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Abstract
Sufficient physical activity and restful sleep play a major
role in the prevention and cure of many chronic conditions.
Being able to proactively screen and monitor such chronic
conditions would be a big step forward for overall health.
The rapid increase in the popularity of wearable devices pro-
vides a significant new source, making it possible to track the
user’s lifestyle real-time. In this paper, we propose a novel
unsupervised representation learning technique called activ-
ity2vec that learns and “summarizes” the discrete-valued ac-
tivity time-series. It learns the representations with three com-
ponents: (i) the co-occurrence and magnitude of the activ-
ity levels in a time-segment, (ii) neighboring context of the
time-segment, and (iii) promoting subject-invariance with ad-
versarial training. We evaluate our method on four disorder
prediction tasks using linear classifiers. Empirical evaluation
demonstrates that our proposed method scales and performs
better than many strong baselines. The adversarial regime
helps improve the generalizability of our representations by
promoting subject invariant features. We also show that using
the representations at the level of a day works the best since
human activity is structured in terms of daily routines.

Introduction
Physical activity and sleep are crucial to health and well-
being. Requisite activity and sufficient sleep prevent vari-
ous illnesses such as diabetes (Warburton, Nicol, and Bredin
2006). Rise in chronic conditions, mainly due to aging and
unhealthy lifestyles, is putting our healthcare system under
stress. The current disorder screening approach requires sub-
jects to undergo various diagnosis steps, involving question-
naires and polysomnography (PSG). With increasing popu-
larity of wearable devices like Fitbit, which collect detailed
data about the body’s movements, there is an increased in-
terest in using actigraphy for detecting sleep-related disor-
ders and tracking longitudinal changes in the subject’s con-
dition. Although much lower fidelity than clinical devices,
availability of wearables provides a novel opportunity, ow-
ing to its non-intrusive and real-time capabilities; specifi-
cally, if we can develop techniques to extract information
from the vast amounts of body-monitoring data. Such tech-
niques could be useful to assist healthcare professionals as
well as help monitor behavioral therapy, e.g., exercise.
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Only a minuscule proportion of the population has both their
clinical data and wearables data available. Thus a purely su-
pervised approach utilizing the wearables-clinical data cor-
pus is sub-optimal since it renders the activity data from
a majority of subjects redundant. Hence, any approach to-
wards using activity signals should utilize the unsupervised
learning. Second, an important aspect is that information in
actigraphy signals depends on the subjects and their envi-
ronments, such as their routines and surroundings (Storm,
Heller, and Mazzà 2015) along with measurement errors ow-
ing to device design. We propose a two-pronged approach.
First, a mapping of the temporal relations of the activities
from the time-series to a feature space should be learned.
Second, this feature space should take into account the sub-
ject’s environment, and make the representations invariant
to the subject and their environment.
We propose a new method that addresses these challenges.
Our activity2vec method is an unsupervised representation
learning model that learns distributed representations for
activity signals spanning over a time segment (e.g., at a
day level) in a subject invariant manner. We use two public
data-sets to evaluate our approach against baselines on four
disorder prediction tasks. Using a linear classifier (logistic
regression), we show our proposed representation learning
method outperforms the baseline time-series methods, with
day-level representations performing the best. The linear
classifier with our learned features performs at par with the
convolution neural network baseline trained end-to-end on
the tasks. We also demonstrate the effectiveness of inducing
subject invariant features.

Unlike traditional time-series methods, our feature vec-
tors can be used to boost the performance of the supervised
learning models. It has been shown that using pre-trained
vectors to initialize the supervised models produces better
performance (Hinton et al. 2012). Our method is general
enough to be applied to other domains with similar time-
series like activity tracking through smart-phones, traffic
monitoring, or other sensor data. Specifically, we make the
following contributions:

• Unsupervised scalable embeddings for activity time-
series: To utilize enormous unlabeled human activity data,
we propose a novel unsupervised representation learning
method activity2vec that uncovers activity patterns through
distributed representation in a scalable fashion, which can
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Figure 1: Activity time-series for a subject over a week.

be leveraged towards prediction tasks.
• A hierarchical model of representation: One of the per-
sistent challenges in the time-series domain is the selection
of time-segments granularity that serve as the primary analy-
sis units. We explore learning representations at various lev-
els of time granularity. We devise a novel algorithm that op-
timizes two different measures to capture local and global
patterns in the activity time-series, along with an ordinal loss
to account for the natural ordering in the activities.
• Subject-invariant representations: The noise from the
subjects environments can hinder generalization. In order to
make the representations invariant to subject environments,
we train our representations with a subject invariance loss.

Related Work
• Human activity for health informatics: Wearable sen-
sors have mostly been used for human activity recogni-
tion (HAR) task in machine learning (Bulling, Blanke, and
Schiele 2014; Alsheikh et al. 2016), while medical practi-
tioners perform a manual examination on the actigraphy data
for diagnosing mostly sleep-disorders (Sadeh 2011). Recent
works have tried using actigraphy data for quantifying sleep
quality using deep learning (Sathyanarayana et al. 2016) or
for actively monitoring human behavioral patterns (Althoff
et al. 2017). The novelty of our method is that we propose
task-agnostic models rather than plain supervised learning.
• Representation learning: Bengio, Courville, and Vin-
cent provide an overview of representation learning, used
to construct a space that is discriminative for downstream
tasks. It is based on ideas of better network convergence
by adding (unsupervised) pre-trained vectors that encode
the mutual information between the input features (Good-
fellow, Bengio, and Courville 2016). Recently, the area has
made enormous progress in NLP, vision, and speech (Col-
lobert et al. 2011; Hinton et al. 2012). Of particular in-
terest are the distributed bag-of-words (DBOW) architec-
tures (Mikolov et al. 2013; Grover and Leskovec 2016; Saha
et al. 2017) optimized to predict the context of the struc-
ture, unlike continuous-bag-of-words (CBOW) that predicts
the structure from its context. In a similar fashion, we use
DBOW to capture local patterns in a time segment. Our nov-
elty lies in integrating it in an adversarial setting (Ganin et al.
2016) with an unsupervised predictor, consisting of DBOW
with global context and ordinal constraints.
• Time series analysis literature: These methods mainly
use pair-wise similarity concept to perform classifica-
tion (Bagnall et al. 2017) and clustering tasks, with

a distance metric like Euclidean. Dynamic Time Warp-
ing (Berndt and Clifford 1994) is a widely used technique for
finding similarity between two time-series which is compu-
tationally expensive due to its pair-wise similarity approach.
This has led to the creation of symbolic representation tech-
niques like SAX (Lin et al. 2007) and BOSS (Schäfer 2015),
that convert time-series into a symbolic sequence based on
amplitudes or frequency analysis, respectively. SAX-VSM
and BOSS-VS (Schäfer 2016) use tf-idf (term frequency-
inverse document frequency) transformation of these sym-
bolic sequences to get vector representation of sequence
windows. HCTSA (Fulcher and Jones 2014) is an unsuper-
vised time-series feature extraction engine with over 7800
feature space based on frequency-domain and time-domain
analysis of the time-series, unlike the above supervised vec-
tor space models. These time-series models, however, can-
not complement the supervised learning model, unlike our
model’s embeddings that can be used to initialize the archi-
tectures with back-propagation like neural networks.

Our Approach
In this section, we describe our method activity2vec. We first
describe challenges, followed by the model components that
address these challenges.

Challenges for activity2vec
To create a representational schema for activity time-series,
the first natural challenge is determining the right granu-
larity of the analysis unit. For example, consider the sample
time-series in Figure 1, where the x-axis represents the time
in 30 seconds epochs and the y-axis represents the activity
levels, which in our setting are discrete values ranging from
0 to 5000. Learning representations for each activity level
might result in sparse vectors that are too fine-grained to be
effective in the downstream tasks. Similarly, learning a rep-
resentation with too big an analysis unit (e.g., spanning a
week) could result in generic vectors lacking required dis-
criminative power. As we demonstrate in our experiments,
the right level of granularity is somewhere in between (a day
span). Within the analysis units, the relative magnitude of
the signal values (e.g., ‘10’ < ‘15’) should accounted for.

Considering granularity of analysis unit shorter than the
sequence length posits another challenge – how to cap-
ture the global contextual dependencies between the units.
Since the units are parts of a sequence that describes a per-
son’s activity over a timespan, they are likely to be inter-
dependent which should be captured in the representations.
The same activity can look very different across the subjects
owing to subject-specific noise and environment, e.g., how
they wear the device on their wrist. Our activity2vec model
addresses these challenges as described in the next section.

Problem Formulation and Time Granularity
Let S = {S1, S2, · · · , SN} denote a set of activity se-
quences for P unique subjects, where each sequence Sn =
(t1, t2, . . . , tl) is l-length activity (e.g., step counts) for a
subject p over a time period (a week here). Let g ∈ {30
sec, 1 hour, 1 day, 1 week} specify the granularity we want
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Figure 2: Graphical flow of activity2vec’s components: encoder E (embedding matrix), regularized predictors F, and the subject
discriminator D. Figure on left shows the sub-losses of the three components, while figure on right shows the overall schema
of a three-player game between F, D, and E. First, segmentation is done based on the time granularity. For a selected segment
Tk, its embedding Φ(Tk) is first looked up from E. The embedding is then used by the predictors in F and the discriminator
D. The encoder E plays a cooperative game with F to allow it to induce the necessary information. E also plays an adversarial
min-max game against D to prevent it from identifying the subject from the embedding to promote subject invariance.

to encode. We first break each sequence Sn into K consecu-
tive time segments of equal length based on g (top of Figure
2). Let Tk = (ta, ta+1, . . . , ta+L−1) ∈ T be such a seg-
ment of length L that starts at time a. Our aim is to learn a
mapping function Φ : T → Rd to represent each time seg-
ment Tk by a d dimensional representation. Equivalently, if
we represent each time segment in the dataset with a unique
identifier (ID), the mapping function Φ is a lookup opera-
tion on an embedding matrix of a single hidden layer neu-
ral network with non-linear activations. Our goal is to learn
the embedding matrix by considering the segment’s content
and context while promoting subjective invariance. Sn can
be obtained by concatenating (or averaging) theK segment-
level vectors; we use concatenation. In this work, we con-
sider the following time spans for a comparative analysis:

• Sample (sample2vec): representation for each 30-
second sample. Our 20,160 length time-series yields a rep-
resentation space of R20160×d.

• Hour (hour2vec): representation for one-hour chunks,
producing a vector space of R168×d.

• Day (day2vec): embeds time-series at the level of a day
span, giving us a representational space of R7×d.

• Week (week2vec): provides embeddings at the scale of
a week, yielding a vector in Rd space.

For a given granularity level, activity2vec learns the map-
ping function Φ. While it is possible to use a pre-processing
step with change-points detection (CPD) to get the time-
segments instead of manually setting the granularity, this
step needs careful adjustments to set the thresholds for CPD
models adding to further complexity of the model. In prin-
ciple, we can have a space search over the possible granu-
larities instead of using the pre-defined set above. We skip
that step in this work for the sake of simplicity. Instead, we

demonstrate the model’s behavior for the choice of granu-
larities that are intuitive to humans. Figure 2 presents the
graphical flow of activity2vec.
Our model relates to the sequential methods like LSTM by
taking into account the global temporal dependencies. Con-
sidering the inter-segment and intra-segment context is anal-
ogous to a shallow auto-encoder with very dense localized
connections and sparse neighboring connections. While we
leverage the discrete valued nature of our time-series, we
can apply this method to continuous valued time-series by
discretization, as done in the traditional time-series litera-
ture. The adversarial setting motivated by the environmen-
tal noise, which might not apply to other domains. We first
present the loss components, and then the combined loss.

Modeling Segment Content in activity2vec
We use two loss functions in activity2vec to capture the con-
tent of a segment – the ordinal relation between time-series
values and their co-occurrence patterns.

Segment-Specific Loss We use the segment-specific loss
to learn a representation for each time segment by pre-
dicting its own values. Given an input sequence Tk =
(ta, ta+1, . . . , ta+L−1), we first map it to a unique vector
Φ(Tk) by looking up the corresponding vector in the shared
embedding matrix Φ. We then use Φ(Tk) to predict each
symbol tj sampled randomly from a window in Tk. How-
ever, using a softmax layer for the prediction is very compu-
tationally expensive. To compute the prediction loss in an ef-
ficient manner, we use Noise-Contranstive Estimation (Gut-
mann and Hyvärinen 2012) as an alternative to softmax:

Ls(Φ,Ws|Tk, tj) = − log σ(w>tjΦ(Tk)) (1)

−
M∑
m=1

Etm∼ν(t) log σ(−w>tmΦ(Tk))
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where σ is the sigmoid function defined as σ(x) = 1/(1 +
e−x), wtj and wtm are the weight vectors associated with
tj and tm symbols, respectively, ν(t) is the noise distribu-
tion from which negative example tm is sampled, and M is
the number of negative examples sampled for each positive
example. In our experiments, we use unigram distribution as
the noise distribution with M = 12.

Since we ask the same segment-level vector to predict its
symbols, the model captures the overall pattern of a seg-
ment. Note that except for sample2vec, the model learns
embeddings for both segments and symbols. A segment-
based approach is commonly used in the time-series anal-
ysis, though among the representational models only mod-
els like SAX-VSM (Senin and Malinchik 2013) look at the
co-occurrence statistics, with a bag-of-words assumption.

Ordinal Regression Loss When predicting an activity
symbol, the segment-specific loss above treats each symbol
independently. However, since the symbols represent activ-
ity levels, there is a natural ordering in their values (e.g., ‘5’
> ‘1’), which should be preserved in representations. In or-
der to embed this ordinal relation, we use ordinal regression
loss while learning the representation for each activity value:

Lo(Φ, θ,wo|tj) = −
V∑

c=1

I(tj = c) log
[
σ(θc −w>o Φ(c))

− σ(θc−1 −w>o Φ(c))
] (2)

where σ(x) is the sigmoid function as defined before, I is
the indicator function, and V is the number of distinct dis-
crete values that time-series can take (0-5000 in our case).
Here, σ(θc −w>o Φ(c)) = p(tj ≤ c|Φ(c)) is the cumulative
probability of tj being at most c with θc being the ordered
threshold for the regression, such that θj > θi, ∀j > i.
Remark: In principle, we can integrate the ordinal relation
in Equation 1 with the NCE loss. However, owing to the hi-
erarchical nature of our algorithm, the segment ID is also
predicted while learning the symbols and segments repre-
sentations. Since these segment-level IDs do not have an or-
dinal relation with the symbol IDs, we resort to using an
ordinal loss applicable only to time-series symbols.

Modeling Segment Context in activity2vec
Loss functions presented above capture local patterns in a
segment. However, since the segments are contiguous and
describe activities of a person, they are likely to be related.
For example, after a strenuous activity, there might be lighter
activity periods. Likewise, one can expect a smooth tran-
sition from one segment to the next. The algorithm should
capture relations between proximal segments. With this mo-
tivation, we use two loss functions to model this relationship.

Neighbor Context Loss Similar to activity symbols, each
segment in the dataset is assigned a unique identifier that
we can use to look up its corresponding vector in the em-
bedding matrix or to predict the segment ID. We first for-
mulate the relation between neighboring segments by ask-
ing the current segment vector Φ(Tk) (i.e., looked-up vector
for segment Tk) to predict its neighboring segments in the
time-series: Tk−1 and Tk+1. If Ti is a neighbor to Tk, the

neighbor context loss is the neighbor prediction task using
NCE as before:
Lnc(Φ,Wnc|Tk, Ti) = − log σ(w>Ti

Φ(Tk)) (3)

−
M∑
m=1

ETm∼ν(T ) log σ(−w>Tm
Φ(Tk))

where, wTi
and wTm

are the weight vectors associated with
Ti and Tm segments, respectively. The noise distribution
ν(T ) is as described before over segment IDs.

Smoothing Loss While the previous objective attempts to
capture neighborhood information, we also hypothesize that
there is a “continuity” between neighboring segments. The
learning algorithm should discourage any abrupt changes in
the representation of proximal segments. We apply smooth-
ing between the neighboring segments by minimizing the l2-
distance between representations of the neighbors:
Lr(Φ|Tk,N (Tk)) =

η

| N (Tk) |
∑

Tc∈N (Tk)

‖Φ(Tk)−Φ(Tc)‖2

(4)

where N (Tk) is the set of time-segments in proximity to
Tk and η is the smoothing strength parameter. Note that the
smoothing loss is not applicable to week2vec.

Modeling Subject Invariance in activity2vec
One challenge in dealing with human activity data is that it
heavily depends on the subject’s environment. To promote
subject invariance, we use an adversary loss (Ganin et al.
2016). Let P be the number of unique subjects. We use a
multi-class classifier as a discriminator to predict the time-
segment’s source (subject) s ∈ {1, . . . , P} from the encoded
segment representation Φ(Tk). In other words, the discrim-
inator tries to identify the subject from whose activity time-
series the encoder (the embedding matrix) has derived the
segment’s representation. Note that we want to emphasize
the invariance from the source subject of the time-segment
and not from the particular sequence from which the seg-
ment is derived. Hence, if we have multiple sequences for
the same subject, the sequences will share the same subject
s in our model. Formally, the discriminator is defined by a
soft-max:

p(s = p|Φ(Tk),U) =
exp(uTp Φ(Tk))∑
p′ exp(uTp′Φ(Tk))

(5)

where up is the weight vector associated with subject p, and
U defines all the parameters of the discriminator. We use a
cross-entropy loss to optimize the subject discriminator:

Ld(U|Φ, Tk, s = p) = −
P∑
s=1

I(s = p) log p(s = p|Φ(Tk),U) (6)

where p is a subject from whom the segment Tk is encoded.
With a goal to promote subject invariance, we put the en-
coder (the embedding matrix) in adversary with the discrim-
inator. The encoder attempts to encode features that are in-
distinguishable to the subject discriminator by minimizing
(negative of discriminator loss):

La(Φ|U, Tk, s = p) =
P∑
s=1

I(s = p) log p(s = p|Φ(Tk),U) (7)
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Combined Loss for activity2vec
We define our activity2vec model as the combination of the
losses described in Equations 1, 2, 3, 4, and 7:

L(Φ) =

N∑
n=1

∑
Tk∈Sn

∑
tj∈Tk

Ti∈N (Tk)

[
Ls(Φ,W|Tk, tj) + βLo(Φ, θ,wo|tj)︸ ︷︷ ︸

Segment Content

+

Lnc(Φ,W|Tk, Ti) + Lr(Φ|Tk,N (Tk))︸ ︷︷ ︸
Segment Context

+λLa(Φ|U, Tk, s)︸ ︷︷ ︸
Adversarial

]
(8)

where β > 0 and λ > 0 are the relative weights for the or-
dinal regression loss and the subject invariance loss, respec-
tively. Concurrently, we also minimize the discriminator loss
in Equation 6. As shown at the right in Figure 2, the training
of activity2vec involves an optimization game between three
players: the encoder (E), the combined predictor (F), and the
discriminator (D). E plays a cooperative game with F to al-
low it to induce the necessary information. E also plays an
adversarial min-max game against D to prevent it from iden-
tifying the subject from the encoded vector to promote sub-
ject invariance. We train our model using stochastic gradient
descent (SGD).

The main challenge in adversarial training is to balance
the two components – the combined loss in Eq. 8 vs. the
discriminator loss in Eq. 6, as shown (right) in Figure 2. If
one player becomes smarter, its loss to the shared encoder
(embedding matrix) overwhelms, and the training fails to
converge (Arjovsky, Chintala, and Bottou 2017). In our ex-
periments, the discriminator converges much faster. To sta-
bilize the training, we update the discriminator once every
five gradient steps of the algorithm, chosen randomly. Also,
we follow the weighting schedule proposed by (Ganin et al.
2016, p. 21), that initializes λ to 0, and then changes it grad-
ually to 1 as training progresses. Through our experiments
we demonstrate that the intuitions captured by the compo-
nents are synergistic since they improve the performance in-
crementally as the components are added.

Experimental Settings
In this section, we describe experimental settings —
datasets, the prediction tasks on which we evaluate the em-
beddings, the baselines models, and parameter selection.

Datasets
We use Study of Latinos (SOL) (Sorlie et al. 2010) and
Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al.
2002) datasets. SOL has physical activity and clinical data
for 1887 subjects, while MESA only has activity data for
2237 subjects. This simulates the scenario where disorder
condition labels are available only for a portion of users.
These datasets contain activity data (actigraphy) from each
subject for a minimum of 7 days measured with wrist-worn
Philip’s Actiwatch Spectrum. The time-series for each sub-
ject is sampled at a rate of 30 seconds. Actigraphy records
the mean activity count reported with ZCM (Zero Crossing
Mode) per 30 seconds, providing us with a signal that can
only take integer values. This makes embedding the input
symbols straightforward, without any pre-processing. The

few missing values (< 1%) observed in the data-set were
replaced by unknown (UNK) token. The datasets are not
skewed with respect to the class distribution of different pre-
diction tasks described next.

Prediction Tasks
We evaluate the effectiveness of the learned embeddings on
the following health disorder prediction tasks:

• Sleep Apnea: Sleep apnea syndrome is a sleep disorder
characterized by reduced respiration during the sleep time.
We use the Apnea-Hypopnea Index (AHI) at 3% desatura-
tion level with AHI<5 being characterized as non-apneaic,
while AHI > 5 indicating a mild-to-severe-apnea.

• Diabetes: Diabetes (type 2) is the body’s insensitivity
to insulin, leading to elevated levels of blood sugar. Task
is defined as a three-class classification problem, to decide
whether a subject is a non-diabetic, pre-diabetic, or diabetic.

• Hypertension: Hypertension refers to abnormally high
levels of blood pressure, an indicator of stress. Hyperten-
sion prediction characterizes a binary classification problem
for increased blood pressure.

• Insomnia: Insomnia is a sleep disorder characterized by
an inability to fall asleep easily, leading to low energy lev-
els during the day. We use a 3-class prediction problem for
classifying subjects into non-, pre- and insomniac groups.

Baseline Models
We compare our method with a number of naive baselines
and existing systems that use time-series representations:
(a) Majority Class: This baseline always predicts the class
that is most frequent in a dataset.
(b) Random: This baseline randomly picks a class label.
(c) SAX VSM: SAX-VSM (Senin and Malinchik 2013)
uses SAX, one of the most widely used time-series repre-
sentation technique.
(d) BOSS: BOSS (Schäfer 2015) is a symbolic representa-
tional learning technique that uses Discrete Fourier Trans-
form (DFT) of time-series windows. BOSS creates equal
sized bins from histograms of DFT coefficients, which are
then assigned representational symbols. Labels are assigned
based on the class that gets the highest similarity score using
nearest neighbor approach.
(e) BOSSVS: BOSS in Vector Space (Schäfer 2016) is sim-
ilar to SAX-VSM and creates vector space representation of
the time-series from BOSS. BOSS is known to be one of the
most accurate methods on standard time-series classification
tasks, with BOSS-VS performing marginally lower.
(g) CNN: We use a Convolutional Neural Network (CNN)
with Conv-ReLU-AvgPool-BatchNorm-Dropout layers for
supervised prediction. We add layers until we get no per-
formance improvement on held-out set.
(h) HCTSA: Highly Comparative Time-Series Analy-
sis (Fulcher and Jones 2014) is a time-series feature extrac-
tion engine with over 7800 features extracted with frequency
and time domain analysis like Kurtosis. Unlike the time-
series baselines above, this is an unsupervised method —
most relevant baseline to our method.
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Table 1: F1 and Speed relative to wall clock time of our day2vec+Reg+O+A. O refers to Ordinal and A to Adversarial.

Method Clf. Sleep Apnea Diabetes Insomnia Hypertension Speed

F1 F1-macro F1-micro F1-macro F1-micro F1

Su
pe

rv
is

ed

Majority 0-R 00.0 21.7 31.9 47.4 25.5 00.0 -
Random 33.9 34.3 31.3 36.2 30.0 33.4 -
SAX-VSM 00.0 38.6 24.3 47.4 25.5 00.0 -
BOSS 17.6 38.9 31.5 49.8 34.9 29.6 -
BOSSVS 11.7 40.1 32.7 47.5 33.1 31.3 -
Task-specific CNN 41.5 45.2 41.0 50.7 40.1 36.6 2.0x

U
ns

up
er

vi
se

d

sample2vec LR 36.7 40.0 36.7 42.4 35.3 39.4 -
hour2vec LR 30.0 41.4 33.3 44.6 28.5 24.4 -
hour2vec+Reg LR 20.5 42.1 32.0 43.5 28.7 23.1 -
day2vec LR 36.8 40.9 38.0 45.2 35.8 40.3 0.3x
day2vec+Reg LR 38.9 41.8 39.5 46.6 39.7 43.4 0.3x
week2vec LR 14.5 40.6 34.1 44.2 31.5 18.7 -
HCTSA LR 20.3 40.0 35.0 46.7 33.7 22.0 8.2x
LSTM LSTM 32.2 41.4 33.3 46.1 30.4 37.8 10.5x
day2vec+Reg+O LR 40.5 45.3 40.2 50.9 40.3 43.6 0.4x
day2vec+Reg+O+A LR 43.6 45.8 42.5 55.7 41.4 44.1 1.0x

(i) LSTM: We train an LSTM based unsupervised model
similar to (Sundermeyer, Schlüter, and Ney 2012) that learns
to encode sequences by predicting next time-series value (as
a language model in NLP). Next, we use this pre-trained net-
work to initialize the LSTM network that is further trained
on the supervised learning tasks.

Variants of activity2vec (a) Unregularized models: This
group of models contain only two NCE loss components
from Equation 8: Ls and Lnc. In the Results section,
we refer to these models as sample2vec, hour2vec,
day2vec, and week2vec.
(b) Regularized models: We add smoothing loss Lr to
models in (a). This group includes hour2vec+Reg and
day2vec+Reg. We omit sample2vec+Reg since it
performed extremely poorly on all the tasks. Recall that
smoothing is not applicable to week2vec.
(c) Ordinal loss model: We use ordinal loss Lo with these
models. We add this loss to day2vec+Reg model in (b),
our best performing model as discussed in the next section.
We omit other time-unit models for brevity.
(d) Adversarial model: These models use the adversary
loss La for our day2vec+Reg with ordinal loss.

Hyper-Parameter Selection
We use 80%,10%,10% split for train, validation, and test
sets repeated 10 times, and we report the mean scores. As
mentioned earlier, we only have the disorder task labels
for the SOL dataset. For the supervised models we only
use the SOL dataset, while for the unsupervised models we
use the combined SOL and MESA data. The embedding
size of d=100 was fixed for all the models. The weighting
parameters λ and β were chosen to be 0.05 and 0.5, re-
spectively. The remaining hyper-parameters in activity2vec
are: window size (w) for segment-specific loss, number of
neighboring segments (|N (Tk)|) and regularization strength
(η) for day2vec and hour2vec. We tuned for w ∈
{12, 20, 30, 50, 100, 120, 500}, η ∈ {0, 0.25, 0.5, 0.75, 1},
and |N (Tk)| ∈ {2, 4} on the development set. We chose w
of size 20, 20, 30, and 50 for sample2vec, hour2vec,
day2vec, and week2vec, respectively. The η of 0.25 and
0.5 were chosen for day2vec and hour2vec, respec-

tively. The neighbor set size of 2 was chosen. For the CNN
baseline, 3, 4, 3, and 3-layered network were used for sleep-
apnea, diabetes, insomnia, and hypertension, with a dropout
of 0.5 trained with Adam Optimizer. We tuned all the pa-
rameters for maximizing the F1 scores.

Results and Discussion
In this section, we present our results for the four pre-
diction tasks described in the previous section. The re-
sults are presented in Table 1 in four groups: (i) baselines,
(ii) existing time-series representation methods and CNN,
(iii) our unregularized and regularized activity2vec variants,
and (iv) our ordinal and adversarial activity2vec models. We
show classification performance in terms of F1 scores.

• Performance on disorder classification tasks: Since our
goal is to evaluate the effectiveness of the learned vectors,
we use simple linear classifier Logistic Regression (LR)
with our activity2vec models. For the multi-class classifi-
cation problems like Diabetes and Insomnia, we use One-
vs-All classifiers, tuning for micro-F1 score. We run each
experiment 10 times and take the average of the evaluation
measures to avoid any randomness in results. We can notice
that day2vec consistently gives absolute 2-4% improve-
ments over the other activity2vec variants, and 6-20% over
the baseline time-series representation models and LSTM on
F1 scores on all tasks. The adversarial-ordinal-regularized
variant of day2vec gives the best results among all the
variants. Adversarial variant performs at par or better than
task-specific supervised CNN on all the tasks. Due to inher-
ent noisy nature of activity time-series and long sequence
length, the LSTM-based model did not work well.

• Selecting time granularity: Across the tasks, the adver-
sarial ordinal day2vec+Reg outperforms all the models.
Models with day level granularity perform better than all the
other granularities as well as baseline methods. Among the
activity2vec variants, the week2vec models perform the
worst, while hour2vec models perform just a bit better on
an average. Hour and week-level models perform similarly
to the baseline time-series methods. The high-dimensional
models based on samples (sample2vec) perform better
than hour-level, week-level, and baselines. day2vec pro-
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Figure 3: Comparison of our unsupervised day2vec+Reg+O+A with LR vs. supervised CNN as a function of labeled data.

duces marginally better results than the sample2vec de-
spite much lower dimensional space (2880x). The level of
granularity makes a lot of difference in the performance of
our models. From the above results, we can conclude that
while the low granularity level (sample2vec) suffered
from coarse embeddings, the high granularity (week2vec)
level embeddings lost the ability to discriminate.

• Effect of smoothing: Intuition behind adding the tempo-
ral smoothing loss (Eq. 4) to our model was to test the hy-
pothesis that human activities happen in continuity and fol-
low a macro-routine. This should be reflected in neighbor-
ing time-segments making them similar in structure. As re-
sults suggest, the continuity hypothesis was misguided at the
sample- and hour-level. Regularization at the sample level
made them lose the discriminative power for classification—
considering the noise in activity levels at such a fine gran-
ularity. hour2vec+Reg exhibits a significant drop (sleep
apnea) or at par performance compared to hour2vec.
Since humans tend to switch between different activity types
at the order of hours or less, the hypothesis of continuity was
inappropriate at hour level as well. However, adding smooth-
ing helps produce gains for day2vec, our best model. We
argue that smoothing regularization helps capture a higher
level global context since humans structure routines at the
level of the day, while we switch between activities on the
order of hours or lower. This is supported by the peri-
odogram analysis, where day level frequencies dominate.

• Effect of ordinal loss: Addition of ordinal loss improves
the accuracy of our models, albeit marginally. While the
other loss functions work on co-occurrence of activity values
at local and global contexts, ordinal loss explicitly models
the relationship between the magnitude of the activity val-
ues, e.g., ‘25’> ‘5’. While it can be argued that similar ordi-
nal values would co-occur, hence reflected in the Ls, adding

Figure 4: t-SNE visualization of subjects with regularized
day2vec on the left and adversarial day2vec on the right,
for all the subjects with respect to their level of activity.

an explicit ordinal constraint helps, though marginally.

• Effect of adversarial training: Adding the adversarial
loss to the ordinal-regularized models improves the F1

scores across the tasks by 0.5%-3.1% in absolute numbers
and 2%-7.5% in relative terms. The difference in perfor-
mance is more than the 95% confidence intervals around the
repeated experimental means reported here. It can thus be
concluded that making the representations invariant to the
source (subjects) helps in removing the noise introduced by
the subjects and their environments, owing to how they wear
their device and their routines, making the embeddings more
generalized. With an adversarial setting, we can create a rep-
resentation space more relevant to the health condition of the
subjects by removing the subject source domain.
Figure 4 shows the t-SNE (Maaten and Hinton 2008) plot of
regularized day2vec (left) vs adversarial day2vec em-
beddings (right) for SOL dataset subjects. For each subject,
we concatenate the embeddings from constituent day level
time-segments. We plot the lifestyles of the subjects as deter-
mined by the study questionnaire, identifying each subject
as highly-active, moderately-active, and sedentary person.
We can notice clusters or subject phenotypes with nice sep-
aration within the cluster for each of the lifestyle type with
non-adversarial day2vec. Unsurprisingly, the clusters get
very compact in the adversarial setting. The lifestyle classes
get clustered markedly separately rather than forming in-
cluster separations, observed in the non-adversarial setting.
Hence, the adversary helps activity2vec with removing the
subject-wide variance in the learned embeddings, while still
capturing the properties of subject phenotypes. Also, adver-
sary loss improved results on the disorder prediction tasks.
Hence, by reducing subject level variance, the adversary loss
helps encode a better global representation.

• Scalability: Our model (Table 1) takes much less training
time compared to the deep unsupervised model like LSTM.
In fact, our model takes much less time compared to the
supervised CNN that only runs on the labeled data. Since
our model has only one hidden layer (i.e., embedding layer)
and uses NCE for training, it is scalable in practical set-
tings compared to the deep neural models. Additionally, our
model offers more flexibility to incorporate the alternative
intuitions including human knowledge (e.g., the day/hour
level representational hierarchy) that would be difficult to
do with other deep methods. Clearly, using more sophis-
ticated deep neural models like deep auto-encoders for a
semi-supervised setting would pose scalability challenges.
Note: We restrict our models to a transductive setting. How-
ever, it can be easily applied to a inductive setting, where
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representations for unseen segments can be derived by a sin-
gle backprop step (Le and Mikolov 2014).
• Supervised vs Unsupervised: To show the utility of un-
supervised schema, we demonstrate the performance of su-
pervised CNN vs. our adversarial day2vec method as
a function of the percentage of labeled data in Figure 3.
Clearly, our model outperforms CNN across the board. The
gap is drastic when the proportion of labeled data is low,
which is usually the case in practice.

Conclusions
In this work, we present a novel unsupervised representa-
tional learning technique, activity2vec that encodes human
activity time-series by modeling local and global activity
patterns. We train our model on two datasets and test on pre-
diction tasks (four commonly occurring disorders). We find
that day-level granularity preserves the best representations,
which is not surprising since a day is a natural timescale for
a full cycle of human activities. Our task-agnostic represen-
tational learning model using simple linear classifiers beats
baseline time-series representation models on all the disor-
der prediction tasks. It even performs at par or better than su-
pervised convolutional neural network baseline. Our model
learns the representational features using a combination of
non-linear loss functions, giving better performance on mul-
tiple tasks using simple linear classifiers. We further demon-
strate that using adversarial loss along with our embedding
encoder model helps increase the performance and gener-
alizability of the embeddings. Additionally, our method is
capable of complementing the supervised learning by ini-
tialization, unlike existing representation approaches.
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