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Abstract

Trends in terrestrial temperature variability are perhaps more
relevant for species viability than trends in mean temperature.
In this paper, we develop methodology for estimating such
trends using multi-resolution climate data from polar orbiting
weather satellites. We derive two novel algorithms for com-
putation that are tailored for dense, gridded observations over
both space and time. We evaluate our methods with a simula-
tion that mimics these data’s features and on a large, publicly
available, global temperature dataset with the eventual goal of
tracking trends in cloud reflectance temperature variability.

1 Introduction
The amount of sunlight reflected from clouds is among the
largest sources of uncertainty in climate prediction (Boucher
et al. 2013). But climate models fail to reproduce global
cloud statistics, and understanding the reasons for this failure
is a grand challenge of the World Climate Research Pro-
gramme (Bony et al. 2015). While numerous studies have
examined the overall impacts of clouds on climate variabil-
ity (Myers, Mechoso, and DeFlorio 2018; Grise et al. 2013;
Bender, Ramanathan, and Tselioudis 2012), such investiga-
tions have been hampered by the lack of a suitable dataset.
Ideal data would have global coverage at high spatial res-
olution, a long enough record to recover temporal trends,
and be multispectral (Wielicki et al. 2013). To address this
gap, current work (Staten et al. 2016; Schreier et al. 2010;
Kahn et al. 2007) seeks to create a spectrally-detailed dataset
by combining radiance data from Advanced Very High
Resolution Radiometer imagers with readings from High-
resolution Infrared Radiation Sounders, instruments onboard
legacy weather satellites. In anticipation of this new dataset,
our work develops novel methodology for examining the
trends in variability of climate data across space and time.

1.1 Variability Rather Than Average
Trends in terrestrial temperature variability are perhaps more
relevant for species viability than trends in mean temper-
ature (Huntingford et al. 2013), because an increase in
temperature variability will increase the probability of ex-
treme hot or cold outliers (Vasseur et al. 2014). Recent
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climate literature suggests that it is more difficult for so-
ciety to adapt to these extremes than to the gradual increase
in the mean temperature (Hansen, Sato, and Ruedy 2012;
Huntingford et al. 2013). Furthermore, the willingness of pop-
ular media to emphasize the prevalence extreme cold events
coupled with a fundamental misunderstanding of the rela-
tionship between climate (the global distribution of weather
over the long run) and weather (observed short-term, local-
ized behavior) leads to public misunderstanding of climate
change. In fact, a point of active debate is the extent to which
the observed increased frequency of extreme cold events
in the northern hemisphere can be attributed to increases
in temperature variance rather than to changes in mean
climate (Screen 2014; Fischer, Beyerle, and Knutti 2013;
Trenberth et al. 2014).

Nevertheless, research examining trends in the volatility
of spatio-temporal climate data is scarce. Hansen, Sato, and
Ruedy (2012) studied the change in the standard deviation
(SD) of the surface temperature in the NASA Goddard Insti-
tute for Space Studies gridded temperature dataset by exam-
ining the empirical SD at each spatial location relative to that
location’s SD over a base period and showed that these esti-
mates are increasing. Huntingford et al. (2013) took a similar
approach in analyzing the ERA-40 data set. They argued that,
while there is an increase in the SDs from 1958-1970 to 1991-
2001, it is much smaller than found by Hansen, Sato, and
Ruedy (2012). Huntingford et al. (2013) also computed the
time-evolving global SD from the detrended time-series at
each position and argued that the global SD has been stable.

These and other related work (e.g., Rhines and Huybers
2013) have several shortcomings which our work seeks to
remedy. First, no statistical analysis has been performed to
examine if the changes in the SD are statistically significant.
Second, the methodologies for computing the SDs are highly
sensitive to the choice of base period. Third, and most impor-
tantly, temporal and spatial correlations between observations
are completely ignored.

Importantly, existing literature and our present work exam-
ines variance (rather than the mean) for a number of reasons.
First, instrument bias in the satellites increases over time so
examining the mean over time conflates that bias with any
actual change in mean (though the variance is unaffected).
Second, extreme weather events (hurricanes, droughts, wild-
fires in California, heatwaves in Europe) may be driven more
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strongly by increases in variance than by increases in mean.
Finally, even if the global mean temperature is constant, there
may still be climate change. In fact, atmospheric physics
suggests that, across space, average temperatures should not
change (extreme cold in one location is offset by heat in an-
other). But if swings across space are becoming more rapid,
then, even with no change in mean global temperature over
time, increasing variance can lead to increases in the preva-
lence of extreme events.

1.2 Main Contributions
The main contribution of this work is to develop a new
methodology for detecting the trend in the volatility of spatio-
temporal data. In this methodology, the variance at each
position and time are estimated by minimizing the penalized
negative loglikelihood. Following methods for mean estima-
tion (Tibshirani 2014), we penalize the differences between
the estimated variances which are temporally and spatially
“close”, resulting in a generalized LASSO problem. How-
ever, in our application, the dimension of this optimization
problem is massive, so the standard solvers are inadequate.

We develop two algorithms which are computationally
feasible on extremely large data. In the first method, we
adopt an optimization technique called alternating direction
method of multipliers (ADMM, Boyd et al. 2011), to divide
the total problem into several sub-problems of much lower
dimension and show how the total problem can be solved by
iteratively solving these sub-problems. The second method,
called linearized ADMM (Parikh and Boyd 2014), solves the
main problem by iteratively solving a linearized version. We
will compare the benefits of each method.

Our main contributions are as follows:
1. We propose a method for nonparametric variance estima-

tion for a spatio-temporal process and discuss the rela-
tionship between our methods and those existing in the
machine learning literature (Section 2).

2. We derive two alternating direction method of multiplier
algorithms to fit our estimator when applied to very large
data (Section 3). We give situations under which each
algorithm is most likely to be useful. Open-source Python
code is available.1

3. Because the construction of satellite-based datasets is on-
going and currently proprietary, we illustrate our methods
on a large, publicly available, global temperature dataset.
The goal is to demonstrate the feasibility of these meth-
ods for tracking world-wide trends in variance in standard
atmospheric data and a simulation constructed to mimic
these data’s features (Section 4).
While the motivation for our methodology is its application

to large, gridded climate data, we note that our algorithms
are easily generalizable to spatio-temporal data under con-
vex loss, e.g. exponential family likelihood. Furthermore the
spatial structure can be broadly construed to include general
graph dependencies. Our current application uses Gamma
likelihood which lends itself well to modeling trends in pollu-
tant emissions or in astronomical phenomena like microwave

1github.com/dajmcdon/VolatilityTrend

background radiation. Volatility estimation in oil and natu-
ral gas markets or with financial data is another possibility.
Our methods can also be applied to resting-state fMRI data
(though the penalty structure changes).

2 Smooth Spatio-temporal Variance
Estimation

Kim et al. (2009) proposed `1-trend filtering as a method for
estimating a smooth, time-varying trend. It is formulated as
the optimization problem

min
β

1

2

T∑
t=1

(yt − βt)2 + λ

T−1∑
t=2

|βt−1 − 2βt + βt+1|

or equivalently:

min
β

1

2
‖y − β‖22 + λ ‖Dtβ‖1 (1)

where y = {yt}Tt=1 is an observed time-series, β ∈ RT is
the smooth trend, Dt is a (T − 2) × T matrix, and λ is a
tuning parameter which balances fidelity to the data (small
errors in the first term) with a desire for smoothness. Kim
et al. (2009) proposed a specialized primal-dual interior
point (PDIP) algorithm for solving (1). From a statistical
perspective, (1) can be viewed as a constrained maximum
likelihood problem with independent observations from a
normal distribution with common variance, yt ∼ N(βt, σ

2),
subject to a piecewise linear constraint on β. Alternatively, so-
lutions to (1) are maximum a posteriori Bayesian estimators
based on Gaussian likelihood with a special Laplace prior
distribution on β. Note that the structure of the estimator is
determined by the penalty function λ ‖Dtβ‖1 rather than any
parametric trend assumptions—autoregressive, moving aver-
age, sinusoidal seasonal component, etc. The resulting trend
is therefore essentially nonparametric in the same way that
splines are nonparametric. In fact, using squared `2-norm as
the penalty instead of `1 results exactly in regression splines.

2.1 Modifications for Variance
Inspired by the `1-trend filtering algorithm, we propose a
non-parametric model for estimating the variance of a time-
series. To this end, we assume that at each time step t, there is
a parameter ht such that the observations yt are independent
normal variables with zero mean and variance exp(ht). The
negative log-likelihood of the observed data in this model
is l(y | h) ∝ −

∑
t ht − y2t e

−ht . Crucially, we assume
that the parameters ht vary smoothly and estimate them by
minimizing the penalized, negative log-likelihood:

min
h
−l(y | h) + λ ‖Dth‖1 (2)

where Dt has the same structure as above.
As with (1), one can solve (2) using the PDIP algorithm

(as in, e.g., cvxopt, Andersen, Dahl, and Vandenberghe
2013). In each iteration of PDIP we need to compute a search
direction by taking a Newton step on a system of nonlinear
equations. For completeness, we provide the details in Ap-
pendix A of the Supplement, where we show how to derive
the dual of this optimization problem and compute the first
and second derivatives of the dual objective function.
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2.2 Adding Spatial Constraints
The method in the previous section can be used to estimate
the variance of a single time-series. Here we extend this
method to the case of spatio-temporal data.

At a specific time t, the data are measured on a grid of
points with nr rows and nc columns for a total of S =
nr × nc spatial locations. Let yijt denote the value of the
observation at time t on the ith row and jth column of the
grid, and hijt denote the corresponding parameter. We seek
to impose both temporal and spatial smoothness constraints
on the parameters. Specifically, we seek a solution for h
which is piecewise linear in time and piecewise constant in
space (although higher-order smoothness can be imposed
with minimal alterations to the methodology). We achieve
this goal by solving the following optimization problem:

min
h

∑
i,j,t

hijt + y2ijte
−hijt

+ λt
∑
i,j

T−1∑
t=2

∣∣hij(t−1) − 2hijt + hij(t+1)

∣∣ (3)

+ λs
∑
t,j

nr−1∑
i=1

∣∣hijt − h(i+1)jt

∣∣+ λs
∑
t,i

nc−1∑
j=1

∣∣hijt − hi(j+1)t

∣∣
The first term in the objective is proportional to the neg-

ative log-likelihood, the second is the temporal penalty for
the time-series at each location (i, j), while the third and
fourth, penalize the difference between the estimated vari-
ance of two vertically and horizontally adjacent points, re-
spectively. The spatial component of this penalty is a spe-
cial case of trend filtering on graphs (Wang et al. 2016)
which penalizes the difference between the estimated val-
ues of the signal on the connected nodes (though the like-
lihood is different). As before, we can write (3) in ma-
trix form where h is a vector of length TS and Dt is re-
placed by D ∈ R(Nt+Ns)×(T ·S) (see Appendix C), where
Nt = S · (T −2) and Ns = T · (2nrnc−nr) are the number
of temporal and spatial constraints, respectively. Then, as
we have two different tuning parameters for the temporal
and spatial components, we write Λ =

[
λt1
>
Nt
, λs1

>
Ns

]>
leading to:2

min
h
−l(y | h) + Λ>|Dh|. (4)

2.3 Related Work
Variance estimation for financial time series has a lengthy
history, focused especially on parametric models like the
generalized autoregressive conditional heteroskedasticity
(GARCH) process (Engle 2002) and stochastic volatility mod-
els (Harvey, Ruiz, and Shephard 1994). These models (and
related AR processes) are specifically for parametric mod-
elling of short “bursts” of high volatility, behavior typical of
financial instruments. Parametric models for spatial data go
back at least to (Besag 1974) who proposed a conditional
probability model on the lattice for examining plant ecology.

More recently, nonparametric models for both spatial and
temporal data have focused on using `1-regularization for

2Throughout the paper, we use |x| for both scalars and vectors.
For vectors we use this to denote a vector obtained by taking the
absolute value of each entry of x.

trend estimation. Kim et al. (2009) proposed `1-trend filter-
ing for univariate time series, which forms the basis of our
methods. These methods have been generalized to higher
order temporal smoothness (Tibshirani 2014), graph de-
pendencies (Wang et al. 2016), and, most recently, small,
time-varying graphs (Hallac et al. 2017).

Our methodology is similar in flavor to (Hallac et al. 2017)
or related work in (Gibberd and Nelson 2017; Monti et al.
2014), but with several fundamental differences. These pa-
pers aim to discover the time-varying structure of a network.
To achieve this goal, they use Gaussian likelihood with un-
known precision matrix and introduce penalty terms which
(1) encourage sparsity among the off-diagonal elements and
(2) discourage changes in the estimated inverse covariance
matrix from one time-step to the next. Our goal in the present
work is to detect the temporal trend in the variance of each
point in the network, but the network is known (correspond-
ing to the grid over the earth) and fixed in time. To apply
these methods in our context (e.g., Hallac et al. 2017, Eq. 2),
we would enforce complete sparsity on the off-diagonal ele-
ments (since they are not estimated) and add a new penalty to
enforce spatial behavior across the diagonal elements. Thus,
(4) is not simply a special case of these existing methods.
Finally, these papers examine networks with hundreds of
nodes and dozens to hundreds of time points. As discussed
next, our data are significantly larger than these networks and
attempting to estimate a full covariance would be prohibitive,
were it necessary.

3 Optimization Methods
For a spatial grid of size S and T time steps, D in Equation
(4) will have 3TS − 2S − Tnr rows and TS columns. For a
1◦ × 1◦ grid over the entire northern hemisphere and daily
data over 10 years, we have S = 90× 360 ≈ 32, 000 spatial
locations and T = 3650 time points, so D has approximately
108 columns and 108 rows. In principal, we could solve (4)
using PDIP as before, however, each iteration requires solv-
ing a linear system of equations which depends on D>D.
Therefore, applying the PDIP directly is infeasible.3

In the next section, we develop two algorithms for solving
this problem efficiently. The first casts the problem as a so-
called consensus optimization problem (Boyd et al. 2011)
which solves smaller sub-problems using PDIP and then
recombines the results. The second uses proximal methods
to avoid matrix inversions. Either may be more appropriate
depending on the particular computing infrastructure.

3.1 Consensus Optimization
Consider an optimization problem of the form minh f(h),
where h ∈ Rn is the global variable and f(h) : Rn →
R ∪ {+∞} is convex. Consensus optimization breaks this
problem into several smaller sub-problems that can be solved
independently in each iteration.

3We note that D is a highly structured, sparse matrix, but, unlike
trend filtering alone, it is not banded. We are unaware of general
linear algebra techniques for inverting such a matrix, despite our
best efforts to find them.
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Figure 1: The cube represents the global variable h in space
and time. The sub-cubes specified by the white lines are xi.

Assume it is possible to define a set of local variables xi ∈
Rni such that f(h) =

∑
i fi(xi), where each xi is a subset

of the global variable h. More specifically, each entry of the
local variables corresponds to an entry of the global variable.
Therefore we can define a mapping G(i, j) from the local
variable indices into the global variable indices: k = G(i, j)
means that the jth entry of xi is hk (or (xi)j = hk). For ease
of notation, define h̃i ∈ Rni as (h̃i)j = hG(i,j). Then, the
original optimization problem is equivalent to:

min
{x1,...,xN}

N∑
i=1

fi(xi) s.t. h̃i = xi. (5)

It is important to note that each entry of the global vari-
able may correspond to several entries of the local variables
and so the constraints h̃i = xi enforce consensus between
the local variables corresponding to the same global vari-
able. The augmented Lagrangian corresponding to (5) is
Lρ(x, h, y) =

∑
i

(
fi(xi)+u>i (xi−h̃i)+(ρ/2)‖xi−h̃i‖22

)
.

Now, we can apply ADMM to Lρ. This results in solving
N independent optimization problems followed by a step to
achieve consensus among the solutions in each iteration. To
solve the optimization problem (4) using this method, we
need to address two questions: first, how to choose the local
variables xi, and second, how to the update them.

In Figure 1, the global variable h is represented as a cube.
We decompose h into sub-cubes as shown by white lines.
Each global variable inside the sub-cubes corresponds to only
one local variable. The global variables on the border (white
lines), however, correspond to more than one local variable.
With this definition of xi, the objective (4) decomposes as∑

i fi(xi) where fi(xi) = −l(yi | xi) + Λ>(i)|D(i)xi|, and
Λ(i) andD(i) contain the temporal and spatial penalties corre-
sponding to xi only in one sub-cube along with its boundary.
Thus, we now need to use PDIP to solve N problems each of
size ni, which is feasible for small enough ni. Algorithm 1
gives the general version of this procedure. A more detailed
discussion of this is in Appendix B of the Supplement where
we show how to compute the dual and the derivatives of the
augmented Lagrangian.

Because consensus ADMM breaks the large optimization
into sub-problems that can be solved independently, it is

Algorithm 1 Consensus ADMM
1: Input: data y, penalty matrix D, ε, ρ, λt, λs > 0.
2: Set: h← 0, z ← 0, u← 0. B Initialization
3: repeat

4:
xi ← argmin

xi

−l(yi | xi) + Λ>(i)|D(i)xi|

+ (ui)
>xi + (ρ/2)‖xi − h̃i‖22

.

B Update local vars using PDIP
5: hk ← (1/Sk)

∑
G(i,j)=k(xi)j . B Global update.

6: ui ← ui + ρ(xi − h̃i). B Dual update
7: until max

{∥∥hm+1 − hm
∥∥ , ‖hm − xm‖} < ε

8: Return: h.

amenable to a split-gather parallelization strategy via, e.g., the
MapReduce framework. In each iteration, the computation
time will be equal to the time to solve each sub-problem
plus the time to communicate the solutions to the master
processor and perform the consensus step. Since each sub-
problem is small, with parallelization, the computation time
in each iteration will be small. In addition, our experiments
with several values of λt and λs showed that the algorithm
converges in a few hundred iterations. This algorithm is most
useful if we can parallelize the computation over several
machines with low communication cost between machines.
In the next section, we describe another algorithm which
makes the computation feasible on a single machine.

3.2 Linearized ADMM
Consider the generic optimization problem minx f(x) +
g(Dx) where x ∈ Rn and D ∈ Rm×n. Each iteration of
the linearized ADMM algorithm (Parikh and Boyd 2014) for
solving this problem has the form

x← prox
µf

(
x− (µ/ρ)D>(Dx− z + u)

)
z ← prox

ρg
(Dx+ u)

u← u+Dx− z

where the algorithm parameters µ and ρ satisfy 0 < µ <

ρ/ ‖D‖22, z, u ∈ Rm and the proximal operator is defined
as proxαϕ(u) = minx α · ϕ(x) + 1

2 ‖x− u‖
2
2. Proximal

algorithms are feasible when these proximal operators can be
evaluated efficiently which, as we show next, is the case.
Lemma 1. Let f(x) =

∑
k xk + y2ke

−xk and g(x) = ‖x‖1.
Then,

[
prox
µf

(u)
]
k

= W

(
y2k
µ

exp

(
1− µuk

µ

))
+

1− µuk
µ

,

prox
ρg

(u) = Sρλ(u)

where W (·) is the Lambert W function (Corless et al. 1996),
[Sα(u)]k = sign(uk)(|uk| − αk)+ and (v)+ = v ∨ 0.

The proof is fairly straightforward and given in Appendix
C in the Supplement. Therefore, Algorithm 2 gives a different
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Algorithm 2 Linearized ADMM
1: Input: data y, penalty matrix D, ε, ρ, λt, λs > 0.
2: Set: h← 0, z ← 0, u← 0. B Initialization
3: repeat

4: hk ← W

(
y2k
µ exp

(
1−µuk

µ

))
+ 1−µuk

µ for all k =

1, . . . TS. B Primal update
5: z ← Sρλ(u). B Elementwise soft thresholding
6: u← u− z. B Dual update
7: until max{‖Dh− z‖ ,

∥∥zm+1 − zm
∥∥} < ε

8: Return: z.

method for solving the same problem. In this case, both the
primal update and the soft thresholding step are performed
elementwise at each point of the spatio-temporal grid. It can
therefore be extremely fast to perform these steps. However,
because there are now many more dual variables, this algo-
rithm will require more outer iterations to achieve consensus.
It therefore is highly problem and architecture dependent
whether Algorithm 1 or Algorithm 2 will be more useful
in any particular context. In our experience, Algorithm 1
requires an order of magnitude fewer iterations, but each
iteration is much slower unless carefully parallelized.

4 Empirical Evaluation
In this section, we examine both simulated and real spatio-
temporal climate data. All the computations were performed
on a Linux machine with four 3.20GHz Intel i5-3470 cores.

4.1 Simulations
Before examining real data, we apply our model to some
synthetic data. This example was constructed to mimic the
types of spatial and temporal phenomena observable in typ-
ical climate data. We generate a complete spatio-temporal
field wherein observations at all time steps and all locations
are independent Gaussian random variables with zero mean.
However, the variance of these random variables follows a
smoothly varying function in time and space given by the
following parametric model:

σ2(t, r, c) =

K∑
k=1

Wk(t) · exp

(
(r − rk)2 + (c− ck)2

2σ2
k

)
Wk(t) = αk · t+ exp(sin(2πωkt+ φk)).

The variance at each time and location is computed as the
weighted sum of K bell-shaped functions where the weights
are time-varying, consist of a linear trend and a periodic term.
The bell-shaped functions impose spatial smoothness while
the linear trend and the periodic terms enforce the temporal
smoothness similar to the seasonal component in real climate
data. We simulated the data on a 5×7 grid for 780 time
steps with K = 4. This yields a small enough problem to
be evaluated many times while still mimicking important
properties of climate data. Specific parameter choices of the
variance function are shown in Table 1. For illustration, we
also plot the variance function for all locations at t = 25 and

Table 1: Parameters used to simulate data.
s rs cs σs αs ωs φs
1 0 0 5 0.5 0.121 0
2 0 5 5 0.1 0.121 0
3 3 0 5 -0.5 0.121 π/2
4 3 5 5 -0.1 0.121 π/2

Figure 2: Top: Variance function at t = 25 (left) and t = 45
(right). Bottom: The true (orange) and estimated standard
deviation function at the location (0,0). The estimated values
are obtained using linearized ADMM with λs = 0.1 and two
values of λt: λt = 5 (blue) and λt = 100 (green).

t = 45 (Figure 2, top panel) as well as the variance across
time at location (0, 0) (Figure 2, bottom panel, orange).

We estimated the linearized ADMM for all combi-
nations of values of λt and λs from the sets λt ∈
{0, 1, 5, 10, 50, 100} and λs ∈ {0, 0.05, 0.1, 0.2, 0.3}. For
each pair, we then compute the mean absolute error (MAE)
between the estimated variance and the true variance at all
locations and all time steps. For λt = 5 and λs = 0.1, the
MAE was minimized. The bottom panel of Figure 2 shows
the true and the estimated standard deviation at location (0,0)
and λt = 5 (blue) and λt = 100 (green) (λs = 0.1). Larger
values of λt lead to estimated values which are “too smooth”.
The left panel of Figure 3 shows the convergence of both Al-
gorithms as a function of iteration. It is important to note that
each iteration of the linearized algorithm takes 0.01 seconds
on average while each iteration of the consensus ADMM
takes about 20 seconds. Thus, where the lines meet at 400
iterations requires about 4 seconds for the linearized method
and 2 hours for the consensus method. For consensus ADMM,
computation per iteration per core requires∼10 seconds with
∼4 seconds for communication. In general, the literature sug-
gests linear convergence for ADMM (Nishihara et al. 2015)
and Figure 3 seems to fit in the linear framework for both
algorithms, though with different constants.

To further examine the performance of the proposed model,
we next compare it to three alternatives: a model which does
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our method spatial
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temporal
( s=0)

GARCH
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AE

Figure 3: Left: Value of the objective function for linearized
(orange) and consensus (blue) ADMM against iteration.
Right: MAE for (1) our method with optimal values of λt
and λs (2) spatial penalty only (3) temporal penalty only and
(4) a GARCH(1,1).

not consider the spatial smoothness (equivalent to fitting the
model in Section 2.1 to each time-series separately), a model
which only imposes spatial smoothness, and a GARCH(1,1)
model. We simulated 100 datasets using the method explained
above with σs ∼ uniform(4, 7). The right panel of Figure 3
shows the boxplot of the MAE for these models. As discussed
above, using an algorithm akin to (Hallac et al. 2017) ignores
the spatial component and thus gives results which are similar
to the second column if the covariances are shrunk to zero
(massively worse if they are estimated).

4.2 Data Analysis
Consensus ADMM in Section 3.1 is appropriate when we
can easily parallelize over multiple machines. Otherwise, it is
significantly slower, so all the results reported in this section
are obtained using Algorithm 2. We applied this algorithm
to the Northern Hemisphere of the ERA-20C dataset avail-
able from the European Center for Medium-Range Weather
Forecasts4. We use the 2 meter temperature measured daily at
noon local time from January 1, 1960 to December 24, 2010.

Preprocessing and other considerations Examination of
the time-series alone demonstrates strong differences be-
tween trend and cyclic behavior across spatial locations (the
data are not mean-zero). One might try to model the cycles
by the summation of sinusoidal terms with different frequen-
cies. However, for some locations, this would require many
frequencies to achieve a reasonable level of accuracy, while
other locations would require relatively few. In addition, such
a model cannot capture the non-stationarity in the cycles.

Figure 4 shows the time-series of the temperature of three
cities: Indianapolis (USA), San Diego (USA) and Manaus
(Brazil). The time-series of Indianapolis and San Diego show
clear cyclic behavior, though the amplitude is different. The
time-series of Manaus does not show any regular cyclic be-
havior. For this reason, we first apply trend filtering to remove
seasonal terms and detrend every time-series. For each time-
series, we found the optimal value of the penalty parameter
using 5-fold cross-validation.

The blue curve in the top panel of Figure 5 shows the
daily temperature for Indianapolis after detrending. The red

4https://www.ecmwf.int

Figure 4: Time-series of the temperature (in Kelvin) of three
cities.

Figure 5: Top: The variability of the time-series of Indianapo-
lis (weekly) and the estimated SD obtained from the method
of Section 2.1 (red). Lower left: the estimated SDs (red)
and their annual average (black) without the long horizon
penalty. Lower right: the same but with the long horizon
penalty.

curve shows the estimated SD, exp(ht/2), obtained from
our proposed model. For ease of analysis, we compute the
average of the estimated SD for each year. Both are shown in
the lower left panel of Figure 5.

In addition to the constraints discussed in Section 2.2,
we add a long horizon penalty to smooth the annual trend:∑Nyear−1

i=2

∣∣∑
t hA(−1) − 2hA(0) + hA(1)

∣∣ where Nyear is the
number of years and A(b) = {t : t ∈ (yeari + b)}. Finally,
because the observations are on the surface of a hemisphere
rather than a grid, we add extra spatial constraints with the
obvious form to handle the boundary between 180◦W and
180◦E as well as the region near the North Pole. The esti-
mated SDs for Indianapolis are shown in the lower right panel
of Figure 5. The annual average of the estimated SDs shows
a linear trend with a positive slope.

As shown in Algorithm 2, we checked convergence using
ε = 0.001% of the MSE of the data. Our simulations indi-
cated that the convergence speed depends on the value of λt
and λs. For the temperature data, we used the solutions ob-
tained for smaller values of these parameters as warm starts
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Figure 6: Residuals from the estimated trend (blue), the es-
timated SDs (orange), and annual average SD (green) for
Indianapolis (left) and San Diego (right). Units are K◦.

for larger values. Estimation takes between 1 and 4 hours for
convergence for each pair of tuning parameters.

Model Selection One common method for choosing the
penalty parameters in lasso problems is to find the solution for
a range of the values of these parameters and then choose the
values which minimize a model selection criterion. However,
such analysis needs either the computation of the degrees
of freedom or requires cross validation. Previous work has
investigated the degrees of freedom in generalized lasso prob-
lems with Gaussian likelihood (Tibshirani and Taylor 2012;
Hu, Zeng, and Lin 2015; Zeng, Hu, and Li 2017), but, re-
sults for non-Gaussian likelihood remains an open problem,
and cross validation is too expensive. In this paper, there-
fore, we use a heuristic method for choosing λt and λs: we
compute the solutions for a range of values of and choose
those which minimize L(λt, λs) = −l(y|h)+

∑
‖Dh‖. This

objective is a compromise between the negative log like-
lihood and the complexity of the solution. For smoother
solutions the value of

∑
‖Dh‖ will be smaller but with

the cost of larger −l(y|h). We computed the solution for
all the combinations of the following sets of values: λt ∈
{0, 2, 4, 8, 10, 15, 200, 1000} , λs ∈ {0, .1, .5, 2, 5, 10}. The
best combination was λt = 4 and λs = 2.

Analysis of Trends in Temperature Volatility Figure 6
shows the detrended data, the estimated standard deviation
and the yearly average of these estimates for two cities in the
US: Indianapolis (left) and San Diego (right). The estimated
SD captures the periodic behavior in the variance of the time-
series. In addition, the number of linear segments changes
adaptively in each time window depending on how fast the
variance is changing.

The yearly average of the estimated SD captures the trend
in the temperature volatility. For example, we can see that
the variance in Indianapolis displays a small positive trend
(easiest to see in Figure 5). To determine how the volatil-
ity has changed in each location, we subtract the average
of the estimated variance in 1961 from the average in the
following years and compute their sum. The average esti-
mated variance at each location is shown in the top panel
of Figure 7 while the change from 1961 is depicted in bot-
tom panel. Since the optimal value of the spatial penalty is
rather large (λs = 2) the estimated variance is spatially very
smooth.

Figure 7: The average of the detrended estimated variance
over the northern hemisphere (top) and the change in the
variance from 1961 to 2011 (bottom). Units are K◦.

The SD in most locations on the northern hemisphere had
a negative trend in this time period, though spatially, this
decreasing pattern is localized mainly toward the extreme
northern latitudes and over oceans. In many ways, this is
consistent with climate change predictions: oceans tend to
operate as a local thermostat, regulating deviations in local
temperature, while warming polar regions display fewer days
of extreme cold. The most positive trend can be observed in
Asia, particularly South-East Asia.

5 Discussion
In this paper, we proposed a new method for estimating the
variance of spatio-temporal data with the goal of analyzing
global temperatures. The main idea is to cast this problem as
a constrained optimization problem where the constraints en-
force smooth changes in the variance for neighboring points
in time and space. In particular, the solution is piecewise
linear in time and piecewise constant in space. The result-
ing optimization is in the form of a generalized LASSO
problem with high-dimension, and so applying the PDIP
method directly is infeasible. We therefore developed two
ADMM-based algorithms to solve this problem: the consen-
sus ADMM and linearized ADMM.

The consensus ADMM algorithm converges in a few hun-
dred iterations but each iteration takes much longer than
the linearized ADMM algorithm. The appealing feature of
the consensus ADMM algorithm is that if it is parallelized
on enough machines the computation time per iteration re-
mains constant as the problem size increases. The linearized
ADMM algorithm on the other hand converges in a few thou-
sand iterations but each iteration is performed in a split sec-
ond. However, since the algorithm converges in many itera-
tions it is not very appropriate for parallelization. The reason
is that after each iteration the solution computed on each
local machine must be collected by the master machine, and
this operation takes depends on the speed of the network
connecting the slave machines to the master. A direction for
future research would be to combine these two algorithms in
the following way: the problem should be split into the sub-
problems (as in the consensus ADMM) but each sub-problem
can be solved using linearized ADMM.
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