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Abstract 

Over 100 million packages are delivered every day in China 
due to the fast development of e-commerce. Precisely esti-
mating the time of packages’ arrival (ETA) is significantly 
important to improving customers’ experience and raising 
the efficiency of package dispatching. Existing methods 
mainly focus on predicting the time from an origin to a des-
tination. However, in package delivery problem, one trip 
contains multiple destinations and the delivery time of all 
destinations should be predicted at any time. Furthermore, 
the ETA is affected by many factors especially the sequence 
of the latest route, the regularity of the delivery pattern and 
the sequence of packages to be delivered, which are difficult 
to learn by traditional models. This paper proposed a novel 
spatial-temporal sequential neural network model (Deep-
ETA) to take fully advantages of the above factors. Deep-
ETA is an end-to-end network that mainly consists of three 
parts. First, the spatial encoding and the recurrent cells are 
proposed to capture the spatial-temporal and sequential fea-
tures of the latest delivery route. Then, two attention-based 
layers are designed to indicate the most possible ETA from 
historical frequent and relative delivery routes based on the 
similarity of the latest route and the future destinations. Fi-
nally, a fully connected layer is utilized to jointly learn the 
delivery time. Experiments on real logistics dataset demon-
strate that the proposed approach has outperforming results. 

 Introduction   

Due to the fast development of the e-commerce, over 100 

million packages are delivered each day in China. Estimat-

ing time of arrival (ETA) of package is important. On one 

hand, informing the arrival time of packages to customers 

will help them better arrange when and how to receive 

their packages, reducing the anxiety of customers and im-

proving the customer experience. More importantly, the 

ETA will help measuring the service ability and quality of 
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couriers, which are key parameters in the last mile pickup 

and delivery system. With the efforts made by the logistics 

companies  

 

Figure 1: The delivery times of all packages at any time are af-

fected by the latest route, the delivered pattern and the to-be-

delivered pattern. 

  

such as the Cainiao Ltd., the traditional package delivery 

process is digitized and massive amount of delivery data 

are collected. The problem of how to precisely predict the 

ETA of packages has gained increasing attention in logis-

tics research communities. 

 In the real scene, each courier should deliver nearly 100 

packages per day. When customers demand, the delivery 

time of all undelivered packages should be predicted at the 

same time, which is a multi-destination prediction prob-

lem. However, the problem can be referred from similar 

scenes, such as the car sharing and the free rider problem, 

where the travel time on the road and the sequence of the 

route are important. There exists valuable researches that 

can be referred, such as predicting the next location (Feng 

et al. 2018), mining delivery pattern (Ying, Lee, and Tseng 

2013), and estimating time on the road (Jindal et al. 2018). 

Furthermore, the ETA of package delivery should consider 

both spatial and temporal features of the delivery route and 

researches can be found that propose spatial-temporal 

models in solving similar problems (Liang et al. 2018). 

 However, predicting the package delivering time is chal-

lenging mainly of the following reasons: 
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Multiple destinations. Predicting the travel time in trans-

portation problem focuses on the time difference between 

an origin and a destination. However, in delivery system all 

undelivered packages should be predicted at any time. The 

delivery time of different locations may vary due to the 

delivery sequence and the locations of the packages. 

Time-variant delivery status. As shown in Figure 1, the 

delivery time is affected by many factors especially the 

sequence of the latest route, the regularity of the delivery 

pattern and the sequence of packages to be delivered, 

which are difficult to learn by traditional model. Though 

recurrent neural networks (RNN) can learn sequential fea-

tures, it could not handle frequent patterns and regularities 

of delivery routes.  

Time-invariant delivery features. The geographical loca-

tions of the packages have huge influence on the delivery 

sequence and thus determine the delivery time. The repre-

sentation of the location in the model becomes an im-

portant issue. Furthermore, the inherent properties of pack-

ages such as the weight or size of the package should be 

considered. 

To overcome the aforementioned difficulties, this paper 

proposed a novel wide and deep neural network for esti-

mating time of package arrival (DeepETA). DeepETA has 

specially designed architecture to handle all the relative 

features of package delivery. The main contributions are as 

follows:  

We develop a spatial-temporal module to capture the se-

quential features of the latest delivery route. Different from 

traditional methods that use one-hot or convolution layer to 

represent geo-locations, we first encode the location ac-

cording to the geographical proximity and then embed 

them into short vectors. Combining with delivering status 

of each node in the delivery route, the long short-term 

memory cells (LSTM) are used to extract the sequential 

features of the route. 

We design two attention-based modules to learn histori-

cal frequent and relative delivery patterns. To tackle the 

difficulty that RNN cannot learn the correlations between 

massive historical data, we first extract relative delivery 

routes and utilize attention mechanism to find the most 

similar route. Both delivered and undelivered packages are 

taken into account to enrich the model. 

We evaluate the proposed method on a real-world logis-

tics dataset. The results show that our approach outper-

forms the competing methods. 

Related Work 

The problem of predicting the delivery time of multiple 

destinations can be referred from predicting the next loca-

tion, estimating the travel time of vehicles on the road, and 

spatial-temporal model used for time series prediction. 

 Next location prediction: (Ying, Lee, and Tseng 2013) 

builds the frequent pattern tree and utilizes traditional 

machine learning methods to predict the next location. (Wu 

et al. 2017) proposes an LSTM network that can learn the 

path sequential features. (Zhang et al. 2018) predicts taxi 

destination by transforming raw trajectories into image and 

used convolutional neural network (CNN) to extract deep 

spatial features. RNN is used to model temporal and 

sequential features. (Feng et al. 2018) develops an 

attentional recurrent model considering both heterogeneous 

transition regularity and multi-level periodicity. If the next 

location is precisely predicted, the travel time can be 

simply calculated by the distance and velocity.  

 Estimating travel time: (Wang, Fu and Ye 2018) uses 

ensemble model that combines linear models, deep neural 

network (DNN) and RNN. (Jindal et al. 2018) proposes 

two DNN modules to capture coordinates and time attrib-

utes from raw trajectories. (Zhang et al. 2018) develops a 

bi-directional LSTM layer to capture short-term and long-

term traffic features. (Li et al. 2018) utilizes multi-task 

learning to predict the additional feature of the path and 

jointly learn the main task. (Wang et al. 2018) designs an 

end-to-end network that contains a geo-convolution layer 

to represent raw trajectory and used multi-task to learn 

both the entire path and each local path. 

 Spatial-temporal data prediction: Delivery time predic-

tion is a time-series problem and methods in similar fields 

can be inferred. (Shen et al. 2018) treats the time series 

data as video and proposed a CNN to simultaneously mod-

el all correlated spatial-temporal mobility patterns. (Liang 

et al. 2018) proposes a multi-level attention networks for 

geo-sensory time series prediction and utilizes spatial at-

tention to capture the geographical correlations. (Yao et al. 

2018) uses geo-convolutional layer to model spatial rela-

tions and LSTM to model the time series. (Zhang et al. 

2018) extracts distant, near and recent flows manually to 

model temporal features and uses residual networks to bet-

ter train the deep networks. (Yao et al. 2018) utilizes the 

attention mechanism to find the periodicity and temporal 

shifting. 

Preliminaries 

In this section, the delivery time prediction problem is de-

fined and related notations are explained. 
  Locations in delivery route: Packages are clustered into 
areas like communities or blocks to reduce the scale of the 
problem and to improve the efficiency of training. We use 
areas to represent the locations in the delivery route and 
predicts the delivery time to each location. In some previ-
ous literatures, locations are aggregated by rectangle or 
hexagonal partitions of the city (Wang, Fu and Ye 2018). 
However, those methods lose geographic and semantic 
information of the area and suffer from large granularity 
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problem. We utilize an optimized partition method based 
on road network and areas of interest (AOI). The partition 
function of mapping package 𝑝𝑖  to location 𝑎𝑖 is defined as 
𝑎𝑖 = 𝑂(𝑝𝑖).  
 Delivery route: After the aggregation step, the task is 

transformed to predict the deliver time of a set of locations, 

namely 𝑆𝑒𝑡 = {𝑎𝑖  | 𝑖 = 0,⋯ , 𝑛}. The sequence of locations 

has great impact on the delivery time. We define the deliv-

ery sequence at time 𝑡𝑖 in day 𝑑 as: 

   𝑡𝑒   ,  
 = {𝑛 𝑑𝑒  ,   𝑛 𝑑𝑒  ,  ⋯𝑛 𝑑𝑒  ,  }, (1) 

where 𝑛 𝑑𝑒  ,   is a spatial-temporal node that means loca-

tion 𝑎𝑐 is visited at time 𝑡𝑖. 
 Problem definition: The delivery time 𝑑𝑡𝑖 of location 𝑎𝑖 
is the travel time from the current location 𝑎𝑐 to destination 

𝑎𝑖. The sequence of the current route and the undelivered 

location set have great influence on the delivery time. We 

develop a deep learning method to learn the regularity 

from massive historical data. First, given the latest route 

   𝑡𝑒  ,  
  and the predicted location 𝑎𝑖, we find all rela-

tive routes from history that are similar with the current 

route, symbolized as set ℋ𝑟𝑜𝑢 𝑒 . Then, given the undeliv-

ered location set 𝑆𝑒𝑡  ,
 , we find all routes from history that 

has similar undelivered set, marked as ℱ𝑠𝑒 . All records 

have a delivery time of 𝑎𝑖. The objective of our network is 

to find the most possible delivery time 𝑑𝑡   from historical 

relative routes: 

𝑑𝑡  =  (ℋ𝑟𝑜𝑢 𝑒 , ℱ𝑠𝑒 ) (2) 

Proposed DeepETA Framework 

In this section, the proposed spatial-temporal sequential 

network for estimating time of package arrival (DeepETA) 

is described in detail. Figure 2 shows the architecture of 

the proposed method. The DeepETA is an end-to-end net-

work that takes time-variant route feature and time-

invariant feature as input, and output the delivery time. 

DeepETA consists of three modules, namely the latest 

route encoder, the  

frequent pattern encoder, and the prediction module. 

Latest Route Encoder 

This module aims to capture the complicated sequential 

information that influences the delivery time. The delivery 

route is consecutive in time and is adjacent in space. Previ-

ous location prediction literatures, such as (Monreale et al. 

2009; and Ying et al. 2013), claim that human mobility can 

be regarded as a probability chain. The future locations or 

behaviors can be predicted through the transition probabil-

ity matrix given the past behaviors. Hidden Markov Model 

(HMM) are used to model the process. However, HMM 

suffers from the deficiency of learning long-term depend-

encies. Recently, RNN has gained a breakthrough in se-

quential mining. (Mikolov et al. 2010) develops RNNs in 

word embedding for sentence modeling. Multiple hidden 

layers in RNN  

 

Figure 2: The framework of the proposed DeepETA. The model 

inputs consist of time-variant route features and time-invariant 

features and the output 𝑦 
𝑖  is the delivery time of package 𝑎𝑖 at 

time 𝑡. 

 

can adjust dynamically with the input of behavioral history 

and the transition probabilities can be transmitted through 

the whole sequence. In this paper, the LSTM cells 

(Hochreiter and Schmidhuber 1997) are used to overcome 

the gradient vanishing or exploding problem of RNN. In 

delivery problem, locations are also important as the geo-

graphical distance decides the sequence of delivery. We 

develop a spatial encoder to vectorize the locations. 

 Spatial encoder: Locations in the delivery route have 

spatial correlations. Traditional methods use one-hot en-

coder to represent locations and manually extract the spa-

tial features, which may lose the information of distant 

areas. Recently, DNN and CNN are widely used (Zhang et 

al. 2018; and Shen et al. 2018) because they can automati-

cally extract the spatial relation. However, CNN needs to 

split the space into grids with the same height and width, 

which may cause the uncertainty granularity problem. If 

the size is too big, we cannot distinguish different ETAs in 

that large area. If it is too small, neighborhood may be di-

vided into several grids and regularity in same area may be 

lost. In this paper, we proposed a geocoding-based encoder 

to represent locations by their inherent geographical attrib-

utes. 
 We first utilize a road network based methods to split 
area into neighborhoods and use Geohash to represent the 
area by the centroid coordinate. Geohash is a geocoding 
system which encodes a geographic location into a short 
string of letters or digits and nearby places will often pre-
sent similar prefixes. The longer a shared prefix is, the 
closer the two places are. Furthermore, the digital represen-
tation of Geohash requires each bit to be either 0 or 1 that 
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can be utilized by the neural networks. First, location 𝑎𝑖 is 
transformed into Geohash encoding of 40 digits, namely 
𝐺  . Then an embedded layer is added to represent 𝐺   aim-
ing at reducing computation cost without losing much in-
formation, formulated as: 

 

Figure 3: The structure of the Latest Route Representation layer. 

The locations are encoded by the spatial encoder. Then features 

of each node in the delivery route are exported to a bidirectional 

LSTM layer. The outputs of the last cell of the backward layer ℎ 
𝑏 

and the forward layer ℎ 
𝑓
 are combined to form the latest route 

vector. 

 

   =  (  𝐺     ), (3) 

where    and    are learnable parameters of the spatial 

embedding layer and the Relu activation function is uti-

lized to add non-linearity. 

 BiLSTM: The LSTM cell is able to capture the temporal 

sequential dependency, which improves the weakness of 

gradient exploding and vanishing of traditional RNN. As 

compared with LSTM, bidirectional LSTM (BiLSTM) 

(Graves and Schmidhuber 2005) utilizes additional back-

ward information and thus enhances the memory capabil-

ity. In the latest route representation layer, we use BiLSTM 

to capture the transition probability of each node in the 

route and to infer delivery time by the hidden state vector 

of the last cell.  

 We concatenate the vectors of the spatial encoder    , 
with time-variant features   𝑣  and time-invariant features 

  𝑖 to get the global feature vector 𝑋 of each timestep, i.e., 

𝑋 = [   ,   𝑣 ,   𝑖] . A set of 𝑋  contained fixed length of 

time steps is fed into the BiLSTM layer. LSTM utilizes 

two gates to control the cell state. The forget gate decides 

how much information of the last cell state 𝑐 −1 will keep 

to the current time 𝑐 . The other is the input gate, which 

decides how much information of the input of the current 

networks 𝑋  will keep to cell state 𝑐 . LSTM uses the out-

put gate to control how much information of the cell state 

𝑐  will output to ℎ . Thus the conveyor belt-like structure 

allows LSTM to remove or add information from the very 

beginning to the current state. Then we get the latest hid-

den states ℎ 
𝑏  and ℎ 

𝑓
 of the forward and backward layer. 

Each of them can be calculated by ℎ = 𝐿𝑆𝑇𝑀(ℎ −1, 𝑋 ). 
Finally, these two states are concatenated to get the hidden 

state of the latest route ℎ = [ℎ 
𝑏 , ℎ 

𝑓
]. 

Frequent Pattern Encoder 

The frequent pattern encoder is designed to capture the 

frequent mobility patterns by jointly selecting the most 

related historical delivery routes under the current delivery 

status. The module consists of two parts. The route encoder 

first extracts spatial-temporal features from the historical 

delivery routes. Then these features are selected by an at-

tention-based layer based on the latest route vector to gen-

erate the most related pattern. By combining this vector 

with the latest route, we could predict the delivery time 

based on not only the sequential relation but also the fre-

quent pattern of the historical routes. 

 Route encoder: Although the LSTM cell improves the 

problem of gradient exploding and vanishing, the perfor-

mance of LSTM drops significantly when the length of 

time step is very long (Bengio, Simard, and Frasconi 

1994). Simply importing all historical routes into the recur-

rent layer may reduce the effectiveness and increase train-

ing difficulty. In neural machine translation, it suffers from 

similar problem that RNN cannot memorize long sentenc-

es. (Bahdanau, Cho, and Bengio 2014) develops the atten-

tion mechanism which can selectively maintain infor-

mation about the most relative word. Furthermore, atten-

tion is widely used in object recognition (Xu et al. 2015) to 

recognize the most interested area from the whole image. 

 Different from the attention mechanism, which requires 

the whole sentences, we design a route selector that ex-

tracts only the relative frequent patterns. Assuming that the 

latest route at time 𝑡𝑖  is    𝑡𝑒  ,  
  and the undelivered 

location set is 𝑆𝑒𝑡  ,  
 , we separately select the frequent 

patterns by the following rules: 

Delivered route pattern: Given the current location 𝑎𝑖 , 
the travel time of the latest delivery route 𝑡𝑖 and the pre-

dicted location 𝑎𝑖 , we find historical delivery routes that 

have the same current location and travel time, which will 

significantly reduce the scale of the candidates. Then we 

group these routes by the discrete delivery time bin (30 

min) of 𝑎𝑖 and find the top 10 most regular routes for each 

time bin, defined as ℋ𝑟𝑜𝑢 𝑒 in Eq. (2). The task is to find 

which historical route is the most similar to the current 

route. So we utilized LSTM cells to represent the frequent 

routes: 

ℋ̃t
k = LSTM(ℋ̃t−1

k ,ℋ𝑟𝑜𝑢 𝑒), (4) 
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where k  is the class of delivery time. ℋ̃t
k  is the context 

vector of all frequent routes that has 𝑘 delivery time and 

we compute the average value of all vectors in each time 

bin. Furthermore, statistic features such as the frequency of 

each time bin are concatenated with the context vector. 

To-be-delivered pattern: Different from the delivered 

route, the exact delivery order is unknown. So we use the  

 

Figure 4: The architecture of the frequent pattern encoder. This 

module has the same input with the network and is connected to 

the latest route module. The output is the representation of histor-

ical relative pattern. 

 

current location 𝑎𝑐, the number of locations in the delivery 

set 𝑛𝑖 and the predicted location 𝑎𝑖 to find historical to-be-

delivered sets. Similar with the above step, we group these 

sets by the same time bin as the delivered pattern module 

and 10 frequent sets are selected in each time bin, marked 

as ℱset. As the sequence of the current to-be-delivered lo-

cations is hard to predict, it is not proper to use sequential 

layer like LSTM. Instead, a DNN is developed to model 

the unordered set and reduce the impact from sequences: 

ℱ̃ 
 =    (ℱ̃ −1

 , ℱ𝑠𝑒 ), (5) 

 Pattern selector: The goal of the pattern selector is to 

find which frequent pattern has the biggest impact on the 

current situation. Traditional pattern mining methods uti-

lize similarity measurements such as the cosine similarity, 

Levenshtein distance, and the time dynamic wrapping. 

However, pattern mining methods may suffer from data 

sparseness problem and complex features cannot be 

weighted. An attention-based layer is designed to calculate 

the similarity between the latest route and the frequent 

routes. First, the frequent pattern vectors are combined 

with the latest route vector through a score function: 

 (ℋ̃ 
 , ℎ ) = 𝑡𝑎𝑛ℎ(ℋ̃ 

  𝑠𝑐𝑜𝑟𝑒ℎ ), (6) 

where ℋ̃ 
  or ℱ̃ 

  is the frequent pattern vectors,  𝑠𝑐𝑜𝑟𝑒  is a 

learnable parameter, and ℎ  is the latest route vector. Then 

all scored vectors are exported to the softmax layer to cal-

culate the weight of each vector. The softmax is the exten-

sion of the sigmoid function to the multi-class problem, 

which transforms the 𝐾 dimension variable into another 𝐾 

dimension variable within (0,1): 

 ( ) =
𝑒  

∑ 𝑒   
   

, (7) 

where  =  (ℋ̃ 
 , ℎ ) and 𝐾 is the total number of the de-

livery time bins. Finally, the value of the softmax is multi-

ply with the historical pattern vectors that can illustrate the 

importance of different patterns: 

 𝑓 = ∑( ( ) ℋ̃ 
 
), (8) 

Jointly Training and Prediction 

 The predicted delivery time of location 𝑎𝑖  at time 𝑡  is 

relative with the properties of packages in 𝑎𝑖 , the latest 

route features and the frequent patterns. We concatenate 

the outputs from the latest route module ℎ  and the fre-

quent pattern encoder  𝑓 , together with the time-invariant 

features   𝑖: 

�̃� = [ℎ ,  𝑓 ,   𝑖], (9) 

 Then �̃�  is fed into a fully connected layer to get the 

final prediction value �̃� : 

�̃� =  ( 𝑓𝑐�̃�   𝑓𝑐), (10) 

where  𝑓𝑐  and  𝑓𝑐  are learnable parameters and  (𝑥)  is 

the activation function of the last fully connected layer. 

The Sigmoid function defined as  (𝑥) = 1/(1  𝑒−𝑥)  is 

used to restrict the output in [0,1], as the prediction values 

are normalized. 

 The loss function consists of two parts: the mean square 

error (MSE) and the mean absolute percentage square error 

(MAPSE). MSE is like a combination measurement of bias 

and variance of the prediction but is sensitive to large pre-

diction values. However, in delivery task, there might be 

some cases that the customer is not at home and requires a 

second delivery which leads to large ETA. MAPSE gives 

less weight to outliers, which is not sensitive to outliers. So 

we decide to combine the advantages of MSE and MAPSE 

to make the prediction mainly focus on normal and small 

ETA to reducing the influence of outliers. There exists a 

jointly training trick by adding a hyper parameter to adjust 

the weight of MSE and MAPSE. The loss function is de-

fined as follows: 

 ( ) = ∑ ((�̃�  𝑦 )
   (

 ̃ −  

  
)
 

) 
𝑖 1 , (11) 

where   represents all learnable parameters in the whole 

network and   is the hyper parameter. All module in 

DeepETA is parameterized as a feed-forward neural net-
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work that can be trained in the whole network. During the 

training phase, the Adam optimizer (Kingma and Ba 2014) 

is used to minimize the loss function. 

Experiments 

Dataset Description 

The experiment is conducted on a real-world package de-

livery dataset collected by Cainiao Ltd., which is one of the 

largest logistics companies in China, handling over a hun-

dred million packages per day. The dataset contains the 

delivery routes of 331 couriers from Jun. 1, 2018 to Aug. 1, 

2018 (60 days), in Beijing, China. As shown in Table 1, 

each courier delivers 80 packages in 2 delivery routes eve-

ry day and the average working time is 8 hours. The aver-

age delivery time of all the packages is 3.5 hours. The av-

erage number of nodes in each delivery route is 20. Each 

sample of the dataset contains the static properties of pack-

ages, such as the location, weight, date, holiday and courier 

ID. Also the time-variant features, such as the latest route 

info. Each node in the route consists of the current loca-

tion, time, distance to the prediction location and delivery 

status. In total there are 350 thousand samples to be pre-

dicted. The previous 50 days are used as training set and 

the last 10 days as testing set. 

Evaluation Metric 

Mean Average Percentage Error (MAPE) and Rooted Mean 

Square Error (RMSE) are used to evaluate the proposed 

methods. MAPE can intuitively show the deviation be-

tween the prediction and the ground truth, and RMSE is 

the absolute value to show the performance of the model. 

Both of them are widely used in time series prediction 

problem, which are defined as follows: 

𝑀   =
1

 
∑

|�̂�𝑡
 −𝑦𝑡

 
|

𝑦
𝑡

 
 
𝑖 1 , (12) 

 𝑀𝑆 = √
1

 
∑ (�̂�

𝑡

  𝑦
𝑡

 
)  

𝑖 1 , (13) 

where �̂� 
 
 and 𝑦 

 
 are the prediction and the ground truth of 

the deliver time of location 𝑎  at time 𝑡, and   is the total 

number of samples. 

Methods for Comparison 

The proposed methods are compared with the following 

methods: 

 Linear regression (LR): We use Lasso (i.e., with ℓ1 -

norm regularization) as the linear regression method. 

XGBoost (Chen and Guestrin 2016): XGBoost is widely 

used in many machine learning problems and data science 

challenges and it always surpasses other traditional models. 

A common trick on utilizing traditional model in sequential 

data is to unfold the time series and concatenate each time 

step together. 

 Deep neural network (DNN): A neural network of four 

fully connected layers to extract the high level correlation  

Table 1. Statistics of the delivery status of each courier per day. 

Pkgs Route Nodes Time AvgDt 

80 2 20 8h 3.5h 

 

between the combining vectors. The number of hidden 

units are 128, 128, 64, and 32 respectively. 

LSTM: A stacked LSTM network to model sequential 

route features. The hidden units are 64 and 64.  

DeepTTE (Wang et al. 2018): A state-of-art network in 

travel time prediction which utilizes geo-convolutional 

layer to represent raw trajectories and uses a combination 

of the LSTM cell and attention mechanism to learn long-

term dependency of one route. We replace the convolution 

layer with our location vector and uses the default settings 

in the open source code. 

DeepMove (Feng et al. 2018): A state-of-art method in 

next destination prediction that has a recurrent layer to 

model current movement and uses attention mechanism to 

learn historical patterns. We modify the output softmax 

layer to a fully connected layer to make regression. 

 Furthermore, the effects of different modules in Deep-

ETA are evaluated. 

Latest route representation (BiLSTM): Only the latest 

route module is reserved to see the effectiveness of model-

ing sequential route through the BiLSTM. 

Frequent pattern encoder (BiLSTM+DP and BiLSTM 

+TP): In the frequent pattern encoder, both historical deliv-

ered patterns and to-be-delivered patterns that matter. First, 

only the delivered patterns are remained. Then we adapt 

the to-be-delivered patterns individually. 

Preprocessing and Parameters 

In the courier dataset, the average route length is 20 and 
90% of the routes have length larger than 50. Long se-
quence will significantly drop the accuracy and efficiency 
of the network. We use right padding method to normalize 
the route of a fixed length 20. When the length is over 20, 
only the latest 20 nodes are reserved. All missing values 
are replaced by -1.0 and are normalized to [0,1]. The de-
livery time is normalized by dividing 720 and delivery 
time over 720 minutes are all considered as 720. When 
evaluate, we multiply the normalized prediction by 720 to 
get the real delivery time in minutes. The batch size of 
each epoch is 1024 and the learning rate is 0.001. The hid-
den units in the BiLSTM are set to 64 and the LSTM cell 
in frequent route encoder is also 64. The class number of 
the delivery time in the route selector is 28 and the final 
output layer consists of two fully connected layers, which 
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has 64 and 32 units. We further conduct experiment to ad-
just the hyper-parameter in the loss functions: only RMSE, 
only MAPE and the combination. The experiment shows 
that the mix loss function reduces 10.8% error compared to 
single metrics.  

Table 2. The performance of different baselines and DeepETA. 

Methods RMSE (min) MAPE (%) 

LR 144.18 43.5 

DNN 127.58 37.4 

XGBoost 123.66 38.2 

LSTM 110.37 34.9 

DeepTTE 97.85 29.7 

DeepMove 72.43 24.3 

DeepETA 63.58 20.6 

 

Model Comparison  

Table 2 shows the performance of the proposed method 

compared to the baseline models. DeepETA achieves the 

lowest RMSE (63.58 minutes) and the lowest MAPE 

which improves the best performance of the baseline 

methods by 13.8% (RMSE) and 16.5% (MAPE). The Las-

so based linear regression performs poorly because it only 

utilizes the properties of time series and could not learn 

neither short-term or long-term dependencies. Regression 

methods such as DNN and XGBoost unfold sequential data 

into unordered vectors and can learn the co-occurrence of 

each time step, which achieve better performance. Simple 

LSTM network can extract the correlations from the be-

ginning of the route to the end. However, it suffers the 

long-term dependency problem when dealing long se-

quence. DeepTTE gains better performance than LSTM 

(11.8% improvement of RMSE) because it uses attention 

mechanism to enhance the ability of learning long se-

quences. Traditional methods only focus on modeling each 

route while DeepMove is designed to utilized historical 

frequent mobility, which lead to a significantly enhance 

(25.5% improvement of RMSE than DeepTTE). Our 

method DeepETA gains an improvement of 13.8% in 

RMSE than DeepMove. The main difference is that in the 

attention layer, DeepMove uses sampling method to extract 

high level features to represent historical trajectories and 

we develop a LSTM-based layer to extract the sequential 

features from raw routes. Meanwhile, we are more con-

cerned about the sequence of the undelivered set and spe-

cially design a DNN layer to focus on these features. 

Effectiveness of model components 

The latest route representation layer of DeepETA aims to 
extract sequential relations of the current route by BiLSTM 
cells. Purely rely on this layer, the performance outper-
forms the LSTM cell slightly (an improving of 6%). As 
shown in Figure 5a, when adding the frequent pattern en-

coder, the performance significantly increases. The deliv-
ered pattern encoder improves the RMSE by 36.5% com-
pared to BiLSTM only. The to-be-delivered pattern encod-
er has an improvement of 29.8% and the combination of all 
modules improves the overall performance by 3%, which 
makes the DeepETA to achieve the best score among base-
line models.  

 
(a) 

 
(b) 

Figure 5: (a) The effectiveness of the components of DeepETA. 

(b) The performance of predictions at different time. 

 
 The differences between the latest route and the frequent 
pattern encoders is that if we just put all historical routes 
into the model without any frequent patterns selected 
ahead, the results are poorly. The reason is that the LSTM-
based module may not memory the regularity among all 
historical routes and similar patterns may be lost. Deliv-
ered route and undelivered pattern are treated separately as 
we do not know the delivery sequence of undelivered 
packages and sequential features should not be considered 
in modeling undelivered pattern. As a result, we have two 
probability distributions drew differently from delivered 
and undelivered patterns. 

Performance of prediction at different time  

The goal of the delivery time prediction is to predict all the 
undelivered packages at any time and there exists a recom-
putation of estimating time after each package is delivered. 
With the processing of delivery, more current route infor-
mation can be inferred and the scope of undelivered sets 
can be reduced. It can be assumed that more accurate pre-
dictions can be made at the end of the delivery task. For 
example, if only one package is left, the delivery time can 
be easily inferred by the distance from the current location. 
Figure 5b illustrates the result of this assumption. The 
length of the current delivery route can be regarded as time 
step. During the training step, max length of 20 is used to 
pad the route. So we manually select route length of 1 (as 
soon as the package is delivered), 5, 10, 15, 20 (only one 
package is left to predict) and import them to the model. As 
shown in Figure 5b, the RMSE decrease significantly as 
the increasing of time step. At the beginning of the deliv-
ery, the prediction deviation is around 106 minutes. The 
frequent patterns are hard to find as the lack of current 
route information and the result is similar with using 
BiLSTM only. Then the prediction error drops harshly and 
achieves the minimum of 29 minutes at the end of the 
route. The less the remaining packages are, the more accu-
rate the model predicts because the uncertainty drops when 
there are less remaining packages. 
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Conclusion 

In this paper, we propose a deep spatial-temporal sequen-

tial model for estimating the package delivery time (Deep-

ETA). First, the latest route encoder embeds the location of 

packages that remain geographical relations and BiLSTM 

is used to model the sequential features. Then, the frequent 

pattern encoder selects the frequent routes from historical 

data and uses LSTM and DNN to represent the routes. An 

attention-based layer is developed to calculated the most 

similar patterns with the current route. Finally, by combin-

ing all these features, jointly training is utilized to mini-

mize the loss function. Experiments on real logistics da-

taset show that the proposed method overwhelms the start-

of-art methods and the effectiveness of three modules are 

illustrated. 

 In the future, we will extend our work in the following 

aspects. First, we use the unordered undelivered set as the 

sequence of the route is unknown. If the sequence of the 

route can be precisely predicted, the delivery time is easy 

to be inferred. Then, we predict the to-be-delivered pack-

ages at time 𝑡  separately. Inspire by the real-time neural 

machine translation and the sequence to sequence model, 

the model can predict the following multiple time steps at 

once without losing accuracy. 
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