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Abstract

State-of-the-art studies have demonstrated the superiority of
joint modeling over pipeline implementation for medical
named entity recognition and normalization due to the mutual
benefits between the two processes. To exploit these benefits
in a more sophisticated way, we propose a novel deep neural
multi-task learning framework with explicit feedback strate-
gies to jointly model recognition and normalization. On one
hand, our method benefits from the general representations
of both tasks provided by multi-task learning. On the other
hand, our method successfully converts hierarchical tasks into
a parallel multi-task setting while maintaining the mutual
supports between tasks. Both of these aspects improve the
model performance. Experimental results demonstrate that
our method performs significantly better than state-of-the-
art approaches on two publicly available medical literature
datasets.

Introduction
Due to the large amount of electronically-available medical
publications stored in databases such as PubMed, there has
been an increasing interest in applying text mining and infor-
mation extraction to the medical literature. Those techniques
can generate tremendous benefits for both medical research
and applications. Among the medical literature mining tasks,
medical named entity recognition and normalization are the
most fundamental tasks.

The goal of medical named entity recognition and nor-
malization is to find the boundaries of mentioning from the
medical text and map them onto a controlled vocabulary.
State-of-the-art studies have demonstrated the superiority of
joint modeling of medical named entity recognition and nor-
malization compared to the pipeline implementation due to
mutual benefits between them. There are two main limi-
tations of pipeline models: (1) errors from the recognition
tagging cascade into normalization errors, and (2) recogni-
tion and normalization are mutually useful to each other,
but pipeline models cannot utilize these potential benefits.
Joint modeling recognition and normalization can naturally
alleviate these limitations and achieve better performance.
For example, Leaman and Lu (2016) leveraged a joint scor-
ing function for medical named entity recognition and nor-
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malization. Lou et al. (2017) proposed a transition-based
model to jointly perform medical named entity recognition
and normalization, casting the output construction process
into an incremental state transition process. However, these
existing joint modeling methods (1) rely heavily on hand-
crafted features and task specific resources thus fail to en-
code complicated and general features such as character-
level and semantic-level features; (2) use simplistic ways to
jointly model medical named entity recognition and normal-
ization, which cannot provide essential mutual supports be-
tween these two.

To improve the joint modeling medical named entity
recognition and normalization (MER and MEN), we pro-
pose a novel deep neural multi-task learning (MTL) frame-
work with two explicit feedback strategies, which can make
use of the mutual benefits between recognition and normal-
ization in a more advanced and intelligent way. First, our
method benefits from general representations of both tasks
provided by multi-task learning, which enjoys a regulariza-
tion effect (Collobert et al. 2011; Ruder 2017) that leads to
more general representations to help both tasks. Specifically,
it minimizes over-fitting to any specific tasks, thus makes
the learned representations universal across tasks. Second,
our method can successfully convert hierarchical tasks into
a parallel multi-task setting while maintaining mutual sup-
ports between tasks. Although the general concept of deep
neural multi-task learning is not new, the innovation of our
method is that it incorporates both the feedback strategies
from the low-level task to the high-level task and vice versa,
as shown in Figure 1. These two feedback strategies ex-
ploit the output of entity recognition to improve entity nor-
malization and vice versa. In addition, our method uses Bi-
LSTM to boost the sequential modeling of text and CNN
to encode clues hidden in character-level features such as
Zolmitriptan, Zomig and Zomigon.

We evaluate our models across two corpora (the BioCre-
ative V Chemical Disease Relation (BC5CDR) task corpus
(Li et al. 2016) and the NCBI Disease corpus (Doğan, Lea-
man, and Lu 2014)) of medical articles and outperform the
state-of-the-art study by up to 4.53% F1 on medical named
entity recognition and 5.61% F1 on medical named entity
normalization.
Contribution. To make use of the mutual benefits in a more
sophisticated way, we propose a novel deep neural multi-
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Figure 1: From hierarchical tasks to parallel multi-task mode
by incorporating explicit feedback strategies among tasks.

task learning framework with explicit feedback strategies to
jointly model named medical entity recognition and normal-
ization. This method incorporates both the feedback strate-
gies from the low-level task to the high-level task and vice
versa, which makes it possible to convert hierarchical tasks,
i.e. MER and MEN, into parallel multi-task mode while
maintaining mutual supports between tasks.

Related Work
MER and MEN. Several existing studies typically run a
medical named entity recognition model to extract entity
names first, then run a medical named entity normaliza-
tion model to link extracted names to a controlled vocab-
ulary (Doan and Xu 2010; Sahu and Anand 2016). Such
decoupled approaches used pipeline models to implement
MER and MEN separately, leading to errors cascade and ab-
sence of mutual benefits. There has been a line of research
on joint modeling MER and MEN, which has demonstrated
the superiority over pipeline implementation. For example,
semi-CRF has been used for joint entity recognition and dis-
ambiguation (Luo et al. 2015). Leaman and Lu (2016) lever-
age a joint scoring function for MER and MEN. Leaman,
Wei, and Lu (2015) developed a chemical named entity rec-
ognizer and normalizer created by combining two indepen-
dent machine learning models in an ensemble. Lou et al.
(2017) propose a transition-based model to jointly perform
disease named entity recognition and normalization.

Methodology of NER. Traditional approaches to
NER include handcrafted features for Maximum Entropy
models (Curran and Clark 2003), Conditional Random
Fields (McCallum and Li 2003), and Hidden Markov Mod-
els (Klein et al. 2003). State-of-the-art neural NER tech-
niques use a combination of pre-trained word embeddings
and character embeddings derived from a convolutional neu-
ral network (CNN) layer or bidirectional long short-term
memory (Bi-LSTM) layer. These features are passed to a Bi-
LSTM layer, which may be followed by a CRF layer (Lam-
ple et al. 2016; Ma and Hovy 2016; Chiu and Nichols
2016). Strubell et al. (2017) proposed a faster alternative to
Bi-LSTMs for NER: Iterated Dilated Convolutional Neural
Networks (ID-CNNs), which have better capacity than tra-
ditional CNNs for large context and structured prediction.

Neural Multi-Task Learning. Multi-Task Learning is a
learning paradigm in machine learning and its aim is to
leverage useful information contained in multiple related

tasks to help improve the generalization performance of all
the tasks. It has been used successfully across many tasks of
NLP (Collobert et al. 2011). In the context of deep learning
for NLP, the most notable work was proposed by Collobert
and Weston (2008), which aims at solving multiple NLP
tasks within one framework by sharing common word em-
beddings. In recent years, the idea of neural deep multi-task
learning becomes popular to sequence-to-sequence prob-
lems with LSTM (Dong et al. 2015; Luong et al. 2016;
Liu et al. 2016; Augenstein and Søgaard 2017). There are
also a few studies which make use of multi-task learning
for biomedical named entity recognition, such as cross-type
biomedical named entity recognition (Wang et al. 2018)
and multiple independent tasks modeling with MER in-
volved (Crichton et al. 2017).

Problem Definition
This section gives formal definitions of the two tasks to be
investigated: MER and MEN.

Medical Named Entity Recognition
The medical named entity recognition (MER) task is to find
the boundaries of mentions from medical text. It differs from
general NER in several ways. A large number of synonyms
and alternate spellings of an entity cause explosion of word
vocabulary sizes and reduce the efficiency of dictionary of
medicine. Entities often consist of long sequences of tokens,
making harder to detect boundaries exactly. It is very com-
mon to refer to entities also by abbreviations, sometimes
non-standard and defined inside the text. Polysemy or am-
biguity is pronounced: proteins (normally class GENE) are
also chemical components and depending on the context oc-
casionally should be classified as class CHEMICAL; tokens
that are sometimes of class SPECIES can be part of a longer
entity of class DISEASE referring to the disease caused by
the organism or the specialization of disease on the patient
species. In this work, we follow the setup of the shared
subtasks of BioCreative. Given a sentence s, i.e., a word
sequence w1, ..., wn, each word is annotated with a predi-
cated MER tag (e.g., “B-DISEASE”). Therefore, we con-
sider MER as a sequence-labeling task.

Medical Named Entity Normalization
Medical named entity normalization (MEN) is to map ob-
tained medical named entities into a controlled vocabulary.
It is usually considered as a follow-up task of MER because
MEN is usually conducted on the output of MER. In other
words, MER and MEN are usually considered as hierarchi-
cal tasks in previous studies. In this paper, we consider MEN
and MER as parallel tasks. MEN takes the same input with
MER and have different output, i.e., for each word sequence
w1, ..., wn, MEN outputs a sequence of tags from a different
tag set. Therefore, we also consider MEN as a sequence-
labeling task with the same input with MER.

MER and MEN are not independent. MER and MEN are
essentially hierarchical tasks but their outputs potentially
have mutual enhancement effects for each other. Specifi-
cally, the output of MER, such as “B-DISEASE”, is a clear
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signal indicating the beginning of a disease entity, making
MEN to map the code of a disease. Conversely, the output
of MEN, such as “D054549-P” which is a disease code tag,
is very helpful to recognize it as a part of a disease named
entity.

Our Method
Medical named entity recognition and normalization (MER
and MEN) are hierarchical tasks and their outputs poten-
tially have mutual benefits for each other as well. Specifi-
cally, the output of MER, such as “B-DISEASE”, is a clear
signal indicating the beginning of a disease entity, leading to
reducing the searching space of MEN and vice versa. There-
fore, we propose to incorporate two explicit feedback strate-
gies into multi-task learning framework to model mutual en-
hancement effects between tasks 1. In addition, we exploit
Bi-LSTM to power the sequential modeling of the text and
CNN to encode clues hidden in character-level features such
as Zolmitriptan, Zomig and Zomigon.

Notation. We use x1:n to denote a sequence of n vectors
x1, ...,xn. Fθ(·) is a Bi-LSTM parameterized with param-
eters θ. We use FL(·) as a forward LSTM and FR(·) as a
backward LSTM with specific sets of parameters θL and θR.
MER(w1:n, i) is the function to represent medical named
entity recognition taking word sequence w1:n and index i as
input and output the corresponding named entity tag yiMER.
MEN(w1:n, i) is the function to represent medical named
entity normalization taking word sequence w1:n and index i
as input and output the corresponding controlled vocabulary
tag yiMEN . We use ◦ to denote a vector concatenation op-
eration. U and V are matrices to map the feedback of one
task to the other. In this paper, we denote scalars by lower-
case letters, such as x; vectors by boldface lowercase letters,
such as x; and matrices by boldface uppercase letters, such
as X.

CNN for Character-level Representation
Previous studies (Chiu and Nichols 2016) have shown that
CNN is an effective approach to extract morphological in-
formation (like the prefix or suffix of a word) from charac-
ters of words and encode it into neural representations. Fig-
ure 2 shows the CNN we use to extract character-level rep-
resentation of a given word. The CNN is similar to the one
in Chiu and Nichols (2016) except that we use only charac-
ter embeddings as the inputs to CNN, without character type
features. A dropout layer is applied before character embed-
dings are fed into CNN.

Sequence-labeling with Bi-LSTM
The extracted features of each word, including pre-trained
word embeddings from Word2Vec and character-level word
representation from CNN, are fed into a forward LSTM and
a backward LSTM. The output of each network at each time
step is decoded by a linear layer and a log-softmax layer into
log-probabilities for each tag category. These two vectors are
then simply added together to produce the final output.

1Our code is at GitHub (https://github.com/SendongZhao/Multi-
Task-Learning-for-MER-and-MEN).
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Figure 2: The CNN layer for extracting character-level
word representation of word Zomig (another name of the
DRUG Zolmitriptan and Zomigon). Dashed arrows indicate
a dropout layer applied before character embeddings are fed
into CNN.

We view LSTM as a parameterized function Fθ(x1:n)
mapping a sequence of n input vectors x1:n, xi ∈ Rdin to
output n vectors h1:n, hi ∈ Rdout . A Bi-LSTM is composed
of two LSTMs, denoted as functions FL and FR. One read-
ing the sequence in its regular order, and the other reading it
in reverse. Concretely, given a sequence x1:n and a desired
index i, the function Fθ(x1:n, i) is defined as:

Fθ(x1:n, i) = vi = hL,i ◦ hR,i

hL,i = FL(x1,x2, ...,xi)

hR,i = FR(xn,xn−1, ...,xi)

The vector vi = Fθ(x1:n, i) is then a representation of the
ith item in x1:n, taking into account both the entire history
x1:i and the entire future xi:n. Finally, in a deep Bi-LSTM,
both FL and FR are k-layer LSTMs, and F ℓ

θ (x1:n, i) = vi =
hℓ
L,i ◦ hℓ

R,i.
In a sequence tagging task, we are given an input

w1, ..., wn and need to predict an output y1, ..., yn, yi ∈
yi
1:|L|, where L is a label set of interest; i.e., in a medi-

cal named entity recognition task, L is the named entity tag
set, and yi is the named entity tag for word wi such as “B-
DISEASE”.

If we take the inputs x1:n to represent a sequence of sen-
tence words w1, ..., wn, we can think of vi = Fθ(x1:n, i) as
inducing an infinite window around a focus word wi. We can
then use vi as an input to a multi-class classification func-
tion f(vi), to assign a tag ŷi to each input location i. The
tagger is greedy: the tagging decisions are independent of
each other. Alternatively, we can also feed the output vec-
tors of Bi-LSTM to the CRF layer to jointly decode the best
tag sequence. Note that dropout layers are applied on both
the input and output vectors of Bi-LSTM.
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Figure 3: The main architecture of our neural multi-task learning model with two explicit feedback strategies for MER and
MEN. The character embedding is computed by CNN in Figure 2. Then the character representation vector is concatenated
with the word embedding before feeding into the Bi-LSTM. Dashed arrows from the left to the right is the feedback from MER
to MEN. Dashed arrows from the right to the left is the feedback from MEN to MER. Orange arrows indicate dropout layers
applied on both the input and output vectors of Bi-LSTM.

For a k-layer Bi-LSTM tagger for MER and MEN we get:

MER(w1:n, i) = yiMER = argmaxyi
MER

= fMER(v
k
i )

MEN(w1:n, i) = yiMEN = argmaxyi
MEN

= fMEN (vk
i )

vk
i = F k

θ (x1:n, i)

x1:n = E(w1), E(w2), ..., E(wn)

where E as an embedding function mapping each word
in the vocabulary into a d-dimensional vector, yi

MER is
the log-probabilities vector with the length of MER tag
space, yiMER is the output tag of MER, yi

MEN is the
log-probabilities vector with the length of MEN tag space,
yiMEN is the output tag of MEN, and vk

i is the output of
the kth Bi-LSTM layer as defined above. All the parameters
are trained separately for MER and MEN because we model
MER and MEN as different sequence labeling tasks.

Multi-task Mode with Explicit Feedback Strategies
The dependencies between MER and MEN inspire us to ex-
plore their potential mutual benefits. In order to make the
most of the mutual benefits between MER and MEN, we
propose to feed the above mentioned Bi-LSTM and its vari-
ants into multi-task learning framework with two explicit
feedback strategies, as shown in Figure 3. This method (1)
is able to convert hierarchical tasks into parallel multi-task
mode while maintaining mutual supports between tasks; (2)
benefits from general representations of both tasks provided
by multi-task learning; (3) is effective in determining bound-
aries of medical named entities through explicit feedback
strategies thus improves the performance of both MER and
MEN.

We experiment with a multi-task learning architecture
based on stacked Bi-LSTM, CNNs and CRF. Multi-task
learning can be seen as a way of regularizing model in-
duction by sharing representations with other inductions.

We use stacked Bi-LSTM-CNNs-CRF with task supervision
from multiple tasks, sharing Bi-LSTM-CNNs layers among
the tasks.

MER and MEN are hierarchical tasks and their outputs
potentially have mutual benefits for each other as well. It
means MEN can take MER results as input, while the re-
sults of MEN can be also useful for MER. However, MER
and MEN can be implemented independently as different se-
quence tagging tasks. Therefore, we 1) follow the popular
strategy of multi-task learning to share representations be-
tween MER and MEN; and 2) propose to use mutual feed-
back between MER and MEN, i.e., the result of MER is fed
into the MEN as part of the input and the result of MEN is
fed into the MER as part of the input. The multi-task learn-
ing with two explicit feedback strategies for MER and MEN
is defined as:

MER(w1:n, i) = yiMER = argmaxyi
MER

= fMER(v
MER
i )

MEN(w1:n, i) = yiMEN = argmaxyi
MEN

= fMEN (vMEN
i )

vMER
i = vk

i ◦ (vk
i + yi

MENU)

vMEN
i = vk

i ◦ (vk
i + yi

MERV)

vk
i = F k

θ (x1:n, i)

x1:n = E(w1), E(w2), ..., E(wn)

where fMER(v
MER
i ) is the MER multi-class classification

function and fMEN (vMEN
i ) the MEN multi-class classi-

fication function. vMER
i is the input of MER multi-class

classification function, which combines the output of the
shared stacked Bi-LSTM-CNNs and the explicit feedback
from MEN. vMEN

i is the input of MEN multi-class classi-
fication function, which combines the output of the shared
Bi-LSTM-CNNs and the explicit feedback from MER. U
is the matrix to map the feedback from MEN to MER, V
maps the feedback from MER to MEN. You can consider
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(vk
i +yi

MERV) as a modification according to the feedback
from MER, which could make vk

i a better vector to get the
correct label, the same as vk

i + yi
MENU.

In the multi-task learning setting, we have two prediction
tasks over the same input vocabulary space. These two pre-
diction tasks share k-layer Bi-LSTM-CNNs (i.e., hard pa-
rameter sharing). Each task has its own output vocabulary (a
task-specific tag set), but all of them map the length n input
sequence into a length n output tag sequence.

The Multi-task training protocol. We assume to sepa-
rate training set into T different subsets corresponding to T
different tasks. We label T different subsets as D1, ..., DT ,
where each Dt contains pairs of input-output sequences
(w1:n, yt1:n), wi ∈ W , yti ∈ Lt. The input sets of words
W is shared across tasks, but the output sets (tag set) Lt are
task dependent.

At each step in the training process we choose a random
task t, followed by a random training instance (w1:n, y

t
1:n) ∈

Dt. We use the tagger of task t to predict the labels ŷti , suffer
a loss with respect to the true labels yti and update the out-
put log-probabilities vector yt

i of w1:n as well as the model
parameters. If we choose MER at the very first step, we take
the feedback from MEN as a log-probabilities vector with
the initialization of each element having the same value 1

|Lt|
and vice versa, where |Lt| is the length of the tag set of task
t. Notice that a task t (eg. MER and MEN in this paper)
is associated with the stacked Bi-LSTM-CNNs. The update
for a sample from task t affects the parameters of ft and the
shared k-layer functions F 1

θ , .., F
k
θ , but not the parameters

of ft′ ̸=t. This asynchronous training protocol makes it pos-
sible to implement our model in distributed way. We tried a
synchronized way of training as well but did not lead to any
difference in results.

Experiments

Datasets

We evaluate the performance of the MTL models on two
corpora: BC5CDR task corpus (Li et al. 2016) and the
NCBI Disease corpus (Doğan, Leaman, and Lu 2014). The
BC5CDR corpus contains 1500 PubMed abstracts, which
are equally partitioned into three sections for training, de-
velopment and test, respectively. A disease mention in each
abstract is manually annotated with the concept identifier to
which it refers to a controlled vocabulary. The NCBI Dis-
ease corpus consists of 793 PubMed abstracts, which are
also separated into training (593), development (100) and
test (100) subsets. The NCBI Disease corpus is annotated
with disease mentions, using concept identifiers from ei-
ther MeSH or OMIM. Table 1 gives the statistics of the
two corpora. Due to the limit of the vocabulary of chemi-
cal, we only consider mapping disease mentions to a con-
trolled vocabulary of diseases. To map disease mentions to
MeSH/OMIM concepts (IDs), we use the Comparative Tox-
icogenomics Database (CTD) MEDIC disease vocabulary,
which consists of 9700 unique diseases described by more
than 67 000 terms (including synonyms).

Pre-trained word embeddings
We initialized the word embedding matrix with four types
of publicly available pre-trained word embeddings respec-
tively. The first is Word2Vec 50-dimensional embeddings
trained on the PubMed abstracts together with all the
full-text articles from PubMed Central (PMC) (Pyysalo
et al. 2013). The second is GloVe 100-dimensional em-
beddings trained on 6 billion words from Wikipedia
and web text (Pennington, Socher, and Manning 2014).
The third is Senna 50-dimensional embeddings trained
on Wikipedia and Reuters RCV-1 corpus (Collobert et
al. 2011). The fourth is the randomly initialized 100-
dimensional embeddings which are uniformly sampled from

range [−
√

3
dim ,+

√
3

dim ], where dim is the dimension of
embeddings (He et al. 2015).

Evaluation Metrics and Settings
We perform experiments for both medical named entity
recognition and medical named entity normalization. We
utilize the evaluation kit2 for evaluating model perfor-
mances. Metrics measured are concept-level precision, re-
call and F1.

Our single- and multi-task networks are 3-layer, Bi-
LSTM-CNNs with pre-trained word embeddings. For the
neural multi-task learning model, we follow the training
procedure outlined in Section . We use the word embed-
dings setup in Section . Character embeddings are initial-

ized with uniform samples from [−
√

3
dim ,+

√
3

dim ], where
we set dim = 30. We follow (Søgaard and Goldberg 2016)
in using the same dimension for the hidden layers. We use
a dropout rate of 0.5 and train these architectures with mo-
mentum SGD with the initial learning rate of 0.001 and mo-
mentum of 0.9 for 20 epochs.

Main Results
The first part of Table 2 illustrates the results of 5 previous
top-performance systems for (medical) named entity recog-
nition and normalization. Among these previous studies,
LeadMine and IDCNN are pipeline models, while Dnorm,
TaggerOne, and Transition-based Model are joint models.
From the first part, it is clear that the joint models perform
better than the pipeline models on both corpora. The sec-
ond part of the table presents comparisons of Bi-LSTM and
its variants for MER and MEN. Adding CRF layer on both
Bi-LSTM and Bi-LSTM-CNNs can not bring significant im-
provements. It might because the most of entity mentions in
our data sets are single-word entities, i.e., entity with one
word. CNN layer for char-level representation causes signif-
icant improvements on Bi-LSTM and its variants for both
MER and MEN. Bi-LSTM-CNNs and Bi-LSTM-CNNs-
CRF significantly outperform Bi-LSTM and Bi-LSTM-CRF
respectively, showing that character-level word representa-
tions are important for both recognition and normalization.
The improvents rely on two clues, 1) different medical enti-
ties usually have the same prefix and suffix, such as acetate,

2http://www.biocreative.org/tasks/biocreative-v/track-3-cdr
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Corpus # of Articles Entity Types and Counts
# of Disease Mentions # of Chemical Mention # of Concepts

BC5CDR 1,500 12,852 15,935 5,818
NCBI 793 6,881 0 1,049

Table 1: Overall statistics of BC5CDR and the NCBI.

Method NCBI BC5CDR
Recognition Normalization Recognition Normalization

LeadMine (Lowe, O’Boyle, and Sayle 2015) - - - 0.8612
Dnorm (Leaman, Islamaj Doğan, and Lu 2013) 0.7980 0.7820 - 0.8064
TaggerOne (Leaman and Lu 2016) 0.8290 0.8070 0.8260 0.8370
Transition-based Model (Lou et al. 2017) 0.8205 0.8262 0.8382 0.8562
IDCNN (Strubell et al. 2017) 0.7983 0.7425 0.8011 0.8107
Bi-LSTM 0.8075 0.7934 0.8060 0.8136
Bi-LSTM-CRF 0.8077 0.7933 0.8062 0.8136
Bi-LSTM-CNNs 0.8246 0.8059 0.8464 0.8447
Bi-LSTM-CNNs-CRF 0.8248 0.8061 0.8466 0.8449
MTL
+Bi-LSTM 0.8532 0.8435 0.8321 0.8440
+Bi-LSTM-CRF 0.8532 0.8436 0.8321 0.8442
+Bi-LSTM-CNNs 0.8647 0.8693 0.8632 0.8720
+Bi-LSTM-CNNs-CRF 0.8648 0.8693 0.8632 0.8722
MTL-MEN feedback
+Bi-LSTM 0.8574 0.8542 0.8419 0.8530
+Bi-LSTM-CRF 0.8575 0.8542 0.8420 0.8532
+Bi-LSTM-CNNs 0.8653 0.8706 0.8642 0.8813
+Bi-LSTM-CNNs-CRF 0.8654 0.8709 0.8645 0.8813
MTL-MER feedback
+Bi-LSTM 0.8637 0.8608 0.8474 0.8576
+Bi-LSTM-CRF 0.8638 0.8609 0.8477 0.8576
+Bi-LSTM-CNNs 0.8723 0.8731 0.8736 0.8821
+Bi-LSTM-CNNs-CRF 0.8725 0.8733 0.8739 0.8822
MTL-MEN&MER feedback
+Bi-LSTM 0.8699 0.8657 0.8538 0.8645
+Bi-LSTM-CRF 0.8699 0.8658 0.8539 0.8647
+Bi-LSTM-CNNs 0.8743 0.8823 0.8762 0.8917
+Bi-LSTM-CNNs-CRF 0.8743 0.8823 0.8763 0.8917

Table 2: F1 score of medical named entity recognition and normalization on two corpora.

acetone, antritis and pharyngitis. Modeling such character-
level information can benefit recognition; 2) different names
which refer to the same medical entity usually share the
same character fragments, such as Zolmitriptan, Zomig and
Zomigon. Modeling such character-level information can
benefit normalization.

From the third part of Table 2, we can see that MTL
framework with Bi-LSTM and its variants significantly out-
performs the pipeline use of Bi-LSTM and its variants,
which indicates the contribution of general representations
of MER and MEN provided by MTL. The fourth part and
fifth part of Table 2 present the improvements by incorpo-
rating the feedback from MEN and the feedback from MER.
Both feedback strategies can improve the performance of
MER and MEN on both corpora, but the feedback from
MER performs better. It makes sense because the original
order of task hierarchy is from MER to MEN. Therefore, it is
very natural that MEN needs more supports from MER than
MER needs from MEN. The last part of Table 2 presents the
results of Bi-LSTM and its variants in the MTL framework

with both feedback of MEN and MER. This feedback-based
MTL framework achieves the best result on each Bi-LSTM
based models, indicating it is the best MTL framework on
Bi-LSTM based models for MER and MEN.

Effect of Dropout
Table 3 compares the results with and without dropout lay-
ers for training sets. All other hyper-parameters and features
remain the same as our best model in Table 2. We observe
slightly improvements for the two tasks on both corpora. It
confirms the function of dropout in reducing over-fitting re-
ported by Srivastava et al. (2014).

NCBI BC5CDR
MER MEN MER MEN

No 0.8669 0.8713 0.8722 0.8821
Yes 0.8743 0.8823 0.8763 0.8917

Table 3: Results with and without dropout on two tasks (F1
score for both MER and MEN).
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Embedding Dimension NCBI BC5CDR
Recognition Normalization Recognition Normalization

Random 100 0.7532 0.7746 0.7665 0.7725
Senna 50 0.7944 0.8016 0.7911 0.7966
GloVe 100 0.7963 0.8042 0.8009 0.8062
Word2Vec 50 0.8743 0.8823 0.8763 0.8917

Table 4: Results with different choices of word embeddings on the two tasks (F1 score).

Influence of Word Embeddings

As mentioned in Section , in order to test the importance
of pre-trained word embeddings, we performed experiments
with different sets of publicly published word embeddings,
as well as a random sampling method, to initialize our
model. Table 4 gives the performance of three different word
embeddings, as well as the randomly sampled one. Accord-
ing to the results in Table 4, models using pre-trained word
embeddings achieve a significant improvement as opposed
to the ones using random embeddings. Both MER and MEN
rely heavily on pre-trained embeddings. This is consistent
with results of previous work (Huang, Xu, and Yu 2015;
Chiu and Nichols 2016).

For different pre-trained embeddings Word2Vec 50 di-
mensional embeddings achieve best results on both tasks.
This is different from the results reported by (Ma and
Hovy 2016), where Glove achieved significantly better
performance on NER than Word2Vec embedding. Senna
50-dimensional embeddings obtain similar performance
with Glove on MER and MEN, also significant behind
Word2Vec. One possible reason that Word2Vec is signifi-
cantly better than the other two embeddings on MER and
MEN is using domain related text for training embeddings.
Word2Vec embeddings were trained on PubMed abstracts
and the full-text articles. The other two embeddings which
were trained on other domain text, leading to vocabulary
mismatch of entities.

Boundary Inconsistency Error Analysis

Since we model MER and MEN as different sequence la-
beling tasks, the result of MER likely have different bound-
ary with the result of MEN. Table 5 compares the ratios of
boundary inconsistency of MER and MEN on each test set
of both corpora. It is clear that our proposed MTL frame-
work with two feedback strategies on MER and MEN can
significantly alleviate the boundary inconsistency of MER
and MEN thus improve the performance.

NCBI BC5CDR
Bi-LSTM-CNNs-CRF 0.0635 0.0563
MTL 0.0412 0.0383+Bi-LSTM-CNNs-CRF
MTL-MEN&MER feedback 0.0134 0.0114+Bi-LSTM-CNNs-CRF

Table 5: Ratios of the boundary inconsistency of MER and
MEN on two test sets.

OOV Entities Error Analysis
To better understand the behavior of our model, we per-
form error analysis on Out-of-Vocabulary words (OOV).
Specifically, we partition each data set into four subsets –
in-vocabulary words (IV), out-of-training-vocabulary words
(OOTV), out-of-embedding-vocabulary words (OOEV) and
out-of-both-vocabulary words (OOBV). A word is consid-
ered IV if it appears in both the training and embedding
vocabulary, while OOBV if neither. OOTV words are the
ones do not appear in training set but in embedding vocab-
ulary, while OOEV are the ones do not appear in embed-
ding vocabulary but in training set. An entity is considered
as OOBV if there exists at lease one word not in training set
and at least one word not in embedding vocabulary, and the
other three subsets can be done in similar manner. Table 6
presents the statistics of the partition on each corpus. The
embedding we used is pre-trained 50-dimensional embed-
dings in (Pyysalo et al. 2013), the same as Section .

Table 7 illustrates the performance of our best model on
different subsets of entities. The largest improvements ap-
pear on the IV and OOTV subsets of both the two corpora
on both tasks. This demonstrates that by feeding into multi-
task learning framework with explicit feedback, our model
is more powerful on entities that appear in pre-trained em-
bedding sets, which shows the superiority of our model to

NCBI BC5CDR
IV 987 5,421
OOTV 33 127
OOEV 16 33
OOBV 10 142

Table 6: Statistics of the partition on each test set. It lists the
number of unique entities.

NCBI BC5CDR
MER MEN MER MEN

Bi-LSTM-CNNs-CRF
IV 0.8451 0.8254 0.8738 0.8677
OOTV 0.8046 0.8094 0.8279 0.8354
OOEV 0.7776 0.8064 0.7835 0.7821
OOBV 0.7221 0.7354 0.6937 0.7223
MTL-MEN&MER feedback+Bi-LSTM-CNNs-CRF
IV 0.8931 0.9017 0.9042 0.9136
OOTV 0.8667 0.8753 0.8661 0.8832
OOEV 0.8053 0.8132 0.8163 0.82217
OOBV 0.7668 0.7713 0.7345 0.7804

Table 7: Comparison of performance of our model on differ-
ent subsets of entities (F1 score).
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make better use of pre-trained word embeddings and deal
with entities which do not appear in training set.

Conclusion
We study the practical valuable task of MER and MEN.
They are fundamental tasks in medical literature mining be-
cause many developments in this area are related to these
two tasks. Previous state-of-the-art studies have demon-
strated that the mutual benefits between medical named en-
tity recognition and normalization are very useful. To make
use of the mutual benefits in a more advanced and intelligent
way, we proposed a novel deep neural multi-task learning
framework with two explicit feedback strategies to jointly
model MER and MEN. Our method can convert hierarchi-
cal tasks, i.e., MER and MEN, into parallel multi-task mode
while maintaining mutual supports between tasks. Experi-
mental results indicate that our model outperforms previous
state-of-the-art studies.
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