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Abstract

Community search is an important problem in network anal-
ysis, which has attracted much attention in recent years. It
starts with some given nodes, pays more attention to local
network structures, and gets personalized resultant commu-
nities quickly. In this paper, we argue that there are many
real scenarios where some nodes are not allowed to appear in
the community. Then, we introduce a new concept called for-
bidden nodes and present a new problem of forbidden nodes
aware community search to describe these scenarios.
To address the above problem, three methods are proposed,
i.e., k-core based FORTE (Forbidden nOdes awaRe commu-
niTy sEarch), k-truss based FORTE and CW based FORTE,
where the effects of both forbidden nodes and query nodes are
thoroughly considered for each node in the resultant commu-
nity. The former two methods are able to make use of popular
community structures, while the latter is based on a new met-
ric called weighted conductance. The extensive experiments
conducted on real data sets demonstrate the effectiveness of
the proposed methods.

Motivation
Complex networks (e.g., social networks) never fail to fas-
cinate human beings. As an important approach to giv-
ing insights into a complex network, the research on com-
munity structures attracts more and more attention these
years. One of the important topics in this field is commu-
nity search, a.k.a. local community detection, which aims to
find out a cohesive subnetwork (i.e., subgraph) containing
given nodes.

Community search enables users to get personalized lo-
cal cohesive structures faster, especially in large scale net-
works. A large number of methods for community search
have been proposed so far, such as topology-based methods
and semantics-enhanced methods. Topology-based methods
focus on the topological structure of communities in a net-
work, such as k-core and k-truss. Semantics-enhanced meth-
ods consider both attributes of nodes or edges of the network
and the topology of the network, and then define communi-
ties in a more semantic way.
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(a) A sample network.
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(b) Both A and B are query
nodes, and there is no forbid-
den node. The subgraph in the
solid box is the resultant com-
munity.
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(c) Both A and B are query
nodes. C and D are forbidden
nodes. Subgraphs (excluding C
and D) in the solid and dot-
ted boxes are possible resultant
communities.
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(d) Both A and B are query
nodes. L, H and J are for-
bidden nodes. Subgraphs in the
solid and dotted boxes are pos-
sible resultant communities.

Figure 1: Examples for community search with forbidden
nodes. Nodes in gray color form a cohesive subgraph.

However, to the best of our knowledge, all existing meth-
ods for community search just emphasize the occurrence
of some nodes (called query nodes in this work), i.e., only
nodes that should be included in the resultant community are
considered as the input. Then, users are not able to express
lot of real and appropriate needs, such as preventing some
specific objects from appearing in the resultant communi-
ties. Therefore, in this study we argue that the nonexistence
of some nodes (called forbidden nodes in this work) should
also be considered as the input of the community search task.

Example 1. A sample network is given in Figure 1(a). As
shown in Figure 1(b), nodes A and B are treated as the
query nodes of a community search task. Here, the cohesive-
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ness is measured by a 3-core structure, which means each
node of a resultant community has at least three neighbors
in this community. Then, the subgraph in the solid box is an
answer since it is such a local structure containing nodes A
and B.

As illustrated in Figure 1(c), nodes A and B are still query
nodes while nodes C and D are forbidden nodes. Simply
deleting C and D from the subgraph in the solid box (which
is generated in Figure 1(b)) seems to be direct but not proper,
since the remaining subgraph in the solid box contains nodes
E and F whose degrees are lower than 3 after the deletion,
i.e., it is not a 3-core anymore. The subgraph in the dotted
box is more proper because the nodes inside the box still
have three or more neighbors.

As described in Example 1, it is not a good idea to di-
rectly delete forbidden nodes from the result generated by
the existing community search methods. In addition, we ar-
gue that the relation between each remaining node and for-
bidden nodes as well as that between it and query nodes
should be thoroughly considered. For instance, each node in-
side the resultant community should be closer to query nodes
than forbidden nodes.

Example 2. As depicted in Figure 1(d), nodes A and B
are query nodes; nodes L, H and J are forbidden nodes.
It seems that the subgraph in the solid box is a good re-
sult since it does not contain any forbidden nodes. However,
things may not be that simple in practice. Suppose it is a
movie network where edges represent the co-watched rela-
tions, and nodes A and B have been watched by users be-
fore. Also, nodes in the solid box represent fiction movies,
and forbidden nodes are horror movies. In this context, node
C is likely to be a fiction movie with a lot of horrible ele-
ments. Therefore it would be better not to include node C
in the final community especially in an online movie recom-
mendation system, which means the subgraph in the dotted
box is a better choice.

From the above two examples, it is clear that simply ex-
cluding forbidden nodes from the communities to be gen-
erated cannot provide users with desirable resultant com-
munities. The introduction of forbidden nodes inspires us
to rethink whether the nodes in a network should appear in
the resultant community, especially those that are closely re-
lated to the forbidden nodes. It is the biggest challenge of the
present study.

To address this challenge, in this paper three methods
are proposed to find communities containing query nodes
without forbidden nodes. Especially, the effect of forbidden
nodes is fully considered and better community results are
generated. The main contributions of this paper are summa-
rized as follows:

• A novel concept called forbidden nodes is introduced to
community search problems so that users of complex net-
works are able to express more realistic needs. Mean-
while, the problem of forbidden nodes aware community
search is presented.

• Three algorithms, i.e., k-core based FORTE (Forbidden
nOdes awaRe communiTy sEarch), k-truss based FORTE

and weighted-conductance (denoted as CW in the rest of
this paper) based FORTE, are proposed to find a com-
munity containing query nodes without forbidden nodes,
where the effects of forbidden nodes as well as query
nodes are well considered.

• The extensive experiments conducted on real data sets
demonstrate the effectiveness of the proposed methods.

Related Work
Community search. Given a set of nodes, the task of com-
munity search seeks communities that contain them. Due to
the focus on local community structure, community search
can efficiently find the communities where the nodes that
users care about are located. The classical community search
algorithms are mainly based on specific structures like k-
clique (Cui et al. 2013), k-core (Sozio and Gionis 2010;
Cui et al. 2014), k-truss (Huang et al. 2014; Akbas and Zhao
2017), and densely connected subgraphs (Wu et al. 2015).
For example, Cui et al. proposed the problem of looking for
a community with minimal degree k containing a given node
and the corresponding algorithm (Cui et al. 2014). Huang et
al. proposed the community definition based on k-truss and
designed the tcp-index to find the target community (Huang
et al. 2014).

In addition, there are semantics-enhanced community
search methods combining network topology and node at-
tributes. For example, Shang et al. constructed a TA-graph
based on the similarity of node attributes as well as that of
node topology, and then proposed an effective community
search algorithm AGAR (Shang et al. 2018). Fang et al. de-
signed an index structure called CL-tree, on the basis of k-
core, requiring the nodes in the community to share as many
attributes as possible (Fang et al. 2016). Huang et al. de-
signed a scoring function based on k-truss to measure the
popularity of a given attribute in the community, and pro-
posed the Attribute-Truss community definition (Huang and
Lakshmanan 2017). Chen et al. considered the constraint
of users’ spatial information in k-truss search named co-
located community search (Chen et al. 2018).

However, all these proposed community search methods
ignore the existence of forbidden nodes which frequently ap-
pear in user requirements. At the same time, the influence of
forbidden nodes has never been considered before.

Community detection. The community detection prob-
lem has been widely studied, which aims at finding out all
communities in a given network. Typical methods for com-
munity detection mainly include partitioning, clustering, la-
bel propagation, and so on (Wang et al. 2015).

Partitioning methods directly decompose the original net-
work into disconnected subgraphs, such as KMF algo-
rithm (Zhao and Tung 2012) and SCD algorithm (Prat-
Pérez, Dominguez-Sal, and Larriba-Pey 2014). KMF re-
moves edges that take part in less than k triangles. SCD al-
gorithm partitions the network by maximizing the weighted
community clustering.

Clustering methods can be divided into hierarchy clus-
tering, spectral clustering and k-means clustering. Hierar-
chy clustering firstly constructs a hierarchical tree and then
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cuts it at certain level to optimize the goodness of com-
munity structures. Fast-Newman (Newman 2004), CNM
(Clauset, Newman, and Moore 2004), Radicchi (Radicchi et
al. 2004), GN (Newman and Girvan 2004) are all typical hi-
erarchy clustering methods. Spectral clustering is based on
the eigenvectors of adjacent matrix (Shi and Malik 2000;
Jin and others 2015). k-means clustering is a common clus-
tering method. In the community detection problem, the
similarity of two nodes is defined by shortest-path distance
(Mahmood et al. 2017), random walk (Pons and Latapy
2005; Rosvall and Bergstrom 2008), and so forth. In recent
years, network embedding based clustering methods have
emerged, where nodes in the network are firstly represented
as low-dimensional vectors and then clustered into com-
munities, such as DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) and GraRep (Cao, Lu, and Xu 2015). Embedding
based clustering methods are also used in attributed graphs
(Li et al. 2018).

Label propagation methods firstly initialize the label of
each node, then update the labels iteratively, and finally de-
termine the communities by the label distribution. Typical
label propagation methods include LPA (Raghavan, Albert,
and Kumara 2007), SLPA (Xie, Szymanski, and Liu 2011),
NMLPA (Huang, Wang, and Wang 2019), and so on.

Community detection that takes additional factors into
account other than the topological structure is also a re-
search hotspot, such as node attributes (Yang, McAuley, and
Leskovec 2013), incomplete networks (Xin et al. 2017) and
link semantics (Jin et al. 2018). However, it is hard to han-
dle all the community structures in a large scale network,
especially in some online and dynamic systems. Community
search, i.e., trying to discover local community structures, is
more practical and efficient.

k-core based FORTE
A k-core is the biggest subgraph of a network such that each
of its nodes has a degree no less than k (Cui et al. 2014). On
the basis of k-core, the definition of forbidden nodes aware
community search based on k-core is given in Definition 1,
where AvgDist(v, S) denotes the average of the shortest path
length from v to each node in S, and G[S] denotes the in-
duced subgraph of S in G.

Definition 1 (Forbidden nodes aware community search
based on k-core). Given a graph G = (V,E), a query node
set Q, a forbidden node set F and a parameter k. Q ̸= ∅ and
Q ∩ F = ∅. Find a connected induced subgraph H = G[S]
that contains Q without F such that the minimum degree of
H is not less than k and ∀v ∈ S − Q,AvgDist(v,Q) <
AvgDist(v, F ).

As shown in Algorithm 1, a k-core based forbidden nodes
aware community search (k-core based FORTE) algorithm
is proposed. At first, the network is shrunk by removing for-
bidden nodes and related edges. Then, the Steiner tree that
contains the query nodes is found to guarantee the connec-
tivity. Next, the current community C is extended through
its neighbors. Nodes are firstly sorted in descending order
by their number of links to C, and then by their degrees.
The one at the top is preferentially selected into the com-

Algorithm 1 k-core based FORTE

Require: G = (V,E), Q, F , k
Ensure: A k-core community containing Q without F .

1: G← G−H[F ];
2: Calculate the Steiner Tree T built on Q;
3: if T cannot be found then
4: return ∅;
5: end if
6: C ← nodes in T ;
7: mark nodes in C as visited;
8: add unvisited adjacent nodes of C into Candidates;
9: while minDegree(C) < k do

10: if Candidates is empty then
11: C = ∅;
12: break;
13: end if
14: Candidates′ ← nodes with most links to C in

Candidates;
15: p← node with the largest degree in Candidates′;
16: if Degree(p) < k then
17: remove p from Candidates;
18: else if AvgDist(p,Q) < AvgDist(p, F ) then
19: add p into C;
20: add unvisited adjacent nodes of p to Candidates;
21: end if
22: mark p as visited;
23: end while
24: if C == ∅ then
25: return global search result of Q on G;
26: else
27: return G[C] //G[C] is the induced subgraph of C;
28: end if

munity. Considering that nodes in the community should be
more close to query nodes than forbidden nodes, the nodes
with longer average shortest-path length to the query nodes
than forbidden nodes are pruned out. Finally, if there is no
proper neighbor node that can be added and the minimum
degree of C is not large enough, a global search procedure
is used to guarantee the validity (Cui et al. 2014), i.e., iter-
atively deleting the nodes with degrees less than k until a
k-core is found or query nodes have to be deleted.

The time complexity of Algorithm 1 depends on three
parts. The first part is the shrinkage of the input network,
whose time complexity is O(nf ) where nf is the number
of nodes in the forbidden set. The second part is finding the
Steiner tree which can be done approximately in O(nqn

2
r)

where nq and nr are the numbers of nodes in Q and the
nodes in the rest graph (Robins and Zelikovsky 2000). The
last part is the extension of the current community C, whose
time complexity is O(m′ + n′) where m′ is the number of
edges and n′ is the number of nodes in C.

k-truss based FORTE
A k-truss is a subgraph of the given network such that each
of its edges has joined in no less than k−2 triangles (Huang
et al. 2014). Based on the concept of k-truss, Huang et

760



Algorithm 2 k-truss based FORTE

Require: G = (V,E), Q, F
Ensure: A k-truss community contains Q without F with

largest k.
1: G← G−H[F ];
2: modify the trussness of each related edge after the

shrinkage;
3: C ← FindG0; // see (Huang et al. 2015)
4: for each v ∈ C do
5: if AvgDist(v,Q) ≥ AvgDist(v, F ) then
6: remove v from C;
7: end if
8: end for
9: modify the structure of C if necessary;

10: return C;

al. provide an algorithm called FindG0 to obtain a connected
k-truss containing the query node set Q with the largest k
(Huang et al. 2015).

On the basis of k-truss, the definition of forbidden nodes
aware community search based on k-truss is defined as fol-
lows.
Definition 2 (Forbidden nodes aware community search
based on k-truss). Given a graph G = (V,E), a query node
set Q and a forbidden node set F . Q ̸= ∅ and Q ∩ F = ∅.
Find a connected subgraph H = G[S] containing Q with-
out F such that H is a k-truss with the largest k and
∀v ∈ S −Q,AvgDist(v,Q) < AvgDist(v, F ).

A k-truss based forbidden nodes aware community search
(k-truss based FORTE) algorithm is proposed in Algorithm
2. The network is shrunk by removing forbidden nodes at
first. Different from Algorithm 1, the trussness of each re-
lated edge has to be modified since they are used in the fol-
lowing steps and affect the correctness of the results. Then a
k-truss community search step, such as the popular method
FindG0, is carried out. Next, the nodes in C are checked
by the comparison of the average shortest-path length to the
forbidden nodes and that to the query nodes, which aims to
make the members in C more close to the query nodes than
to the forbidden nodes. Finally, modify the structure of C
by removing the edges with smallest number of triangles to
maintain the k-truss if necessary.

The time complexity of Algorithm 2 can be divided into
four parts. The first part takes O(nf ) time complexity where
nf is the number of nodes in the forbidden set. The second
is to modify the trussness of edges, which might cost O(m)
in the worst case where m is the number of edges in G. The
third part, i.e., running FindG0, is O(m′) where m′ is the
number of edges in C. The last part that checks the nodes
in C costs O(n′), where n′ is the number of nodes in C and
there is a possible cost O(m′) to modify the structure of C.

The correctness of k-core based FORTE and k-truss based
FORTE is obvious. For the k-core based FORTE, let H =
G[S] be the final resultant community of Algorithm 1. S ∩
F = ∅ since S is found on G[V − F ]. Besides, Line 9 of
Algorithm 1 guarantees the minimum degree, and Line 18
of Algorithm 1 guarantees the constraint on the shortest path

length. Thus, H satisfies Definition 1. For the k-truss based
FORTE, the k-truss structure with the largest k is guaranteed
by Line 3 of Algorithm 2 while the other two constraints on
forbidden nodes can be found in Line 1 and Line 5.

The two methods based on k-core and k-truss take the
average shortest path length to the query nodes and that to
forbidden nodes as the measure of how close a node is to
the two types of nodes. However, this measurement cannot
fully exploit the influences of Q and F . For example, a node
v with AvgDist(v, F ) = 2 may connect to three forbidden
nodes in 1-hop and one forbidden node in 5-hops. Another
node p may just connect to four forbidden nodes in 2-hops,
and then AvgDist(p, F ) = 2. It means that the relation be-
tween p and F is hard to be differentiated from the relation
between v and F though they are influenced by F differ-
ently.

Weighted Conductance based FORTE
To fully consider the influences of both Q and F , a convinc-
ing measurement should be carefully designed. That is how
to measure the impact of influence. This kind of measure-
ment can be a definite value for each node so as to decide
whether it should join the community. Personalized PageR-
ank (PPR) is a popular way to measure the proximity of
nodes in a network. It is widely used in Web page rank-
ings, which provides a numerical value to describe how im-
portant the current page is to the given pages. Thus, we put
forward a novel node weighting approach based on Person-
alized PageRank to describe the influences of Q and F .

Weighting based on Personalized PageRank
Personalized PageRank inherits the idea of the classic
PageRank algorithm, simulating a user’s behavior of ran-
domly accessing the nodes when some nodes are preferred
by the user. It uses the links to recursively calculate the
weight of each node, which can be interpreted as the random
accessing probability. The underlying mathematical model
is to assume that when a user starts from a certain node, he
might jump to a set of preferred nodes with probability α,
or move to one of the neighbor nodes through the adjacent
link. Formally, the vector of access probabilities, denoted as
p, is the solution to the following equation

p = αv + (1− α)Mp (1)

where α is the teleport probability, and is generally set to
0.15. v is called the Personalized Pagerank Vector (PPV),
which is a unit vector. PPV has the same dimensions as the
number of nodes, and only the values corresponding to those
preferred nodes are set to non-zero. M denotes the transition
matrix, which is often calculated by adjacent matrix A and
diagonal degree matrix D using M = ATD−1.

To be fair, when setting the node weights, the forbidden
nodes and the query nodes are used as preferred nodes in
PPR respectively. The weight of each node is determined
by normalizing the difference of two probabilities obtained
through PPR. The reason to normalize the weights is that the
PPR value of each node is quite small when the network is
in large scale, and the differences among nodes can be seen
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clearly after the normalization. Next, a formal description of
the node weighting is given as follows.

P (v) =
Pq(v)

maxu∈V {Pq(u)}
− Pf (v)

maxu∈V {Pf (u)}
(2)

W (v) =
P (v)−minu∈V {P (u)}

maxu∈V {P (u)} −minu∈V {P (u)}
(3)

Pq(v) denotes the PPR value of node v when using query
nodes as preferred nodes while Pf (v) is obtained when us-
ing forbidden nodes. V is the whole node set of the network.
W (v) is the final weight of node v. In Equation 2, the PPR
values of node v are divided by the maximum PPR value re-
spectively since the two values might be in different ranges.
In Equation 3, the difference of two PPR values is mapped
to [0, 1] by min-max normalization. The larger the W (v) is,
the more important the node v is to the query nodes, which
means the influence of forbidden nodes is smaller.

Based on node weighting, the weight given to edge (u, v)
is defined as:

W (u, v) =
W (u)

degree(u)
+

W (v)

degree(v)
(4)

where degree(u) denotes the degree of node u. Similar to
node weighting, edge weighting is able to help figure out
how important an edge is to the query nodes.

CW based FORTE
Now that we have a way of node weighting to show how
they are affected by both query nodes and forbidden nodes,
it is intuitive to set a threshold λ to eliminate nodes that are
closely related to forbidden nodes and the remaining nodes
are treated as a community. However, it ignores the fact that
a good community needs to be connected and cohesive.

Then, we come up with a novel metric of community,
combining the structure and the influences of query and for-
bidden nodes. The metric is called weighted conductance,
and is formalized as the following definition.
Definition 3 (Weighted Conductance). Given a graph G =
(V,E) and a subgraph H ⊆ G. The nodes in H are denoted
as S. The weighted conductance of H is:

CW (H) =

∑
u∈S,v∈V \S W (u, v)

2
∑

u,v∈S W (u, v) +
∑

u∈S,v∈V \S W (u, v)
(5)

where W (u, v) denotes the weight of an edge (u, v).
Different from the classic conductance which measures

the fraction of edges that link the community and outside in
the total edges related to the community (Yang and Leskovec
2015), weighted conductance takes the weights of edges
into account. When weighted conductance CW (H) becomes
smaller, the community H becomes more cohesive. This re-
quires the community to have not only fewer edges linking
inside and outside, but also smaller weights for those edges.
In other words, the more important the edge is to the query
nodes, the more likely it is to appear in the community.

On the basis of weighted conductance, the definition
of forbidden nodes aware community search based on
weighted conductance is defined as follows.

Algorithm 3 CW based FORTE

Require: G = (V,E), Q, F , λ
Ensure: A community contains Q without F .

1: for each v ∈ V do
2: if W (v) < λ then
3: remove v from G;
4: end if
5: end for
6: Nodelist← sort the rest nodes in descending order;
7: startpos ← the smallest index when Nodelist[0] ∼

Nodelist[startpos] includes Q;
8: for i from startpos to Nodelist.length do
9: Vi ← Nodelist[0] ∼ Nodelist[i];

10: record CW (G[Vi]);
11: end for
12: return argminG[Vi]{CW (G[Vi])};

Definition 4 (Forbidden nodes aware community search
based on weighted conductance). Given a graph G =
(V,E), a query node set Q ⊆ V , a forbidden node set
F ⊆ V and a threshold λ. Q ̸= ∅ and Q ∩ F = ∅. G has
been weighted by PPR as Equations 1∼ 4. Find a connected
subgraph H ⊆ G that contains Q without F satisfying the
following conditions: (1) The weight of each node in H is
not less than λ; (2) CW (H) is minimized.

A heuristic algorithm, called weighted conductance based
forbidden nodes aware community search (CW based
FORTE), is presented in Algorithm 3. It can be divided
into three steps. Firstly, prune all nodes whose weights are
less than the threshold λ. Secondly, sort the rest nodes by
weight in descending order. Finally, check the node list from
the position of last query node to the end to find the node
set Vi = (Nodelist[0], . . . ,Nodelist[i]) with the minimum
weighted conductance. According to Definition 3, in order
to decrease the weighted conductance, it is better to put
edges with large weights into the community. Due to Equa-
tion 4, edges adjacent to large weight nodes tend to have
large weights. Therefore, the nodes with large weights are
added preferentially.

The time complexity of CW based FORTE is divided into
three parts corresponding to the three steps. The first step
takes O(n) to remove the nodes with weights less than λ
where n is the number of all nodes. The second step takes
O(n′logn′) to sort the rest nodes where n′ is the number
of rest nodes. The final step takes O(n′m′) to compute the
weighted conductance where m′ is the number of rest edges.

As we can see in Figure 2, suppose nodes A and B are
query nodes, and node C is the forbidden node. After the
nodes are weighted through PPR, we use the depth of color
to visualize the node weight. Nodes with larger weights have
a darker color. The dotted box is the community calculated
by CW based FORTE with threshold λ = 0.6. Nodes in the
dotted box tend to be darker than the outside, and the three
first-order neighbors of node C are not included. It makes
the resultant community a better choice for users since node
C and the community are well separated.
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Figure 2: An example for forbidden nodes aware community
search.

Table 1: Data sets

Data set |V | |E| |C|
DBLP 317, 080 1, 049, 866 13, 477
Amazon 334, 863 925, 872 75, 149
YouTube 1, 134, 890 2, 987, 624 8, 385

Experiments
In this section, extensive experiments are conducted on real
data sets to evaluate the three proposed algorithms for the
problem of forbidden nodes aware community search, i.e.,
k-core based FORTE, k-truss based FORTE and CW based
FORTE. For convenience, they are respectively abbreviated
as FORTE-k-core, FORTE-k-truss and FORTE-CW in the
following figures and tables.

Experimental setup
Table 1 lists out the data sets used in the experiments, includ-
ing DBLP, Amazon and YouTube. |V |, |E| and |C| denote
the number of nodes, edges and communities, respectively.
The data sets are downloaded from the Stanford Large Net-
work Data set Collection (http://snap.stanford.edu/data/).
All of them have ground truth communities, which help us
design reasonable test cases.

The experiments are conducted on a Server with Intel
Xeon E5-2650 2.0 GHZ and 256 GB main memory. The
Operation System is Windows Server 2008. All the codes
are implemented using Python 3.6.1.

To evaluate the community results, we choose two suit-
able indicators. One is f-measure, which measures the accu-
racy of the results, and the other is local modularity, which
measures the cohesiveness of communities.

The f-measure is the harmonic mean value of precision
and recall. The closer the value is to 1, the closer the results
are to the ground truth. Actually, the ground truth of the
forbidden nodes aware community search cannot be fully
known. We pick out some test cases where query nodes
come from the same community C according to the ground
truth offered by the data sets. When the forbidden nodes in
the test cases are not in C, we treat C as the ground truth.

The local modularity, denoted as Ql in Equation 6, refers
to the ratio of the number of edges inside a subgraph to the
total number of edges that link to the nodes in the subgraph.

Table 2: Combinations of query and forbidden nodes

Label i ii iii iv v

|Query nodes| 1 2 2 2 3
|Forbidden nodes| 2 1 2 3 2

Figure 3: F-measure changes with threshold λ.

It describes how dense a community is in a local view. The
larger value indicates a better community.

Ql =
kin

(kin + kout)
(6)

To evaluate the influence of forbidden nodes, we design
a novel metric called Closeness-to-the-Forbidden, denoted
as cf . It comprehensively reflects the probability that forbid-
den nodes appear in the first-order and second-order neigh-
borhood of community members, formalized as:

cf(C) = 100 ∗
∑
u∈C

0.75
N1(u) ∩ F

N1(u)
+ 0.25

N2(u) ∩ F

N2(u)
(7)

where N1(u) and N2(u) denote the first-order neighbors
and second-order neighbors of u. F is the forbidden node
set. N1(u) is considered to be more important so it is
weighted with 0.75. The value is multiplied by 100 to make
the differences among different communities more obvious.
A better community should be far away from the forbidden
nodes so that the fc value tends to be smaller.

By changing the number of query nodes and forbidden
nodes, the following five combinations (as listed in Table
2) are used in the experiments, which are labeled with Ro-
man numerals. For each combination, we pick 100 groups
of the corresponding number of query and forbidden nodes.
In each group, query nodes are randomly selected from a
same community in the ground truth provided by the data
sets while the forbidden nodes are randomly selected from
the whole graph. Each evaluation value shown afterwards is
the average of the 100 tests except for a few invalid answers
when the k-core or k-truss structures cannot be found.

As for parameters, we set the threshold λ in CW based
FORTE to 0.54 according to Figure 3, which presents the
f-measure changes from 0.51 to 0.69 on the DBLP data set.
The parameter k in the k-core based FORTE is tested from
2 to 10, and then the largest k with valid results is remained,
which varies among different tests.
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Table 3: Time cost of different methods

Methods FORTE-k-core FORTE-k-truss FORTE-CW

DBLP 1.46 min 3.52 min 1.51 min
Amazon 0.99 min 7.67 min 1.41 min
YouTube 2.76 min > 10 min 2.83 min

Figure 4: F-measures of different methods.

Results and analyses

In Table 3, we compare the time costs of different methods
on three real networks. It is obvious that the k-truss based
FORTE method has the highest time cost. The high cost
mainly comes from the step of modifying the trussness of
affected edges after shrinking the input network. The CW

based FORTE method is a bit slower than the k-core based
FORTE method but more efficient than the k-truss based
FORTE method.

As seen in Figure 4, the f-measure obtained by the CW

based FORTE method is always the best. The other two
FORTE methods tend to have a lower f-measure since the
community structures in the ground truth are not strictly
ruled by k-core or k-truss.

As shown in Figure 5, the local modularity obtained by
the k-core based FORTE method is the worst, which means
the communities are not cohesive enough. The performances
of the CW based FORTE method and the k-truss based
FORTE method are difficult to be compared. The CW based
FORTE method performs well in two cases while the k-truss
based FORTE method performs well in three but their dif-
ferences are not so distinct.

Table 4 reports the Closeness-to-the-Forbidden values of
different methods. The lower the value is, the less the com-
munity is influenced by forbidden nodes. Then, we can see
that k-truss based FORTE and CW based FORTE perform
better. Besides, the differences among the three methods are
not so distinct, which means all of them have the ability to
make nodes inside the community more close to query nodes
than to forbidden nodes.

To summarize, the CW based FORTE method performs
best in f-measure. Moreover, it keeps the cohesiveness of
community while reducing the influences of forbidden nodes
with an acceptable time cost. That means it is a better choice
to address the problem of forbidden nodes aware community
search.

Figure 5: Local modularities of different methods.

Table 4: Closeness-to-the-Forbidden values of different
methods (DBLP)

Methods FORTE-k-core FORTE-k-truss FORTE-CW

i 1.01 0.16 0.83
ii 1.23 0.12 0.16
iii 0.73 0.01 0.92
iv 7.21 22.8 2.72
v 7.20 0.62 0.01

Conclusion
Considering the urgent needs of users, the forbidden nodes
aware community search problem is proposed in this pa-
per. Firstly, two methods, called k-core based FORTE and
k-truss based FORTE, are presented, which are based on
the concepts of k-core and k-truss, respectively. Then, a
novel method called CW based FORTE is proposed, which
is based on node weighting through PPR and searches for
communities by minimizing weighted conductance. The ex-
perimental results demonstrate the effectiveness of the three
methods.

The forbidden nodes aware community search problem
indicates a new direction of community search, which adds
constraints to community search from the perspective of user
needs. For instance, other constraints like the community
size limitation and query nodes relaxation can be taken into
consideration. Further, multiple constraints are also worth
exploring, which may lead to more personalized community
search problems. Besides, the CW based FORTE algorithm
is shown to be effective and achieves higher accuracy, which
reveals the value of solving this kind of problem. All in
all, the proposed forbidden nodes aware community search
problem and the related algorithms are of practical signif-
icance and may draw attention to new community search
problems.
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