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Abstract

Blame games tend to follow major disruptions, be they fi-
nancial crises, natural disasters or terrorist attacks. To study
how the blame game evolves and shapes the dominant crisis
narratives is of great significance, as sense-making processes
can affect regulatory outcomes, social hierarchies, and cul-
tural norms. However, it takes tremendous time and efforts
for social scientists to manually examine each relevant news
article and extract the blame ties (A blames B). In this study,
we define a new task, Blame Tie Extraction, and construct a
new dataset related to the United States financial crisis (2007-
2010) from The New York Times, The Wall Street Journal
and USA Today. We build a Bi-directional Long Short-Term
Memory (BiLSTM) network for contexts where the entities
appear in and it learns to automatically extract such blame
ties at the document level. Leveraging the large unsupervised
model such as GloVe and ELMo, our best model achieves an
F1 score of 70% on the test set for blame tie extraction, mak-
ing it a useful tool for social scientists to extract blame ties
more efficiently.

Introduction
Blame is an issue that has been receiving increasing atten-
tion in the social sciences in recent years (Alicke 2000;
Hobolt and Tilley 2014; Hood 2010; Shaver 2012). In par-
ticular, more attention has been placed on blame dynam-
ics following major disruptions, such as natural disasters
(Malhotra and Kuo 2008), financial crises (Nicol 2016;
Tourish and Hargie 2012), and terrorist attacks (Olmeda
2008). Studying blame is of great significance as sense-
making processes inform what and who a society values,
and ultimately shape lawmaking. For instance, the intense
blame targeting Wall Street during the financial crisis (2007-
2010) helped lawmakers pass the July 2011 Dodd-Frank
Wall Street Reform and Consumer Protection Act.

Although the problem is important, it takes tremendous
time and efforts for social scientists to manually examine
each relevant news article and extract the blame ties (A
blames B). In Figure 1, for example, the tuple (John B. Tay-
lor, Fed) is extracted as a blame tie. Recently, deep neural
networks have proved very powerful at solving many so-
cial science problems (Li and Hovy 2014; Rule, Cointet, and
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Figure 1: An example sentence from our dataset containing
a blame tie. The red/bold words are entities involved in a
blame tie, and the blue/italic words are supporting evidence
that the blame tie exists.

Bearman 2015; Bail 2016). Based on the dataset annotated
from several new media excerpts on blame, we investigate
automatic ways to extract blame ties from new articles.

There are three main challenges. First, some patterns only
have blame meanings in specific contexts. For instance, “It
was lenders that made the lenient loans, it was home buyers
who sought out easy mortgages, and it was Wall Street un-
derwriters that turned them into securities.” (The Wall Street
Journal, Aug 2007), only with the background of the finan-
cial crisis can we identify that the blamed targets are lenders,
home buyers and Wall Street. Second, there are many ways
to attribute blame and the structure of the sentences can be
quite complex. Third, it is common for journalists to use
metaphors and ironies to designate actors.

We design several neural models to address the problem.
First, we leverage a neural network to learn the prior infor-
mation about entities for blame tie extraction. In particular, a
neural network is used to learn dense vector representations
of entities so that similar entities can be visualized close to
each other in the embedding space, and the likeliness of one
entity to blame another can be inferred automatically with-
out further knowledge. Second, we build a BiLSTM neural
network to represent contexts, which can be used to predict
blame ties between entities mentioned in the news articles
using linguistic clues. Finally, a model that integrates entity
knowledge and linguistic knowledge is constructed by inte-
grating the two respective networks.

We conduct a case study on blame games for the U.S. fi-
nancial crisis (2007-2010), the most important event since
the Great Depression, which led to at least $6 trillion in
losses (Luttrell et al. 2013). Results show that our model can
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Articles
... Ordinarily, [Americans] welcome lower interest rates. But many feel differently this time. Some think the economy is fine and
inflation is the main danger. But a moral element is also at work: Many think a rate cut would reward foolish speculation and [Wall
Street] greed at the expense of the thrifty (1).
“The [Federal Reserve] needs to stand its ground and not bail out hedge funds – they should have known better to begin with!”
[Suzanne Mitchell], an administrative assistant at a Houston real-estate company, says in an email (2). In an interview, she adds: “I’m
very sorry that [people] took out $450,000 mortgages with no money down ... [people] ought to be responsible for the loans they take
out.” (3) . . .
But Mr. [Brason] contrasts that with the far greater reliance on borrowed money that is typical nowadays. Some “of us ... weren’t
buying up five or 10 properties without any money down,” he says. “[People] took the risks and should pay the price. (4) A lot of
others at the higher end of the food chain, the [investment bankers] and [hedge-fund managers] were making oodles of fee-income
money and frankly, there’s a lot of public opinion that it was excessive. (5) ” . . .
Blame Source Blame Target Causality Link
Americans(e1) Wall Street(e2) (1)
Suzanne Mitchell(e3) Federal Reserve(e4) (2)
Suzanne Mitchell(e3) people(e5) (3)
Brason(e6) people(e5) (4)
Brason(e6) investment bankers (e7) (5)
Brason(e6) hedge-fund managers (e8) (5)

Table 1: An article titled Rate Cut Has Foes on Main Street (The Wall Street Journal, September 2007). Top: paragraphs of the
article containing several blame patterns. The entities are in the brackets. Bottom: blame ties extracted from the article.

source
target

e1 e2 e3 e4 e5 e6 e7 e8

e1 - 1 0 0 0 0 0 0
e2 0 - 0 0 0 0 0 0
e3 0 0 - 1 1 0 0 0
e4 0 0 0 - 0 0 0 0
e5 0 0 0 0 - 0 0 0
e6 0 0 0 0 1 - 1 1
e7 0 0 0 0 0 0 0 0
e8 0 0 0 0 0 0 0 0

Table 2: Matrix representation of the blame ties in Table 1.

effectively learn both entity knowledge and linguistic clues
for blame ties. For example, it can successfully extraction
entity relation with regard to blame ties from the crisis, such
as the fact that both Wall Street and McCain tend to blame
the same targets (Obama and Bernanke). In addition, the
model can generalize to new cases of extracting blame pat-
terns automatically. Our implementation and trained models
are released at https://github.com/Shuailong/BlamePipeline.

Related Work
NLP has become increasingly popular in the social science
area. O’Connor et al. [2010] aligned sentiment measured
from Twitter to public opinion measured from polls, and
found the two correlate well. Bamman and Smith [2015]
tried to use text data to estimate the political ideologies of in-
dividuals. Mohammad et al. [2016] create the SemEval 2016
Task 6 called Stance Detection Task, which detects the Twit-
ter user’s stance towards a target of interest. Preoţiuc-Pietro
et al. [2017] also predicted the political ideologies of Twit-
ter users, in a more fine-grained form. Social scientists used
NLP along with network analysis etc. to analyze social me-
dia texts (Rule, Cointet, and Bearman 2015) and the State of
Union addresses in United States (Bail 2016).

The Blame Tie Extraction task can be regarded as a spe-
cial case of relation extraction (Miwa and Bansal 2016).
Relation extraction solves the task of classifying a pair
of entities into one of several pre-defined categories, such
as Cause-Effect and Component-Whole (Hendrickx et al.
2009), while the Blame Tie Extraction task requires extract-
ing all the blame ties among the entities of interest in an
article. Our work differs from existing work on relation ex-
traction in two main aspects. First, our work is at the docu-
ment level and the data is sparse, while most existing work
on relation extraction focuses on the sentence level (Nguyen
and Grishman 2015). Second, our work explicitly uses entity
prior information on blame patterns, which does not make
sense in general domain relation extraction. Most existing
work mixes entity and content information in modeling re-
lations.

In blame game research, social scientists care more about
a few key players instead of all the entities, and most en-
tities in the passage are irrelevant for studying the blame
game (Nicol 2016). Therefore, in this paper, we assume that
the entities of interest are already given, and we only need
to extract blame ties from these entities.

To the best of our knowledge, our work is the first to study
the Blame Tie Extraction task using NLP techniques.

Dataset
We manually create a dataset on the U.S. financial crisis. The
dataset is drawn from three newspapers in the U.S., includ-
ing The New York Times, The Wall Street Journal and USA
Today, chosen for three main reasons. First, they are the most
widely circulated newspapers in the United States. Second,
they cover the social spectrum from elite to mass. Third,
they also cover the political spectrum: from the quite lib-
eral New York Times, to the centrist USA Today, to the con-
servative Wall Street Journal (Gentzkow and Shapiro 2010;
Groseclose and Milyo 2005). The time period studied here
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USA NYT WSJ
days 310 736 648
articles 132 429 438
blame ties 353 787 754

Table 3: Dataset size for the three newspapers. USA: USA
Today. NYT: The New York Times. WSJ: The Wall Street
Journal.

spans from August 2007, after the first warning signs for the
crisis appeared, to June 2010, right before the signature of
the largest set of financial regulations since the Great De-
pression.

We use a set of keywords to filter the articles gathered
from Factiva1 and LexisNexis2, getting articles containing
blame patterns for the crisis. The keywords we use are
blame-related (attack, accuse, misconduct, . . . ) or event-
related (financial crisis, global recession, housing bubble,
. . . )3. There are in total 70 blame-related keywords and 13
event-related keywords (stem form). The two classes of key-
words are combined together to filter the articles.

Blame incidences are manually coded for each article.
The identification of a blame pattern requires the presence
of 1) a blame source, 2) a blame target, and 3) a causality
link. An example of a sentence containing a blame instance
would be as follows: “Sen. Richard Shelby, R-Ala. [Blame
Source]. . . said the FED [Blame Target] ‘kept interest rates
too low for too long, encouraging a housing bubble and ex-
cessive risk taking’[causality link].” (USA Today, December
2009). The blame source and target form a blame tie. Ta-
ble 1 gives an example article and its annotations and Ta-
ble 3 shows the statistics of the dataset with the number of
blame ties.

To ensure the reliability of the dataset, we ask two more
annotators to annotate a subset of the dataset. Specifically,
we sample 100 articles, including 13 articles from USA To-
day, 43 articles from The New York Times, and 44 articles
from The Wall Street Journal, in proportion to the respec-
tive number of articles of the three newspapers in the whole
dataset. Then we run evaluations using the two annotators’
results against the gold data. The average of the F1 score
of the two annotators is 94.425%, and the Fleiss’s kappa
is 0.8744, which illustrates the strong inter-annotator agree-
ment of the dataset.

In the training process, the annotated blame ties serve as
positive samples. The negative samples are generated by re-
moving the positive entity pairs from all possible permuta-
tions of the entities of interest. The sample statistics about
the whole dataset are shown in Table 4. Theoretically, the
number of negative samples increases quadratically with the
number of entities in the article. In our dataset, the average
number of entities we consider per article is 3. Therefore the
dataset is rather balanced.

1https://www.dowjones.com/products/factiva/
2https://www.lexisnexis.com
3The full list of keywords are released along with the code.

number of articles 998
number of samples 8562
number of entities/article 2.97
average neg/pos ratio per article 2.19
total neg/pos ratio 3.61

Table 4: Sample statistics.

Task
We formulate the Blame Tie Extraction task as follows.
Given a news article d and a set of entities e, we have
|e| · (|e| − 1) possible directed links among them. We assign
label 1 to a pair (s, t) when entity s blames entity t based on
article d, otherwise we assign label 0 to the pair. We can use
a matrix for a more intuitive illustration. For the example in
Table 1, the matrix constructed is shown in Table 2.

For a given entity pair (s, t) with label l, we would like to
maximize the likelihood

L = P (l|s, t, d), l ∈ {0, 1}

In order to predict whether a blame tie exists between two
entities based on the article, we have two sources of informa-
tion to utilize. One is the entities themselves. For instance,
we know that Democrats tend to blame Republicans so as
to weaken their political opponents, and tend to blame Wall
Street so as to gain popular support to impose a stringent
set of financial regulations. The other one is the contexts in
which the entities are mentioned. We rely on linguistic pat-
terns of sentences to extract the blame ties. For instance, in
this sentence “Who is to blame? Hedge funds, for one, he
says.” (The Wall Street Journal, Sept 2007), the linguistic
structure indicates that the entity appearing after the ques-
tion is the blame target entity, and the narrator is the blame
source entity.

Models
We first introduce a simple rule-based model. Next, we in-
troduce three neural models. The Entity Prior Model which
directly extracts prior information about entities (i.e. which
entities tend to blame which entities). The Entity Prior
Model can learn entity information from its blame patterns
such as political standing, and it can generalize to new events
with the same entities. Then, we mask out the entity men-
tions from the text, relying purely on the contexts surround-
ing the mentions of the entities. The Context Model can gen-
eralize to new entities and across historical periods. Finally,
a model combining the two is built to investigate the inter-
actions.

Rule-based Model
As a baseline model, we use a simple rule to decide if a
blame tie exists between two entities: if the minimal sen-
tence distance between the two entities are less than or equal
to d, AND a blame related keyword appears in any of the
sentences mentioning either of the two entities, we deter-
mine that a blame tie exists between the two entities. Ac-
cording to the distribution of the minimal distance between
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Figure 2: Context Model. LSTM is used to encode the sentences, and the hidden vectors at the positions of the entity are pooled
together into a single vector to represent the context of the entity. The source entity context vector and the target entity context
vector are concatenated together to be sent to the prediction layer. The prediction layer predicts 1 if the source to target blame
tie exists otherwise 0.

two entities in a blame tie in our dataset, over 90% of the
blame entity pairs has a minimal sentence distance less than
or equal to 3. Therefore, we set d = 3.

To determine the direction (A blames B or B blames A),
we define the aggressiveness of the entity, which is the per-
centage of the entity being the blame source among all the
blame ties related to this entity in the training data. The en-
tity with higher aggressiveness is the blame source entity,
and the other one is the blame target. When there is a tie, we
use random guess. When the entity is unknown, we use 0.5
as the aggressiveness score.

Entity Prior Model
We use the fully connected feedforward neural network
(FCN) to collect entity prior knowledge, namely who is
likely to blame whom without additional information. To
elaborate, we represent entities by their embeddings, con-
catenate the embeddings of the blame source and target en-
tity, and then stack a fully connected layer to learn the inter-
actions between the entities. The FCN outputs the probabil-
ity of the blame tie between the source entity and the target
entity:

fscore = ([Ee(es);E
e(et)]) ·W e + be

es and et represent the source entity and target entity in-
dex, respectively, Ee is the embedding matrix for entities, ‘;’
is the concatenation operator, and W e and be are parameters.
Specifically, Ee ∈ Rn×m, n = 707 is the number of entities
in training set, m is the entity embedding dimension, which
is tuned as hyperparameters. W e ∈ R2m×2 and be ∈ R2.
Ee is initialized with standard normal distribution. At test
time, we use the ⟨UNK ENT⟩ to indicate unknown entities
from the training set.

Like word embedding, we hope to learn meaningful rep-
resentations of the entities, i.e., the entities sharing similar-

ity blame behavior patterns will stay close in the embedding
space.

Context Model
The Entity Prior Model tells how likely a particular entity is
to blame or be blamed without further information. In con-
trast, the Context Model relies only on linguistic clues from
news articles, finding blame patterns explicitly or implicitly
mentioned. The Context Model is thus useful across differ-
ent political settings where the entities are different.

To model context information about an entity, we first lo-
cate the positions of all occurrences of the entity in the arti-
cle. A position is represented by a tuple (i, j), where i and
j denotes sentence number and word number, and the posi-
tions of blame source and blame target are denoted as poss
and post, respectively. Second, we replace each entity men-
tion by a special ⟨ENT⟩ token, so that we do not have any
information regarding the entity itself. Third, we run a bidi-
rectional LSTM on sentences containing the entity and use
the LSTM output to represent the context of each word:

hi
j = LSTM(Ew(wi

j))

wi
j is the j-th word of the i-th sentence, Ew is the em-

bedding matrix for words, and hi
j is the concatenation of

the LSTM outputs of the last layers from both directions. If
(i, j) ∈ poss or (i, j) ∈ post, hi

j will be used to represent
the context of entity s or t.

Since an entity may appear at multiple positions in one
article, we may have multiple representations of the entity
context. Pooling is used to reduce the embeddings into one
single vector. The pooling result of the contexts representa-
tions of source and target entity are denoted as Vs and Vt,
respectively:

Ve = pool
(i,j)∈pose

(hi
j), e ∈ {s, t}
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min avg max
sentences per doc 4 45 384
words per sentence 1 26 159
words per doc 133 1,209 9,064

Table 5: Sentence and words statistics.

where pool denotes the pooling function, for which we try
random selection, mean, max and attention. For attention
pooling, we use a two-layer feedforward neural network to
score each vector representations, using softmax function to
normalize them as weights, and use the weighted sum of the
representations as the entity representation. Once we obtain
representations of both the source and target entity, we con-
catenate them and then use a fully connected layer to learn a
score of this entity pair:

fscore = ([Vs;Vt]) ·W v + bv

W v ∈ R2H×2 and bv ∈ R2 are both parameters. H is the
dimension of BiLSTM outputs. The model architecture is
depicted in Figure 2.

Combined Model
To incorporate the prior information about entities, we con-
catenate two additional vectors on the basis of the Context
Model, which are the embeddings of the blame source entity
Ee(s) and blame target entity Ee(t) from section :

fscore = ([Ee(es);Vs;E
e(et);Vt]) ·W c + bc

W c ∈ R2H+2m and bc ∈ R2 are both parameters. We ex-
pect the model to simultaneously learn how to extract blame
ties from context, and also learn the representations of the
entities themselves as a byproduct.

Experiments
We conduct experiments on our dataset using the Entity
Prior Model, the Context Model, and the Combined Model
and compare the performance among different models. To
find the best model architecture, we also conduct develop-
ment experiments to investigate the effects of different pool-
ing functions and pretrained word embeddings.

Experimental Settings
Stanford CoreNLP (Manning et al. 2014) is used to tok-
enize articles into sentences and words. The sentence length
statistics of the dataset articles are shown in Table 5. There
is no further preprocessing except that words are converted
to lower case. The dataset is split into train, dev, and test set
at the document level by the ratio of 8:1:1. We use F1 on the
positive class to measure the performance of the model.

To investigate whether the learned entities representations
are helpful in blame tie extraction, we conduct another round
of evaluations on the known entities of dev and test set
as shown in Table 8. KNOWN denotes entity pairs both
of which appear in the training data, while ALL denotes
all entity pairs. By comparing the model performance on
KNOWN with that of ALL, we can evaluate the usefulness

of entities representations. Conversely, we can also evaluate
the robustness of the model against unknown entities.

Leveraging large unsupervised data has proved to be help-
ful for many NLP tasks, especially for tasks with small
datasets. Word2Vec (Mikolov et al. 2013) or GloVe (Pen-
nington, Socher, and Manning 2014) can be used to pretrain
word embeddings on larger external dataset. ELMo (Peters
et al. 2018) word vectors are internal states of a deep bi-
directional language models, and can effectively capture the
syntax and semantics of words. We conduct experiments on
GloVe and ELMo, and investigate the effects of these pre-
trained word embeddings.

Our models are implemented in PyTorch4. During train-
ing, Adam (Kingma and Ba 2014) is used as the optimizer,
and the default learning rate is adopted. We use the mini-
batch size of 50 for all three models. Dropout (Hinton et al.
2012) of 0.5 are used to prevent overfitting. Dropout is ap-
plied to word embeddings and RNN outputs. We set gradient
clipping to 3 to stabilize the training process. The maximum
number of epochs is 30 and we use early stopping techniques
with a patience of 10 epochs. For the model hyperparame-
ters, word embedding size is 100, LSTM hidden size is 100
for each direction, and entity embedding size is 50.

Development Experiments
Before turning to the BiLSTM model, we use the small win-
dow before and after the entity to extract the context infor-
mation. Formally, we assume that one entity appears only
once in a sentence. Given an entity e appearing at sentence
s, if the index of e is i, and window size is w, we use con-
catenation of the embeddings of words si−w . . . si−1 and
si+1 . . . si+w as the context of e. We call this model Bag
of Embeddings (BoE). We try the window sizes of 3 and 6
and report the higher dev result. If an entity appears multiple
times in an article, we randomly select one representation
(BoERand).

As stated in the Context Model section, we compare dif-
ferent pooling methods used to aggregate multiple contexts
representations, and bi-directional LSTM with a single for-
ward LSTM. The results of ALL dataset are shown in Ta-
ble 6. BiLSTM works better than LSTM for every pooling
method since we can take advantage of information from
both directions of the sentence. Random pooling has the
worst result, mainly because a lot of important information
is lost. Max pooling has the highest score on most cases,
therefore we use BiLSTM + max pooling in the following
experiments.

In comparison to BoE models, LSTM models are worse.
The reason may be that BoE models consider contexts from
both sides. BiLSTM models perform better than BoE models
since the former can model more context and preserve word
order information.

To investigate the effect of pretrained word embeddings,
we initialize the word embedding parameters with ran-
dom initialization, GloVe pretrained word embeddings, and
ELMo models. Since the official release of pretrained ELMo
model has the output dimension of 1024, we do a linear

4http://pytorch.org
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Model dev F1 Model dev F1
BoERand 54.60
LSTMRand 50.51 BiLSTMRand 56.43
LSTMMean 50.15 BiLSTMMean 61.95
LSTMMax 51.49 BiLSTMMax 62.26
LSTMAttn 50.17 BiLSTMAttn 61.92

Table 6: Experiment results of Context Model using differ-
ent pooling functions.

Model dev F1 test F1
random 62.26 56.11
GloVe fixed 63.09 62.10
GloVe tuned 61.37 57.75
ELMo 73.16 66.35

Table 7: Experiment results of Context Model using differ-
ent pretrained word vectors.

transformation to reduce the output dimension to 100. The
transformation matrix is part of the model parameters and
are tuned during training. For GloVe, we use fixed and tuned
versions of embeddings. For ELMo model, since it slows
down the training significantly, we do not tune the model
parameters. The results using BiLSTM+Max pooling are
shown in Table 7. Fixed GloVe vectors improve the F1 score
on dev and test set by 0.83% and 4.99%, respectively. The
tuned version of GloVe does not improve that much, due
to the fact that the dataset is small and too many parameters
will cause overfitting. The pretrained ELMo model improves
the F1 on the dev and test set by 10.90% and 10.24%, re-
spectively, compared with random initialization, proving the
powerfulness of ELMo model.

Results
Table 8 details the final result of the Entity Model, Context
Model, and Combined Model. For comparison, we also in-
clude a baseline of random guessing and rule-based model.
For the Context Model, we use the BiLSTM+Max pooling
and use ELMo model to obtain words representations.

Our rule-based model outperforms random guess at a
large margin. Surprisingly, it achieves a higher result than
the Entity Model on ALL data. The reason is that the Entity
Model cannot generalize to new entities, therefore performs
badly on ALL data with many unknown entities. Compared
with the Entity Model on the KNOWN data, Entity Model
performs better.

For the Entity Model, the performance on KNOWN en-
tities is better than that on ALL entities. This result illus-
trates that the model learns prior information about the en-
tities in the train set. From a visualization of entity embed-
dings using tSNE (Maaten and Hinton 2008), we find that
entities with similar political backgrounds tend to be close
to each other in the embedding vector space. For example,
Wall Street and McCain are close to each other, which is
intuitive since they were both blamed by Obama, and they
both blamed Obama and Bernanke, according to the training

Model KNOWN ALL
dev F1 test F1 dev F1 test F1

random guess 38.81 38.04 37.39 32.96
rule-based 69.14 58.97 70.45 61.54
entity 73.97 70.97 61.07 60.06
context 74.29 63.11 73.16 66.35
combined 81.75 68.67 76.13 69.92

Table 8: Experiment results of baseline models and three
proprosed models on KNOWN data and ALL data.

CTX Wrong CTX Correct
CMB Wrong 0/0 31/19 (II)
CMB Correct 98/127 (I) 413/406

Table 9: Model comparison between Context Model (CTX)
and Combined Model (CMB) on dev/test sets.

data. In addition, Obama, Congress, and Bernanke also form
a cluster, since they were all blamed by McCain and blamed
the Fed.

For the Context Model, we can see that it can effectively
extract blame ties from news articles without prior entity
knowledge. The F1 on the KNOWN test set is 63.11%; while
on ALL test set, the F1 does not decrease as in the Entity
Prior Model, it even increases to 66.35%. Unlike knowledge
about entities, linguistic knowledge generalizes robustly to
unseen test data, where most entities do not exist in the
training data. This implies that our model can be used to
extract blame ties in other occasions where the political set-
tings are highly different. For example, when the President
of the United States changes, we can still use our model to
predict how the new President will play the blame game.

For the KNOWN entities, the Combined Model does not
perform better than Entity Model. This shows that entities
information alone may be useful in extracting blame ties
than using contexts. However, such information could not be
used when the entities are new, for instance, our ALL data.
On the ALL data, the Combined Model achieves the best re-
sult on dev and test set, showing that the model can integrate
context information as well as the entity prior information to
make better predictions.

Therefore, the Context Model is the most robust one, ap-
plicable to extract blame tie among new entities. Entity prior
information is helpful. If available, it can be used to boost
the model performance.

Analysis

To verify our hypothesis about why the Combined Model
is better than the Context Model, we take several examples
on which the Combined Model succeeds while the Context
Model fails and vice versa. To evaluate the practicality and
generalization of the model, we use our trained model to
extract blame ties from several recent news articles.
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Articles
Trump Accuses Russia of Helping North Korea Evade Sanctions (1)
President Donald Trump accused Russia in unusually harsh terms of helping North Korea evade United Nations sanctions intended
to press the country to give up its nuclear and ballistic missile programs. (2)
“ Russia is not helping us at all with North Korea,” Trump said in an interview with Reuters on Wednesday (3). “What China is
helping us with, Russia is denting. In other words, Russia is making up for some of what China is doing.”
Trump has leaned on China to curb its support for North Korean leader Kim Jong Un’s regime, and in exchange has so far laid off
the punishing trade measures he promised against the U.S.’s largest creditor during his campaign.
North Korea’s weapons programs are Trump’s most urgent foreign crisis (4). He has vowed not to allow the country to develop a
missile capable of carrying a nuclear warhead to the U.S. mainland, threatening war to prevent it if necessary. But Kim has plunged
ahead, and his government made rapid advances with both its missile and nuclear technology after Trump took office.
Trump’s criticism of Russia (5) is striking because members of Congress have said in the past that he was too reluctant to criticize
Russia’s foreign policy and too eager to establish good relations with President Vladimir Putin.
Major Entities Mentioned
Trump (e1), Russia (e2), North Korea (e3)

Table 10: An article from Bloomberg published on January 18, 2018. Top: paragraphs of the article containing blame patterns.
The blame entities are in bold face. Bottom: major entities appearing in the article.

source
target

e1 e2 e3

e1 - 0.82 0.91
e2 0.02 - 0.40
e3 0.00 0.01 -

Table 11: Prediction result of the article in Table 10 using the
Context Model. The number represents the probability that
the blame ties exists between the two corresponding entities.

Case Study
To analyze the fine-grained differences between behaviors
of the Context Model and the Combined Model, we evaluate
the two models on samples of the test data, and divide the
samples into four classes, as shown in Table 9.

Class I samples are those on which the Context Model
fails while the Combined Model works correctly. These
samples usually involve entities that appear frequently in the
train set. For instance, we want to figure out whether Obama
blames Republicans based on the article titled Obama Issues
Sharp Call for Reforms on Wall Street (The New York Times,
April 2010). From sentences such as “The president and his
allies have eagerly portrayed Republicans as handmaidens
of Wall Street... Obama avoided incendiary language attack-
ing Republicans...” we can see that the blame tie (Obama, re-
publicans) holds. The Context Model predicts that the blame
tie exists with a confidence score of 0.45, while the Com-
bined Model gives a score of 0.97. The reason may be that
the Combined Model learns prior information about Obama
and Republicans: Obama blamed Republicans before in the
training data, which makes sense since he is a Democrat.

Class II samples are those on which the Combined Model
fails, while the Context Model works correctly. In the USA
Today article Obama tells Wall Street to join in (April 2010),
the context is “...The president said the financial crisis,
which has cost more than 8 million jobs so far, was ‘born
of a failure of responsibility from Wall Street all the way to
Washington.’...”. The Context Model predicts that Washing-
ton does not blame Wall Street, at the confidence level of

0.62, which is true. However, the Combined Model mistak-
enly predicts a probability of 0.88 that the blame exists. This
is because the Combined Model overly relies on entity in-
formation. Nevertheless, in Table 9 this class of samples is
much fewer than class I samples.

Generalization to New Cases
To validate the generalization of our model, we conduct fur-
ther analysis on news articles beyond the time frame of the
financial crisis. Since most entities in this new dataset do
not appear in our financial crisis dataset, we use the con-
text model for generalizability test. In particular, we man-
ually annotate 13 recent articles containing 14 blame ties
from Google News, mostly in January 2018, and use our
pretrained Context Model to extract blame ties from the ar-
ticles. The F1 on individual blame ties is 72.00% on this
new test data, and 8 out of 13 articles are labeled correctly.
The result is consistent with the result of our financial crisis
test set. This further demonstrates that the linguistic patterns
for blame are generalizable to new scenarios. The articles
on which the model fails mainly contain blame patterns that
have not be seen in our financial crisis dataset.

Table 10 shows one of these new articles from Bloomberg
Politics. In this news, United States Presidents accused Rus-
sia of helping North Korea evade United Nations sanctions.
The blame tie is reflected in the sentences (1) (2) (3) and
(5). From (4) we can infer that Trump has a negative atti-
tude towards North Korea because of the nuclear weapons.
The results of the Context Model are shown in Table 11. The
model successfully identifies the blame ties from Trump to
Russia and Trump to North Korea, with a high confidence
score, while the probabilities for the other entity pairs are
low.

Conclusion
We investigated blame analysis, for which previous research
looked at the evolution of blame frames, without system-
atically connecting the frames to the actors who produce
them. Experiments show that neural networks are effective
for identifying blame ties from news articles. Our approach
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can enable researchers to quantify the importance of a frame
and to understand how and why it became prevalent. It can
also enable researchers to study actors’ position alignments
over time. To facilitate such research, we release our code
and model for automatic blame tie extraction.
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