
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Region-Based Message Exploration over Spatio-Temporal Data Streams

Lisi Chen,1 Shuo Shang2∗
2 UESTC, China 1,2Inception Institute of Artificial Intelligence, UAE

1chenlisi.cs@gmail.com 2jedi.shang@gmail.com

Abstract

Massive amount of spatio-temporal data that contain loca-
tion and text content are being generated by location-based
social media. These spatio-temporal messages cover a wide
range of topics. It is of great significance to discover lo-
cal trending topics based on users’ location-based and topic-
based requirements. We develop a region-based message ex-
ploration mechanism that retrieve spatio-temporal message
clusters from a stream of spatio-temporal messages based on
users’ preferences on message topic and message spatial dis-
tribution. Additionally, we propose a region summarization
algorithm that finds a subset of representative messages in
a cluster to summarize the topics and the spatial attributes
of messages in the cluster. We evaluate the efficacy and ef-
ficiency of our proposal on two real-world datasets and the
results demonstrate that our solution is capable of high effi-
ciency and effectiveness compared with baselines.

Introduction
Massive amount of spatio-temporal data containing location,
text, and time information are being generated on an un-
precedented scale. Such type of data, which can be modelled
as multimodal data streams, offer first-hand information for
various kinds of local breaking news, bursty events, and gen-
eral public concerns.

Due to the high arrival rate of spatio-temporal data
streams and their vast topic coverage, it is of great interest
for users to discover and monitor trending events and topics
based on their preferred spatial and textual attributes. Ad-
ditionally, end-users may want to effectively grab the key
points of the spatio-temporal messages within a particular
region. The problem of online spatial keyword search, which
allows users to retrieve spatio-temporal messages (e.g., geo-
tagged tweets) relevant to their queries has been studied by
a number of research projects (Rocha-Junior et al. 2011;
Hu et al. 2015a; Guo et al. 2015; Li et al. 2013). Through
online spatial keyword search, users stay informed about lo-
cal events, trending activities, public concerns, and so forth
that happen around them. Moreover, users browse various
types of location-aware news and information in a real-time
fashion.
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The problems of existing studies of online spatial key-
word search aim at finding a set of spatio-temporal messages
as the result. In other words, users may receive all messages
satisfying their pre-defined spatial and textual requirements.
However, such item-based spatial keyword search has the
following limitations. First of all, most of the users pre-
fer receiving summary information that satisfies their in-
terested topics and location-based patterns rather than re-
ceiving a list of raw items (Farzindar and Khreich 2015;
Tobler 1970). Secondly, users may receive a set of near-
duplicate messages (Ozsoy, Onal, and Altingovde 2014),
which greatly reduce the result diversity and topic cover-
age. Thirdly, it is difficult for users to understand the key
topics and the local distribution of a large number of result
spatio-temporal messages within a few seconds. In particu-
lar, besides informative messages, many messages on data
streams are not related to any particular real-world events
and are often exhibit low quality (e.g., spam messages) (He
et al. 2007).

To address the above limitations, we develop a region-
based message exploration mechanism that retrieve spatio-
temporal message clusters (i.e., cluster regions) based on
users’ preferences on message topic and message spatial dis-
tribution (i.e., subscription region). Next, we devise a region
summarization algorithm that finds a subset of representa-
tive messages in a cluster to summarize the topics and the
spatial attributes of messages in the cluster.

Two challenges exist in our proposal. First, we need to de-
fine a metric that can effectively measure the relevancy be-
tween a cluster region and a subscription region. Second, we
need to develop an efficient and effective algorithm to gen-
erate a region summary for each cluster region, which is an
NP-hard problem. To address the first challenge, we lever-
age triplet network, which is a deep metric learning model,
to learn a metric that measures the relevancy between a sub-
scription region and a cluster region. We use Convolutional
Neural Network (CNN) to extract spatial and topic features.
In addition, we propose a novel method to train our triplet
to make our relevancy metric robust to noise and skewness
of spatio-temporal data. To address the second challenge, we
investigate the region summarization problem and prove that
the problem is NP-hard. We develop an efficient greedy al-
gorithm for region summarization problem. We conduct ex-
tensive experiments to evaluate the effectiveness of our rele-
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vancy metric and the efficiency of our region summarization
algorithm.

Problem Statement
We introduce the spatio-temporal message, the problem of
region-aware publish/subscribe, and the problem of region
summarization.
Definition 1: Spatio-Temporal Message. A spatio-
temporal message is denoted by m = ⟨ψ, ρ, tc⟩, where ψ is
textual information (i.e., a set of terms), ρ is a coordinate
represented by latitude and longitude on map, and tc is the
timestamp indicating the publish time of m. □

Spatio-temporal messages are ubiquitous in modern so-
cial media. For instance, they can be tweets with location
information, geo-tagged photos in Instagram, check-ins with
textual messages in Foursquare, web news with geographi-
cal information, etc. In our settings, the arrival rate of spatio-
temporal messages is very high.

Region-aware publish/subscribe
Definition 2: Cluster Region. A cluster region cr is the
minimum bounding rectangle of a spatio-temporal message
cluster generated by a clustering algorithm. □

Note that our proposal does not depend on a specific clus-
tering algorithm because it is important for applications to
cope with the data from different types of resources and meet
the requirements in various scenarios.
Definition 3: Subscription Region. A subscription region
sr is represented by a rectangular region on the map. It re-
trieves top-K cluster regions (i.e., a set of spatio-temporal
messages) based on a relevancy metric (i.e., rel(·)). □

We define the relevancy between a subscription region sr
and a cluster region cr as rel(sr, cr). The relevancy metric
rel(·) should consider both the similarity of textual content
and the relative locations of the messages in a region. Hence,
we aim to develop an effective approach to learning the rel-
evancy metric between a subscription region and a cluster
region.

Region summarization
When a relevant cluster region is delivered to a subscription
region, we propose to summarize the region of the cluster
by selecting a subset of representative spatio-temporal mes-
sages from the cluster region and display them on the map.
In particular, the selection objective is to generate a sum-
mary set by considering both representative and concise as-
pects. It remains a challenge on selecting such a representa-
tive set from messages in the region of each delivered cluster.
Specifically, if we select a large number of messages as the
summary set, users may be difficult in discovering the out-
lined information of a region; Otherwise, it will be impos-
sible to generate representative information because of data
sparsity. We also need to avoid two messages located too
close to each other (i.e., cartographic diversification (Sarma
et al. 2012)) and avoid two messages who are temporally
close to each other (i.e., query result diversification (Chen
and Cong 2015)).

As a consequence, we need to consider the following
selection criteria: (1) Summary set cardinality; (2) Sum-
mary representativeness; (3) Message spatial proximity con-
straint; (4) Message temporal proximity constraint. To ad-
dress criterion (1), we fix the cardinality of the summary
set as k. For (2), we set it to be an optimization criterion.
Specifically, we define the information coverage to measure
the strength in summarizing of a summary set. We define cri-
teria (3) and (4) as constraints by enforcing the spatial prox-
imity and temporal proximity between any two messages in
a summary set should no less than a spatial proximity thresh-
old ζ and a temporal proximity threshold δ, respectively.
Definition 4: Region Summarization (RS) Problem.
Given a cluster region cr and an integer n, let M be a set
of spatio-temporal messages located in cr and ζ be a spatial
proximity threshold. The RS problem finds a subsetN ofM
such that: (1) |N | = n; (2) ∀ mi,mj ∈ N , d(mi,mj) ≥ ζ;
(3) ∀mi,mj ∈ N , |mi.tc−mj .tc| ≥ δ; (4) The information
coverage of N for M is maximized. □

Note that we use information coverage to measure how
well N can represent M , which is defined by Equation 1.

IC(N,M) =
1

|M |
×

∑
mi∈M

max{mj ∈ N |S(mi,mj)},

(1)
where S(mi,mj) represents the spatio-textual similarity be-
tween mi and mj (Equation 2).

S(mi,mj) = α× P (mi.ρ,mj .ρ) + (1− α)

×T (mi.ψ,mj .ψ), (2)

where P (mi.ρ,mj .ρ) denotes the spatial proximity score
betweenmi.ρ andmj .ρ, T (mi.ψ,mj .ψ) denotes the textual
similarity betweenmi.ψ andmj .ψ, and α is a preference pa-
rameter ranging from 0 to 1 that balances the weight of spa-
tial proximity and textual similarity. Equation 2 is a widely
applied similarity measurement that takes both spatial and
textual aspects into consideration (Chen et al. 2013).

Framework
Figure 1 illustrates the framework of our region-based mes-
sage exploration mechanism. We have two types of input
data: (1) A stream of spatio-temporal messages published
by location-based social media; (2) A set of subscription re-
gions registered by users.

In the first stage, continuously arriving spatio-temporal
messages are clustered by a general spatio-temporal online
clustering algorithm. Next, each new cluster is regarded as a
“query” and we traverse the subscription index to find a sub-
set of subscription regions that match the new cluster region
based on a relevancy metric between subscription region and
cluster region (i.e., Rel(·)), which is learned by a deep met-
ric learning model, namely the triplet network. To visualize
each delivered cluster we select a subset of representative
spatio-temporal messages from the cluster region (i.e., re-
gion summarization). Specifically, the selected messages are
expected to be representative of the spatial and textual infor-
mation of all messages in the cluster region.
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Figure 1: Framework Overview

Relevancy Metric Learning
Inspired by Convolutional Neural Networks (CNNs) based
metric learning, which exhibits excellent performance in im-
age classification, we propose to use CNN for capturing re-
gional spatial correlation among spatial-temporal messages.

In particular, we develop a relevancy metric learning
model based on triplet network, which learns a metric for
comparing the spatio-textual relevancy between two regions
by considering both spatial distribution and text similarity of
messages in the regions (Hoffer and Ailon 2015; Liu, Zhao,
and Cong 2018). To apply triplet network on spatio-temporal
messages, we design an approach to generating training data
with hard negative example mining (Wang, Lan, and Zhang
2017). Additionally, to make our model robust to data skew-
ness, we use a normalized training loss, which bound the
loss of each training tuple within [0, τ ].

Settings of triplet network
This section presents our settings of the triplet network for
learning a relevancy metric.

A triplet network, denoted by TN(·), contains the fol-
lowing three instances of a shared CNN (Krizhevsky,
Sutskever, and Hinton 2012): (1) A subscription instance
a; (2) A relevant instance a+; (3) An irrelevant instance
a−. While inputting the above three instances, TN(·) cal-
culates the following two values: (1) D(TN(a), TN(a+));
(2) D(TN(a), TN(a−)). Note that D(·) represents the Eu-
clidean distance between the two instances and TN(ai) in-
dicates the feature map of ai in the last layer of the CNN. Be-
cause that we are only interested in a feature embedding, it
is not necessary for us to maintain the fully-connected layer
in the CNN.

Existing study suggests that the objective of train-
ing TN(·) is to enforce D(TN(a), TN(a+)) <
D(TN(a), TN(a−)) (Hoffer and Ailon 2015). The
objective function for training TN(·) can be formulated as
follows:

λ∥TN(·)∥2 +
N∑
i=1

max{0,

D(TN(ai), TN(a+
i ))−D(TN(ai), TN(a−

i )) + g},
(3)

where ∥TN(·)∥2 denotes a L2 regularization for TN(·), λ
is a parameter indicating the weight decay, N is the number
of the triplets of samples, and g represents the gap parameter
between two distances.

Input of triplet network We discuss how to feed a region
R (i.e., R can be either a subscription region or a cluster
region) into the triplet network TR(·).

We represent R by a set of grid squares, where the size
of each square is pre-defined (e.g., 100 m2). Each square is
associated with a vector that sums up the attribute vector of
each message located in the square. Note that the attribute
vector contain textual (topic) and temporal information of a
message. Here, R can be regarded as a 3-dimensional tensor
R ∈ Rx×y×t, where x×y denotes the spatial dimensions of
the grid squares and t demotes the attribute dimension.

Output of triplet network The output of the triplet net-
work R is a feature map of TN(R), which can be rep-
resented as a 3-dimensional tensor as well (i.e., R ∈
Rx′×y′×dk ), where dk denotes the number of dimensions of
the output features. Each dimension of the output feature is
considered to be a latent feature with spatial information.

Since difference regions may have different values of x
and y, how to compare feature maps with different sizes
remains a challenge. To solve the problem, we add a fea-
ture aggregation layer (i.e., fa(·)) at the end of TN(·).
Such layer can aggregate all feature maps to their corre-
sponding feature vectors with dk dimensions. Let w be
the output of fa(R), we have w ∈ Rdk . After applying
fa(·), the output distances, namely D(TN(a), TN(a+))
and D(TN(a), TN(a−)), can be formulated as follow:

D(TN(a), TN(a+)) = ∥w −w+∥2, (4)

D(TN(a), TN(a−)) = ∥w −w−∥2. (5)

Based on Equation 4, Equation 5, and the learned metric,
we formulate the relevancy between a subscription region
sr and the region of a cluster cr as a value in [0, 1], which is
presented as follows:

rel(sr, cr) =
1

1 + ∥ws −wc∥2
, (6)

where ws and wc represents fa(sr) and fa(cr), respectively.
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Figure 2: Workflow of relevancy metric learning
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Training triplet network
This section presents how to train our triplet network on
subscription and cluster regions. Two technical challenges
exist in training triplet network. Firstly, we do not have
groundtruth (labeled data) for rel(·). Secondly, the trained
network must be able to resist small noise. To solve the
first challenge, we generate “labeled region” from unlabeled
training data (i.e., sampled regions) and learn their corre-
sponding self-relevancy. To solve the second challenge, we
develop a self-supervised learning mechanism that learns ro-
bust rel(·) directly on the basis of the self-relevancy. Specif-
ically, robust rel(·) is expected to regard regions that have
slight differences as relevant. We proceed to present how to
generate labeled regions as training data.

Generation of labeled regions At first, we randomly sam-
ple existing subscription and cluster regions from the under-
lying space. For each sampled region r, we generate r+ and
r− respectively.

To generate r+, we add four types of noise to r: (1) Ran-
dom message insertion (i.e., inserting κ× |r| messages into
r at a random location); (2) Random message deletion (i.e.,
randomly removing κ × |r| messages from r); (3) Random
message move (i.e., moving each message in r along a ran-
dom direction by a random distance smaller than υ); (4)
Random message time shift (i.e., changing the creation time
of each message by a random value smaller than σ). Here
|r| denotes the number of spatio-temporal messages in r,
κ ∈ (0, 1), υ, and σ are three noise indicators.

We generate four groups of r−. The first group of r−,
denoted by r−(1), is generated by sampling regions from the
underlying space that do not have overlapping area with r.
The second group r−(2) is generated by adding message inser-
tion/deletion noise to r+. The third group r−(3) is generated
by adding message move noise to r+. The fourth group r−(4),
is generated by adding time shift noise to r+. The rationale
of this quad generation is that most of the regions in r−(1) bear
little resemblance to r, which may lower the determinative-
ness of learned features, while the regions in r−(2), r

−
(3), and

r−(4) do have some relevancy towards r even if it is smaller
than r+. As a result, such quad generation can enhance the
determinativeness of features learned by the model, which
can substantially lower the loss.

Loss function Due to the skewness of spatial distribution
for spatio-temporal messages, the loss of our triplet network
can be highly skewed. Specifically, some training instances
may have extremely large loss, which is inevitable to over-
whelm other instances. A straightforward approach to re-
solving this issue is normalising the cardinality of different
regions. However, we are unable to acquire the number of
messages in a region afterwards, which is regarded as very
important information. For example, if we do not consider
the region cardinality, a region containing 1,000 crime alert
messages would be unreasonably regarded as similar to a
region with 5 crime alert messages. Hence, we propose to
modify the loss function by introducing a “normalization
step”, which is presented as follows.

Loss = λ∥TN(·)∥2+
N∑
i=1

max{0, D(TN(ai),TN(a+
i ))

D(TN(ai),TN(a+
i ))+D(TN(ai),TN(a−

i ))
− g}. (7)

Algorithm for Region Summarization
In this section, we first show our proof that the RS prob-
lem is NP-hard. Next, we present our proposed algorithm for
solving the RS problem. Finally, we present the complexity
and approximation analyses of our proposed algorithm.
Theorem 1: The RS problem is NP-hard.
Proof. The RS problem can be reduced from an existing
NP-hard problem, the dominating set problem on a graph
G(V,E), which outputs whether there exists a k-subset of
vertices Vd ⊆ V such that: (1) ∀vi ∈ V , vi ∈ Vd; or (2)
∃vj ∈ Vd s.t. vi ∈ Neighbors(vj).

Let M be a set of spatio-temporal messages. We as-
sume that ∀mi,mj ∈ M , d(mi,mj) ≥ ζ. We build a
RS problem to resolve a dominating set problem as fol-
lows. Given the graph G(V,E), we map each vertex vi ∈ V
to a spatio-temporal message mi. Specifically, if vi and vj
are neighbors, we set S(mi,mj) = 1; Otherwise, we set
S(mi,mj) = 0.

Let Vd = {v0, v1, ...vn−1} be the result of an instance
of dominating set problem, and Ms = {m0,m1, ...mn−1}
be the mapped result set, which can be considered to be
the result of the RS problem. Now we assume that |C| =∑

mi∈C max{mj ∈ Ms|S(mi,mj)}, ∀mi ∈ C we have
max{mj ∈ Ms|S(mi,mj)} = 1. Consequently, we have
the following two situations: (1) mi ∈Ms; (2) ∃mj ∈ C s.t.
S(mi,mj) = 1. Because that for each vertex vi we have: (1)
vi ∈ Vd; or (2) vi ∈ Neighbors(vj) and vj ∈ Vd, we can
deduce that Vd is the result of the dominating set problem.
As a result, the RS problem is NP-hard.

□

Because of the NP-hardness of the RS problem, it is im-
possible to develop an efficient exact algorithm to resolve
the problem. Nevertheless, it is possible to propose a approx-
imate algorithm with a bounded ratio. Now we present our
proposed approximate algorithm for the RS problem with a
proved approximate ratio.

Our high-level idea is inspired by a greedy algorithm for
the SOS problem proposed by Guo et al. (Guo et al. 2018).
However, they do not consider the message temporal prox-
imity constraint. We generate the result set R by greedily
and iteratively selecting spatio-temporal messages from a
cluster of messages C. In particular, for each iteration we se-
lect the spatio-temporal message mn with the maximum in-
crement of information coverage and add it into R. Next, we
remove the existing spatio-temporal messages in R whose
distance to mn is smaller than ζ. The algorithm ends when
we the cardinality of R is equal to k. Specifically, the major
technical challenge here is how to find the message with the
maximum increment of information coverage. An straight-
forward method is to calculate the increment of informa-
tion coverage by selecting each mn ∈ C \ R. However, this
method is computationally prohibitive. To address this chal-
lenge, we develop an effective pruning strategy to filter out
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unwanted candidates, which is defined by Lemma 1.
Lemma 1: Let R and S be two sets of spatio-temporal mes-
sages where R ⊆ S andmn be a new message. Assume that
R′ denotes R with mn inserted and S ′ denotes S with mn

inserted, we have the following inequation:

IC(R′, C)− IC(R, C) ≥ IC(S ′, C)− IC(S, C).

Proof. Let’s assume that S(mn,mi) > max{mj ∈
R|S(mi,mj)} and S(mn,mi) > max{mj ∈
S|S(mi,mj)}. Because that IC(R, C) ≤ IC(S, C),
we have S(mn,mi) − IC(R, C) ≥ S(mn,mi) −
IC(S, C). Hence, we have max{mj ∈ R′|S(mi,mj)} −
max{mj ∈ R|S(mi,mj)} ≥ max{mj ∈ R′|S(mi,mj)}
− max{mj ∈ R|S(mi,mj)}. Thus, we complete the
proof. □

Based on Lemma 1, we find that the increment of infor-
mation coverage when we insertmn into S cannot be greater
than the increment of information coverage when we insert
mn into R. In other words, the increment of information
coverage will decrease as we proceed to execute the iter-
ation. Therefore, to prune unnecessary candidate messages
we propose to use the pruning strategy that works as follows:
For each messagem, we record its increment of information
coverage in each iteration by generating a triple entry {ϱ, δ,
ı}. In particular, m.ϱ denotes the pointer/id of m, m.δ indi-
cates the increment of information coverage when we insert
mn into R, and m.ı is the iteration count.

Algorithm 1: GreedyRegionSummary (C, k, ζ, δ)
1 R← empty;
2 PQ← empty;
3 for each mi ∈ C do
4 entry ← {mi,IC({mi}, C),0};
5 PQ.Push(entry);
6 while PQ is not empty and |R| < k do
7 cur ← PQ.top();
8 PQ.pop();
9 while cur.ı ̸= |R| do

10 cur.δ ← SSInc(C,R,mn);
11 cur.ı← |R|;
12 PQ.push(cur);
13 cur ← PQ.top();
14 PQ.pop();
15 R.add(cur.ϱ);
16 for each mj in PQ do
17 if d(cur,mj) < ζ or |cur.tc −mj .tc| < δ then
18 PQ.remove(mj);
19 returnR;

Algorithm 2 presents the corresponding pseudo code of
our proposed greedy algorithm for the RS problem. First, we
initialize the result set R and the priority queue PQ (lines 1–
2). Next, for each spatio-temporal message mi we generate
its corresponding triple {mi, IC({mi, C), 0} and push it into
PQ (lines 3–5). Note that IC({mi, C), 0} denotes the incre-
ment of information coverage when we insert mi into the
empty set R. After that, we generate the cluster summary
set in an iterative fashion (lines 6–18). Specifically, at the

beginning of each iteration we fetch and pop the top triple
from PQ (lines 7–8). If the increment of information cover-
age induced by the top triple cur has not been computed yet
(line 9), we need to compute it (line 10), update the iteration
count (cur.ı) (line 11), and push it to PQ (line 12). Then we
proceed to fetch and pop the top tripe (lines 13–14). If the
increment of information coverage induced by the top triple
cur has already been computed, we add the corresponding
message into the result set (line 15). At the same time, we
need to remove the existing messages in PQ whose distance
to the current message is smaller than ζ or whose temporal
proximity is smaller than δ (lines 16–18).

Experiments
We present the experiments with two datasets that offer in-
sight into the effectiveness and efficiency of baselines and
our proposed algorithms.

Experiment Setup
Dataset Our experiments are conducted on two real-
life datasets: FS and TT. FS is a dataset collected from
Foursquare, which contains 1.2 million POIs in North Amer-
ica with location information (i.e., latitude and longitude).
The dataset TT is a larger dataset that contains 40 million
geo-tagged tweets in the U.S.A. with geographical point
locations. Each POI or geo-tagged tweet is regarded as a
spatio-temporal message. We train an Online Latent Dirich-
let Allocation (OLDA) (AlSumait, Barbará, and Domeni-
coni 2008) model using our datasets. Each message is as-
sociated with a topic distribution vector.

Baselines We evaluate the effectiveness and efficiency of
our triplet network for learning relevancy metric (denoted
by TN) and our greedy algorithm for region summarization
(denoted by GRS) by comparing against the following base-
lines.

(1) SVSM (Sheng et al. 2010): SVSM can be applied for
solving our problem. While computing the relevancy of two
regions, we first derive the spatial feature vector for each re-
gion, which is calculated based on the message topics in the
region, the message locations, and the average distance be-
tween messages and region reference points (i.e., vertices
and center). Next, we computes the cosine similarity be-
tween their vectors.

(2) SP (Lazebnik, Schmid, and Ponce 2006): SP, which is
designed for image categorization, can be used for solving
our problem as well. SP indexes the underlying space by a
Quad-tree that recursively splits the space into four cells. To
compute the relevancy between two regions, we firstly cal-
culate the average cell-wise similarities in each level. Next,
we aggregate the average similarities in all levels.

(3) Max-Sum, Max-Min (Drosou and Pitoura 2014):
These two result diversification methods are widely used for
selecting a set of most diverse messages. We compare GRS
against Max-Sum and Max-Min. Note that the result set re-
turned by the two methods may not satisfy our constraints
defined in Definition 4.

(4) Rand: This method generates n representative mes-
sages of a region by randomly selecting a spatio-temporal
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message m from the messages located in the region. If in-
sertingm into the current result set will break the constraints
in Definition 4, we discardm and continue selecting the next
message; Otherwise, we insertm into the result set. Once the
size of the result set reaches n, we return the set as the result.

Settings For evaluating TN, we build a CNN that con-
sists of 3 convolutional layers. The stride is set as 2×2. We
use a ReLU non-linearity between two adjacent layers. The
weight decay parameter λ is set to be 5×10−5. The gap pa-
rameter g is 0.25. We train our model on 5000 generated in-
stances. For generating each relevant instance, we randomly
set the two noise indicators, namely κ and υ, between the
ranges (0.05, 0.35) and [1km, 50km], respectively.

All of the algorithms are run in memory. We report the
cpu time for efficiency evaluation and report “relevant ratio
of top-k result (k-RR)” for efficacy evaluation. In particu-
lar, the k-RR measures the proportion of positive instances
among the result set.

Experimental Result
Effect of noise indicators In this set of experiments, we
evaluate the effectiveness of SVSM, SP, and TN, by varying
noise indicators κ from 0.05 to 0.25, υ from 10km to 50km,
and σ from 8h to 40h.

Based on Figures 3 and 4, We can see that the TN per-
forms substantially better than SVSM and SP on both data-
sets in terms of 10-RR and 20-RR when we vary κ. In ad-
dition, we find that TN is more robust to noise compared
with the other two baselines. Specifically, when we increase
κ from 0.05 to 0.25, the 10-RR and 20-RR are only slightly
reduced by 10% and 7.8%, respectively. While for SP, the
10-RR and 20-RR are moderately reduced by 22% and 31%,
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Figure 8: Effect of # representative messages w.r.t. efficiency

respectively. SVSM produces the worst performance among
the three methods, with 10-RR and 20-RR reduced by 53%
and 39%, respectively. Furthermore, we also notice that all
of the three methods produce better performances on dataset
TT in comparision to FS. The reason is that the message
density of TT is higher than that of FS.
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Figure 9: Effect of distance threshold

Figure 5 shows the effectiveness performances of the
three methods as we vary the other noise indicator υ. TN
still has the best performance. Additionally, we find that 10-
RR and 20-RR significantly decrease as we increase υ. This
is because that the increment of υ will change the relative
locations of messages, which may lower the relevancy. We
also notice that SVSM does not exhibit a performance de-
creasing trend as we increase υ. The reason is that the rel-
evancy metric of SVSM does not take the relative locations
of messages into account.

Effect of the number of representative messages In this
set of experiments, we investigate the effectiveness and effi-
ciency with regard to the cardinality of representative mes-
sage set. From Figure 7, we can see that all of the four
methods demonstrate a stable trend for information cover-
age score when we increase the size of representative mes-
sage set. In particular, GRS produces the highest information
coverage score. As for efficiency aspect (Figure 8), we can
find that all the methods perform worse when we increase
the number of representative messages in a region. The run-
time performance of GRS is at least an order of magnitude
better than Max-Min and Max-Sum, and it is only slightly
worse than the random selection method (Rand).

Effect of distance threshold We proceed to evaluate the
effect of the distance threshold (i.e., ζ) for region summa-
rization algorithms. Figure 9 shows that when we increase
the distance threshold for dataset FS, both GRS and Rand
exhibit a slight decreasing trend regarding the runtime, while
for dataset TT both methods exhibit a significant increasing
trend. This can be explained by the fact that the density of
messages in TT is much more higher than that in FS.

Related Work
Continuous query processing over spatio-temporal
data streams
Our problem is relevant to the location-based pub-
lish/subscribe problem. Given a new spatio-temporal mes-
sage m and a set of subscriptions, the location-based pub-
lich/subscribe problem aims at finding a subset of subscrip-
tions whose spatial and textual predicates match m. Specif-
ically, the subscriptions defined by some literature (Wang
et al. 2015; Chen, Cong, and Cao 2013; Chen et al. 2014;
Chen et al. 2017) require that m falls in a subscription re-

gion or m has overlapping area with the subscription re-
gion (Li et al. 2013). While for others, a score that measures
the spatial proximity between the query location and the lo-
cation of a new spatio-temporal messagem (Hu et al. 2015a;
Hu et al. 2015b; Chen et al. 2015; Chen and Shang 2018;
Chen et al. 2018), or a score that measures the spatial over-
lap between a continuous query and the region of a new
spatio-temporal message (Yu et al. 2015), is calculated for
matching process.

However, existing studies on location-based pub-
lish/subscribe let subscriptions receive single-granularity
items from data streams based on Boolean predicates or
similarity function, which may not reflect the actual user
preferences.

Online clustering and visualization algorithms for
text and geo-text streams
Threshold-based incremental clustering algorithm (Allan
et al. 1998) is commonly used for detecting and track-
ing news, bursty events, and trending topics over textual
data streams (e.g., tweets) (Farzindar and Khreich 2015;
Becker, Naaman, and Gravano 2011; Petrovic, Osborne, and
Lavrenko 2010; Phuvipadawat and Murata 2010; Aggarwal
and Yu 2006; Zhao, Chen, and Cong 2016; Tsur, Littman,
and Rappoport 2013; Yin 2013). Specifically, given an ex-
isting set of clusters, a stream of textual items (i.e., mes-
sages), and a similarity threshold, the algorithm sequentially
evaluates each new message and find a cluster that has the
highest similarity score towards each message. However, if
the similarities between a message and all existing clusters
are less than the threshold, the message will form a new
cluster. Compared to the other online text clustering algo-
rithms (e.g., online k-means algorithm), the threshold-based
incremental clustering algorithm often produces higher ef-
ficiency. Additionally, it guarantees a real-time clustering
result, which is important for modern online social media
apps (Zhang, Chan, and Tan 2014). Zhong (Zhong 2005) de-
velops an online text clustering algorithm based on the clas-
sic k-means named the online spherical k-means (OSKM)
algorithm. The key idea of OSKM algorithm is to partition
a data stream into segments. Because that the size of each
segment is relatively small, it can be processed efficiently
in main memory. Nevertheless, the k-means based cluster-
ing algorithms require the number of clusters to be defined
in advance, which is unreasonable for streaming data since
the number of bursty events and trending topics is unknown.
Furthermore, k-means based clustering algorithms are im-
possible to generate real-time results.

Conclusion
We develop a region-based message exploration mechanism
that retrieve spatio-temporal message clusters from a stream
of spatio-temporal messages based on users preferences on
message topic and message spatial distribution. We also pro-
pose a region summarization algorithm that finds a subset of
representative messages in a cluster to summarize the topics
and the spatial attributes of messages in the cluster. Experi-
mental results show that our proposal is capable of both the
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efficacy and efficiency.
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AlSumait, L.; Barbará, D.; and Domeniconi, C. 2008. On-line
LDA: adaptive topic models for mining text streams with applica-
tions to topic detection and tracking. In ICDM, 3–12.
Becker, H.; Naaman, M.; and Gravano, L. 2011. Beyond trending
topics: Real-world event identification on twitter. In Proceedings of
the Fifth International Conference on Weblogs and Social Media.
Chen, L., and Cong, G. 2015. Diversity-aware top-k pub-
lish/subscribe for text stream. In SIGMOD, 347–362.
Chen, L., and Shang, S. 2018. Approximate spatio-temporal top-k
publish/subscribe. World Wide Web 1–23.
Chen, L.; Cong, G.; Jensen, C. S.; and Wu, D. 2013. Spatial key-
word query processing: an experimental evaluation. In PVLDB,
217–228.
Chen, L.; Cui, Y.; Cong, G.; and Cao, X. 2014. SOPS: A system for
efficient processing of spatial-keyword publish/subscribe. PVLDB
7(13):1601–1604.
Chen, L.; Cong, G.; Cao, X.; and Tan, K. 2015. Temporal spatial-
keyword top-k publish/subscribe. In ICDE, 255–266.
Chen, Z.; Cong, G.; Zhang, Z.; Fu, T. Z. J.; and Chen, L. 2017. Dis-
tributed publish/subscribe query processing on the spatio-textual
data stream. In ICDE, 1095–1106.
Chen, L.; Shang, S.; Zhang, Z.; Cao, X.; Jensen, C. S.; and Kalnis,
P. 2018. Location-aware top-k term publish/subscribe. In ICDE,
749–760.
Chen, L.; Cong, G.; and Cao, X. 2013. An efficient query indexing
mechanism for filtering geo-textual data. In SIGMOD, 749–760.
Drosou, M., and Pitoura, E. 2014. Diverse set selection over dy-
namic data. IEEE Trans. Knowl. Data Eng. 26(5):1102–1116.
Farzindar, A., and Khreich, W. 2015. A survey of techniques for
event detection in twitter. Computational Intelligence 31(1):132–
164.
Guo, L.; Zhang, D.; Li, G.; Tan, K.; and Bao, Z. 2015. Location-
aware pub/sub system: When continuous moving queries meet dy-
namic event streams. In SIGMOD, 843–857.
Guo, T.; Feng, K.; Cong, G.; and Bao, Z. 2018. Efficient selection
of geospatial data on maps for interactive and visualized explo-
ration. In SIGMOD, 567–582.
He, Q.; Chang, K.; Lim, E.; and Zhang, J. 2007. Bursty feature
representation for clustering text streams. In SDM, 491–496.
Hoffer, E., and Ailon, N. 2015. Deep metric learning using triplet
network. In SIMBAD, 84–92.
Hu, H.; Liu, Y.; Li, G.; Feng, J.; and Tan, K. 2015a. A
location-aware publish/subscribe framework for parameterized
spatio-textual subscriptions. In ICDE, 711–722.
Hu, J.; Cheng, R.; Wu, D.; and Jin, B. 2015b. Efficient top-k sub-
scription matching for location-aware publish/subscribe. In SSTD,
333–351.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS,
1106–1114.

Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene
categories. In CVPR, 2169–2178.
Li, G.; Wang, Y.; Wang, T.; and Feng, J. 2013. Location-aware
publish/subscribe. In KDD, 802–810.
Liu, Y.; Zhao, K.; and Cong, G. 2018. Efficient similar region
search with deep metric learning. In KDD, 1850–1859.
Ozsoy, M. G.; Onal, K. D.; and Altingovde, I. S. 2014. Result
diversification for tweet search. In WISE, 78–89.
Petrovic, S.; Osborne, M.; and Lavrenko, V. 2010. Streaming first
story detection with application to twitter. In HLT-NAACL, 181–
189.
Phuvipadawat, S., and Murata, T. 2010. Breaking news detection
and tracking in twitter. In Web Intelligence/IAT Workshops, 120–
123.
Rocha-Junior, J. B.; Gkorgkas, O.; Jonassen, S.; and Nørvåg, K.
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