

SA
i,j |al,i,j =

∑
al,i,jS

A
l,i,j , SA

i,k|al,i,j =
∑
al,i,jS

A
l,i,k are

the aspect-specific interaction scores conditional on the sam-
pled interaction aspect (cf. Eq. 12). Accordingly, we set up
the following triplet max-margin losses:{

LO = max{0, εO − (SO
i,j − SO

i,k)}
LA = max{0, εA − (SA

i,j |al,i,j − SA
i,k|al,i,j)}

(25)

(26)

where εO and εA are the max-margin parameters, we set
both of them to 1 in the experiments. Specifically, LO

mainly aims to optimize the overall topological interaction
resulting in the edge formation while LA mainly aims to op-
timize the semantic interaction in a specific aspect resulting
in the edge formation.

We use mini-batch learning to learn the parameters Θ of
Mf . Then the mean loss of a mini-batch B for computing
gradients is given as:

L =
1

|B|
∑

〈vi,vj ,vk〉∈B

(LO + LA) (27)

We adopt Adam (Ruder 2016) for optimizing the gradients
∇ΘL to find the optimal model parameters Θ.

The whole learning process is depicted in Algorithm 1.
For the overall iteration, we randomly sample a masked net-
work structure to learn the coupled systems Mf and Mh

in turn. This process begins with Mf with randomly ini-
tialized S̄(0). In Mh, since the dynamical system is er-
godic, we employ the power method on GPU to find the
stable influential states. The MAI-ECS code is available at:
https://github.com/jiansonglei/MAI-ECS.

Algorithm 1 The evolutionary learning process of MAI-
ECS
Require: G: network, M1: maximum iterations of evolu-

tionary learning process, M2: maximum iterations in
Mf , M3: maximum iterations inMh

Ensure: N = {Y, S̄,R; Θ} - the network representation
1: Initialize S̄(0) with a random value
2: for k = 0, · · · ,M1 do
3: Sample a masked network Gk from G
4: R(k+1) = fΘ(S̄(k),R(k)|Gk)
5: S̄(k+1) = h(R(k+1), S̄(k)|Gk)
6: end for
7: Construct Y according to Eq. 5 and extract Θ fromMf

8: return Y, S̄,R,Θ
9: function fΘ(S̄,R|G)

10: while iter ≤M2 do
11: Optimize∇ΘL (cf. Eq.27) with Adam
12: end while
13: Generate ri→j according to Eq. 13
14: return R,Θ
15: end function
16: function h(R,S̄|G )
17: Construct {Tl}Ll=1 according to Eq. 16
18: while n ≤M3 do . Power iteration
19: S:,l(n+ 1) = TlS:,l(n) for l ∈ [1, · · ·L]
20: end while
21: return S̄
22: end function

Experiments
In this section, we evaluate our proposed model on two real-
world datasets and two applications, and compare it with the
state-of-the-art network representation methods.

Experimental Setup
The citation network Aminer1 collects data from DBLP,
ACM, MAG (Microsoft Academic Graph), and other
sources. The nodes denote the papers and the edges denote
the citation relationship which are directed. The whole net-
work contains millions of papers from various domains. We
choose papers from four domains, i.e., artificial intelligence,
database & data mining, theoretical computer science, and
computer graphics & multimedia. The domains are used for
labels in node classification. For each paper, we use its title
as the node content information. The final citation network
contains 29,896 nodes and 66,166 edges.

The second dataset is a coauthoring network in Aminer 2,
where the nodes denote authors, the edges denote the coau-
thorship and the edge weight denotes the number of coau-
thored papers. For each author, we use her/his research inter-
ests as the node content information. This network contains
1,712,433 authors and 4,258,615 edges.

In our experiments, we evaluate the network representa-
tion on standard learning tasks: node classification on cita-

1https://aminer.org/citation (V7 version is used)
2https://aminer.org/aminernetwork
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Table 1: Node classification performance on citation network
p% Metric Node2vec Doc2vec NV+DV TriDNR CANE MAI-LS MAI-ECS

80 Accuracy 0.804±0.002 0.658±0.002 0.838±0.005 0.817±0.009 0.820±0.006 0.857±0.004 0.887±0.003

F1-score 0.707±0.006 0.551±0.002 0.768±0.009 0.728±0.012 0.708±0.009 0.802±0.006 0.832±0.005

20 Accuracy 0.787±0.002 0.655±0.001 0.833±0.002 0.812±0.001 0.817±0.003 0.845±0.002 0.873±0.001

F1-score 0.680±0.004 0.549±0.007 0.764±0.002 0.724±0.002 0.703±0.003 0.783±0.005 0.815±0.003

tion network (because only the citation network has class
labels) and link prediction on both citation and coauthoring
network. Additionally, we demonstrate the semantic inter-
pretability of MAI-ECS in terms of multi-aspect influences
and multi-aspect interactions.

The following algorithms are compared in our paper:
• Node2vec (Grover and Leskovec 2016): which learns

node representation through random walk and the Skip-
gram model with network structure only. The sampling
strategy in DeepWalk (Li et al. 2014) can be seen as a
special case of Node2vec.

• Doc2vec (Le and Mikolov 2014): which embeds text, i.e.,
node content, into a distributed vector by neural network
models without network structure.

• NV+DV: which concatenates node representation from
Node2vec and Doc2Vec to utilize both network structure
and node content.

• TriDNR (Pan et al. 2016): which utilizes network, text
information and labels to learn network representation.

• CANE (Tu et al. 2017): which is the state-of-the-art al-
gorithm that utilizes both network and text information to
learn network representation.

• MAI-LS: which only includes the multi-aspect interac-
tion learning system without considering multi-aspect in-
fluence propagation.

• MAI-ECS: which is the full model proposed in this paper.
The node embedding length in representation methods is set
to 100. The interaction and influence aspects are set to 10.
In Node2vec, the random walk control parameters p = 1 and
q = 1 which lead to the best performance. In TriDNR, we
use different combination weight parameter which adjust-
ing the ratio between text information and network infor-
mation in different tasks because the performance is highly
sensitive to this parameter (i.e., the importance ratio of text
is set to 0.8 in classification and 0.2 in link prediction).
Other hyper-parameters used in the above algorithms follow
the recommendation or default parameters in their original
source codes.

Node Classification
We assess the effectiveness of network representations on
node classification in the citation network in which the do-
mains are regarded as class labels. The classification results
in terms of accuracy and F1-score are demonstrated in Table
1. The percentages p% of training samples are set to p = 20
and p = 80.

Importance of considering node content. Table 1 shows
that MAI-LS and MAI-ECS achieve better performance than
all other methods. Node2vec which only utilizes topologi-
cal information outperforms Doc2vec which only uses node
content. Meanwhile combining topological and node con-
tent contributes to the node classification.

Importance of the way to learn node content. Although
TriDNR and CANE both incorporate network and node con-
tent, their performance is worse than the concatenation of
Node2vec and Doc2vec (i.e., NV+DV) on the citation net-
work. This is because TriDNR and CANE model the net-
work structure and node content separately by two inde-
pendent objectives. This shallow combination cannot learn
a comprehensive representation that embeds the informa-
tion of both network structure and node content. By con-
trast, MAI-LS and MAI-ECS jointly learn network structure
and node content through an evolutionary learning process
which largely benefits the further learning tasks.

Contribution of influence propagation system. Ac-
cording to the classification results, MAI-ECS outper-
forms MAI-LS because MAI-ECS explores the network
with multi-aspect influence propagation system and cap-
tures more comprehensive network structure. Also, the sta-
ble multi-aspect influence states are fed into the multi-aspect
interaction learning system in MAI-ECS to optimize the rep-
resentation learning process in turn.

Link Prediction
Link prediction has been widely explored in network analy-
sis, we use network representation learned on a training net-
work which randomly samples 90% edges from the origi-
nal network and test the link prediction performance on the
remaining network in terms of ranking results. In particu-
lar, we use the inner-product of node representation from
Node2vec, Doc2vec, NV+DV, TriDNR and CANE as the
node proximity because no special design is available in
these models for evaluating node proximity or edge connect-
ing strength. In MAI-LS and MAI-ECS, the overall multi-
aspect interaction scores between nodes (cf. Eq. 8) are used
to quantify the connection strength. Normalized discounted
cumulative gain on top-k ranked nodes (nDCG@k) is used
to evaluate the ranking performance for link prediction.

According to Table 2, MAI-LS and MAI-ECS signif-
icantly outperform other methods in terms of nDCG on
both data sets. Link prediction is highly dependent on the
representation of network structure, so the performance of
Node2vec is much better than Doc2vec. Although TriDNR
and CANE incorporate node contents and network struc-
ture, their performances on link prediction are quite lim-
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Table 2: Link prediction performance w.r.t. nDCG on Coau-
thoring and Citation networks

Models Coauthor Citation

@1 @5 @10 @1 @5 @10

Node2vec 0.884 0.921 0.931 0.716 0.809 0.829
Doc2vec 0.704 0.734 0.759 0.385 0.488 0.543
NV+DV 0.898 0.907 0.918 0.744 0.811 0.832
TriDNR 0.786 0.773 0.791 0.588 0.685 0.721
CANE 0.726 0.733 0.761 0.613 0.704 0.736
MAI-LS 0.956 0.961 0.966 0.805 0.874 0.889
MAI-ECS 0.965 0.968 0.972 0.820 0.885 0.898

ited, which shows the deficiency of the way that TriDNR
and CANE incorporate network structure and node content,
i.e., a simple linear combination of text information and net-
work information. Another reason leading to the poor per-
formance of CANE is that CANE emphasizes the text infor-
mation and uses the convolutional neural network to capture
the multiple influences within text which is not suitable for
the short text, e.g., title.

MAI-LS and MAI-ECS incorporate node content and net-
work structure in terms of multi-aspect interaction and influ-
ence evolution, which is more effective to deeply fuse the in-
formation from both sources. Moreover, MAI-LS and MAI-
ECS learn to rank the edge formation through an evolution-
ary learning process on different masked networks, which
is consistent with the goal of link prediction. In addition,
MAI-ECS employs MAI-PS to disclose the multi-aspect in-
fluences through the influence propagation dynamics to re-
fine MAI-LS learning, which makes MAI-ECS achieve the
best performance.

Semantic Interpretability Demonstration
The most distinctive characteristic of MAI-ECS is to model
the multi-aspect influences and multi-aspect interactions,
which empowers MAI-ECS with the semantic interpretabil-
ity. We respectively list top-3 ranked authors with their re-
search interests in two aspects according to the multi-aspect
influence states (cf. Eq. 2) output from MAI-PS. As shown
in Figure 4, the research interests of the top-3 authors in as-
pect 1 are all about “high performance” and “systems”, and
that in aspect 2 are about “network” and “communication”.
These aspects reflect different research areas in the coau-
thoring network. Only with the text similarity between node
content, we can neither differentiate the research areas be-
cause there are some commonly used words, such as “al-
gorithm” and “model”, nor assign authors to their specific
area for ranking. MAI-ECS jointly model node content, net-
work structure, and influence propagation, which enables it
to provide multi-aspect semantics and influence ranking.

To demonstrate the multi-aspect interactions between
nodes, we randomly sample a paper with the title “A Taxon-
omy and Evaluation of Dense Two-Frame Stereo Correspon-
dence Algorithms” and all its references from the citation
network. Due to the space limitation, we only list the top-5
papers on each aspect according to the interaction scores (cf.

Aspect 1 Aspect 2 Aspect 3 

Mario Gerla – 10798 

Willy Yonkers - 518 

Group 3: 

Mario Gerla - 10798 

[wireless network; network coding; vehicular network; mobile network; network 

performance; mobile wireless network; network topology; sensor network; mesh network; 

network layer] 

Willy Yonkers - 518 

[remote communication; familiar telecommunication product; human need; human product 

interaction; new face; new form; communicationRecent advance; network infrastructure; 

physical closeness; visionary design] 

M. Ott - 1620653

Aspect Top-rank Authors Research Interests 

1 

Robert van de Geijn 

high performance; high-performance implementation; parallel linear 

algebra package; parallel implementation; dense linear algebra 

algorithm; excellent performance 

Jack J. Dongarra 

high performance; performance analysis; performance result; high 

performance computing platform; performance issue; peak 

performance; performance penalty 

Oscar H. Ibarra 

P system; equivalence problem; reversal-bounded counter; neural P 

system; decision problem; computing power; emptiness problem; 

reachability problem; SN P system 

2 

Mario Gerla 

wireless network; network coding; vehicular network; mobile network; 

network performance; mobile wireless network; network topology; 

sensor network; mesh network;  

Willy Yonkers 

remote communication; familiar telecommunication product; human 

need; human product interaction; network infrastructure; physical 

closeness; visionary design 

M. Ott

future network availability; mobile device; active network monitoring; 

multiple access network; network availability prediction; network 

resource; network selection 

Figure 4: The top-3 authors on aspect 1 and aspect 2 in terms
of the node influence.

Sample paper A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. 

Citation Aspect 3 A maximum likelihood stereo algorithm. 

Genetic-based stereo algorithm and disparity map evaluation. 

Real-time correlation-based stereo vision with reduced border errors. 

Calculating dense disparity maps from color stereo images. 

Map-based stochastic diffusion for stereo matching and line fields estimation. 

Citation Aspect 8 Human motion tracking with a kinematic parameterization of extremal contours. 

Learning generative models for multi-activity body pose estimation.  

A study on smoothing for particle-filtered 3d human body tracking. 

Optimization and filtering for human motion capture. 

Coupled visual and kinematic manifold models for tracking. 

Figure 5: The top-5 papers on aspect 3 and aspect 8 in terms
of the interaction scores.

Eq. 13) in two focused aspects 3 and 8, and this paper has
few references in other aspects. As shown in Figure 5, the
word clouds demonstrate the frequency of words appearing
in the titles of all references. We find aspect 3 mainly focuses
on “stereo” while aspect 8 mainly focuses on “tracking” and
“motion”. Obviously, current state-of-the-art methods can
only predict whether existing citation between papers, but
they cannot semantically tell why this citation is formed and
which aspect leads to this citation.

Conclusion and Future Work
In this paper, we propose a critical and challenging prob-
lem in attributed network representation: learning the het-
erogeneities of multi-aspect interactions between nodes and
node influences in a complex network. Accordingly, we pro-
pose the MAI-ECS to model multi-aspect node influence
and multi-aspect interactions between nodes. MAI-ECS en-
ables an evolutionary learning process on integrating node
texts and network structure to jointly and iteratively learn
the multi-aspect influences and interactions.

There are many future research directions as MAI-ECS is
flexible to learn weighted, directed, and attributed network.
First, MAI-ECS can be extended to handle dynamical net-
works by modifying the evolutionary learning process to a
time-dependent state model. Second, MAI-ECS can be cus-
tomized for community detection and role detection because
the multi-aspect influences can be regarded as a node’s com-
munity or roles in a network. Also, MAI-ECS has potential
to infer the semantics of node text, such as topic deviation
and text mining, as shown in the demonstration.
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