
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Deriving Subgoals Autonomously to Accelerate Learning
in Sparse Reward Domains

Michael Dann, Fabio Zambetta, John Thangarajah
Computer Science

RMIT University, Australia
{michael.dann, fabio.zambetta, john.thangarajah}@rmit.edu.au

Abstract

Sparse reward games, such as the infamous Montezuma’s
Revenge, pose a significant challenge for Reinforcement
Learning (RL) agents. Hierarchical RL, which promotes ef-
ficient exploration via subgoals, has shown promise in these
games. However, existing agents rely either on human do-
main knowledge or slow autonomous methods to derive suit-
able subgoals. In this work, we describe a new, autonomous
approach for deriving subgoals from raw pixels that is more
efficient than competing methods. We propose a novel intrin-
sic reward scheme for exploiting the derived subgoals, apply-
ing it to three Atari games with sparse rewards. Our agent’s
performance is comparable to that of state-of-the-art meth-
ods, demonstrating the usefulness of the subgoals found.

Introduction
In recent years, videogames have become an increasingly
popular domain for artificial intelligence research. This is in
large part due to the famous Deep Q-Network (DQN) agent
of Mnih et al. (2015), which learned to play many Atari 2600
games to human level from only raw pixel input and a feed
of the game score. Impressive as this was, DQN fared far
better in reflex-driven games with frequent rewards, such
as Video Pinball, than in adventure games with sparse re-
wards. Notoriously, it failed to learn a path to the first key
in Montezuma’s Revenge after more than a month of expe-
rience. DQN’s weakness in sparse reward Atari games has
driven much subsequent research (Bellemare et al. 2016a;
Kulkarni et al. 2016; Osband et al. 2016; Martin et al. 2017;
Ostrovski et al. 2017; Vezhnevets et al. 2017; Roderick,
Grimm, and Tellex 2018), as it is symptomatic of a broader
difficulty in applying reinforcement learning (RL) to long-
term, real-time planning problems.

The reason DQN struggles in sparse reward games is that
until the agent has discovered some reward, it sees no in-
centive to favour one course of action over any other. It
responds to this predicament in a manner typical of many
learning-based agents: by simply choosing actions at ran-
dom. In games with dense rewards, such as Video Pinball,
random action selection is often sufficient for the agent to
find rewards and start improving. However, in sparse reward

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

games the agent can become stuck in a “chicken-egg” sce-
nario, where it cannot improve its policy until it finds some
reward, but it cannot discover any rewards until it improves
its policy.

It has long been thought that hierarchical reinforcement
learning (Parr and Russell 1998; Sutton, Precup, and Singh
1999; Dietterich 2000), which splits drawn-out tasks into
subtasks, may be key to solving sparse reward problems
efficiently. In fact, it has already been established that hi-
erarchical agents can make rapid progress in sparse re-
ward Atari games, so long as they are provided with ap-
propriate subgoals by a human expert (Kulkarni et al. 2016;
Roderick, Grimm, and Tellex 2018). Of course, the ma-
jor deficiency of such agents is that they do not address
subgoal identification, which is a very challenging part of
the problem. Despite decades of research (Vezhnevets et
al. 2017; Thrun, Schwartz, and others 1995; Digney 1998;
Şimşek, Wolfe, and Barto 2005; Konidaris and Barto 2009;
Machado, Bellemare, and Bowling 2017; Machado et al.
2018b), identifying subgoals from high-dimensional input,
such as Atari pixel representations, remains a major open
problem.

The main contribution of this work is a new, autonomous
method for deriving subgoals in such domains. The method
operates by partitioning the state space according to a novel
heuristic distance measure, which we term exploration ef-
fort. The approach can readily be applied to raw visual in-
put, and the subgoals it identifies in Atari games resemble
those identified by human experts in previous work.

To leverage the subgoals found, we propose a novel in-
trinsic reward scheme, dubbed pellet rewards. The scheme
encourages the agent to explore via a mechanism similar to
the collectable pellets in Ms. Pacman and the coins in Super
Mario Bros. We apply this approach to three Atari games
with sparse rewards (Venture, Freeway and Montezuma’s
Revenge), achieving similar performance to state-of-the-art
methods based on visual density models (Bellemare et al.
2016a; Ostrovski et al. 2017). This makes ours the first fully-
autonomous subgoal-oriented agent to be truly competitive
with state-of-the-art agents on these games. In addition, pel-
let rewards appear to have relatively little distortion on the
original task objective, causing no discernible harm in two
games (Battlezone and Robot Tank) where Ostrovski et al.’s
(2017) method was detrimental.

881

Background
In this section we briefly introduce, and discuss some open
issues with, two lines of work that have shown promise
in addressing reward sparsity in videogames: count-based
novelty bonuses derived from visual density models, and
hierarchical reinforcement learning. While not all recent
work on the problem falls into one of these categories (Os-
band et al. 2016; Machado, Srinivasan, and Bowling 2015;
Stadie, Levine, and Abbeel 2015), to the best of our knowl-
edge no alternative methods have achieved near the same
level of success on the most challenging games.

Count-Based Novelty from Visual Density Models
The idea behind count-based novelty bonuses is to maintain
a visit count for each state, n(s), and pay the agent an intrin-
sic reward (Bellemare et al. 2016a) for encountering rarely-
visited states. While simple conceptually, a major challenge
in applying count-based methods to Atari games is that it
is impractical to maintain a visit count for each individual
state. Bellemare et al. (2016a) address this issue by deriving
a pseudo-count from a state density model. Roughly speak-
ing, this method generalises states’ visit counts based on
their visual similarity. Later work explores the use of alter-
native density models (Martin et al. 2017; Ostrovski et al.
2017), though these too can be broadly classified as visual
similarity methods.

The density model approach has yielded state-of-the-art
performance on several sparse reward games (Bellemare
et al. 2016a; Ostrovski et al. 2017). However, it struggles
notably in the following scenarios: (1) When the agent’s
learning progression requires “risky” exploration. (2) When
visual novelty is a poor proxy for true progress in the game.
We shall now describe these issues in some detail, since
to date they have received little attention in the literature
(barring Roderick, Grimm, and Tellex (2018), who note one
aspect of the second issue).

Issue #1: Risky Exploration. In videogames where the
player has a certain number of lives, the question arises of
what should constitute the end of an episode: (A) When
the player loses a life, or (B) When the player has lost
all lives. In most work on Atari games to date, includ-
ing the original DQN paper (Mnih et al. 2015), choice (A)
was made. This setting usually yields better performance,
as it helps the agent learn to avoid life loss. Interestingly
though, this choice was heavily detrimental to Bellemare
et al.’s (2016a) agent, which achieved far higher scores un-
der setting (B). This phenomenon was likely due in part to
the form of the novelty bonus. In all novelty-based work
we have cited (Bellemare et al. 2016a; Martin et al. 2017;
Ostrovski et al. 2017), the agent is paid an intrinsic reward
of the following form at each time step:

r+(s) = β√
n(s)

(1)

where β is a reward scaling factor. Under this scheme,
the agent can accumulate large returns in rarely-visited
states by remaining stationary and “soaking up” the novelty
bonus. If episodes are deemed to terminate upon life loss,

the agent is discouraged from exploring risky manoeuvres
in such states. Thus, the scheme may actually have an
anti-exploratory effect on tasks that require the agent to risk
life loss in order to learn, such as jumping over the first
skull in Montezuma’s Revenge.

Issue #2: Visual Novelty ̸= True Progress. In some
videogames, minor visual differences between states may
indicate important strategic differences regarding the task at
hand. Conversely, large visual differences may be inconse-
quential. For example, on the first screen of Venture, the en-
emy sprites are far larger than that of the protagonist. There-
fore, under visual novelty schemes, the agent may receive
large rewards for inconsequential enemy movements, but re-
ceive little reward for navigating to rarely explored parts of
the map. The same type of issue caused Martin et al.’s (2017)
agent to struggle on Freeway, where it was “awed” by the
continually changing traffic.

Similarly, Roderick, Grimm, and Tellex (2018) note that
in Montezuma’s Revenge, visual novelty schemes discour-
age the agent from retracing its steps back to the locked
doors after obtaining the first key. This is because visual
density models fail to recognise that pre- and post-key ac-
quisition states are fundamentally different, instead seeing
all states where the protagonist is located near the start po-
sition as being relatively “boring”. Electing not to terminate
episodes with life loss masks this issue, as suiciding to reach
the doors becomes the optimal solution1.

Hierarchical Learning Approaches
In hierarchical reinforcement learning, agents are trained to
perform temporally extended subtasks in the hope of sim-
plifying longer-term tasks. In a videogame context, subtasks
might include “reach the bottom left room” in Venture, or
“descend the central ladder” in Montezuma’s Revenge. This
approach seems well-suited to sparse reward environments
because, by increasing the time scale over which the agent
acts, the number of decisions the agent must make to reach
a distant reward is effectively reduced. Also note that hierar-
chical RL introduces abstraction; a property that seems lack-
ing from visual density methods. Specifically, it introduces
temporal abstraction (as the time taken to complete a sub-
task may be uncertain) and state abstraction (as the subtask
definitions may omit certain state details).

Given suitable subgoal definitions, hierarchical RL may
progress much faster than ordinary RL. Kulkarni et al.
(2016) demonstrated that an agent equipped with high-level
waypoints for the first room of Montezuma’s Revenge could
learn to exit the room faster than the strongest novelty-driven
agents. Roderick, Grimm, and Tellex (2018) took this further
by providing their agent with a factored state abstraction, in-
cluding information such as “the player has the key”. From
this, their agent learned to retrace its steps and exit the first
room using only a single life.

1Videos of Bellemare et al.’s (2016a) agent and Ostrovski et
al.’s (2017) agent demonstrating the suicide approach are available
at https://youtu.be/0yI2wJ6F8r0 (skip to 0:51) and http://youtu.be/
232tOUPKPoQ.

882

https://youtu.be/0yI2wJ6F8r0
http://youtu.be/232tOUPKPoQ
http://youtu.be/232tOUPKPoQ

The downside of these approaches is that there currently
exists no efficient, autonomous method for identifying sub-
goals in state spaces the size of Atari pixel representations.
Zahavy et al. (2016) were able to identify subgoals for some
games by clustering the Q-network’s hidden layer activa-
tions. However, this method requires a trained Q-network,
which makes it unhelpful during the critical learning phase
in sparse reward games. Vezhnevets et al.’s (2017) FeU-
dal Networks did eventually identify useful subgoals for
Montezuma’s Revenge, but took an extremely long time to
reach competitive performance (around half a year of ex-
perience). To the best our knowledge, the recent approach
of eigenoptions (Machado, Bellemare, and Bowling 2017;
Machado et al. 2018b) has not yet yielded a competitive
agent for sparse reward Atari games.

State Space Partitioning via a Measure
Inspired by some prominent historical work in hierarchical
RL (Dietterich 2000; Hengst 2002), our approach to sub-
goal identification centres around a partitioning of the state
space. The idea is to reward the agent for reaching rarely-
visited partitions, thus incentivising exploration. Under this
approach, entering a partition is synonymous with achieving
a subgoal.

To perform the partitioning, we make use of a heuristic
distance measure d : S ×S → R+ ∪{0} that maps a pair of
states to a measure of their dissimilarity. In the next section,
we propose a specific heuristic for generating partitions
that contain “strategically similar” states. For now though,
merely note that there are multiple ways by which one can
derive partitions from a distance measure. One such method
is sketched as follows:

Partition via a fixed radius: Create a node at the initial
state and define a fixed partition radius. As soon as the
agent encounters a state outside this radius, add another
node at that point. Keep adding nodes whenever the current
state is outside all existing nodes’ radii. The nodes can be
thought of as “representative states” for the set of partitions.
The partition, p, to which a state belongs is the one whose
representative state, sp ∈ R, is closest.

Unfortunately, under the distance measure introduced in the
next section, preliminary experiments revealed the efficacy
of this method to be highly sensitive to the partition radius.
Without careful tuning, it frequently yielded too few or far
too many partitions. Therefore, we opted for the following
alternative, which fixes the number of partitions that exist at
any given time and does not require a partition radius:

Partition via a schedule: Create a node at the initial state
then act according to some policy for a number of time
steps. During this period, keep track of the farthest state
discovered from the set of existing nodes. Periodically add
that state to the set of nodes and restart the process. Again,
treat the nodes as representative states for partitions.

More explicit details can be found within our full pseu-
docode at the end of this paper (see Algorithm 1).

Exploration Effort (EE)
Under the approach outlined so far, different partitionings
of the state space may promote exploration to differing de-
grees. For example, consider the game Freeway, where the
aim is to navigate a chicken to the other side of a busy road.
If one were to partition the state space via a visual dissim-
ilarity measure, the resulting partitions would most likely
contain states with similar traffic configurations, as traffic
accounts for most of the visual variety in Freeway. In that
case, rewarding the agent for reaching rarely-visited parti-
tions would be unlikely to help, as the player has no control
over the traffic. On the other hand, if the state space were
partitioned according to the chicken’s position, the agent
would be incentivised to reach the rarer, middle-of-the-road
and top-of-the-road positions.

Based on this reasoning, it seems we require a distance
measure that regards states like top-of-the-road and bottom-
of-the-road positions in Freeway as being far apart. Indeed,
from an exploration perspective, there is an important sense
in which such states truly are “far apart”: During the early
stages of training, a decaying ϵ-greedy policy is unlikely to
take the chicken from the bottom of the road to the top, be-
cause the policy will be near-uniform random at this stage
and thus unlikely to oversample up actions sufficiently. This
suggests that we can derive a suitable distance measure from
the amount of action over/undersampling required to transi-
tion between states.

To be clear, we do not claim that this an appropriate
heuristic for all problems. For example, in a “combination
safe” task where only one sequence of actions will success-
fully open the safe, the heuristic described does not provide a
meaningful measure of progress. However, a broad problem
class to which the heuristic does seem well-suited is domains
where the agent is controlling a physical entity. Indeed, simi-
lar intuition underlies the use of autocorrelated noise in con-
tinuous control tasks (Wawrzynski 2015).

Formal Definition of EE
Continuing the above line of thought, we seek a function
Eπ : S × S → Rn that takes two states as input and re-
turns, for each of the n actions available2, a measure of
how much that action must be oversampled (relative to the
agent’s current policy, π) in order to transition from the for-
mer state to the latter. To this end, we begin by defining an
n-dimensional auxiliary reward scheme. At each time step,
the auxiliary reward vector is:

r̂π(s, a) = κ⟨r̂π1 (s, a), r̂π2 (s, a), . . . , r̂πn(s, a)⟩ (2)

where κ > 0 is a reward scaling factor and

r̂πi (s, a) =

{
1− π(s, ai), if a = ai
−π(s, ai), if a ̸= ai

(3)

The form of the reward is deliberately chosen so that the
expected reward vector under the agent’s current policy
is zero. However, if an action is over/undersampled for a
period of time, the sum of rewards in the corresponding

2We assume in this work that the action space is discrete.

883

dimension will be positive/negative. To clarify this point,
we now provide a worked example:

Example 1. Let A = ⟨up, down, left, right⟩, and suppose
that an agent transitioned from s0 to s4 by pressing up, right,
right, down under a uniform random policy. Let γ = 0.99
and κ = 1. Then:

r̂π(s0, a0) = ⟨ 34 , −
1
4 , −

1
4 , −

1
4 ⟩

r̂π(s1, a1) = ⟨− 1
4 , −

1
4 , −

1
4 ,

3
4 ⟩

r̂π(s2, a2) = ⟨− 1
4 , −

1
4 , −

1
4 ,

3
4 ⟩

r̂π(s3, a3) = ⟨− 1
4 ,

3
4 , −

1
4 , −

1
4 ⟩

Thus the sampled (Monte Carlo) auxiliary return is:

r̂π(s0, a0) + γr̂π(s1, a1) + γ2r̂π(s2, a2) + γ3r̂π(s3, a3)

=⟨0.015, −0.015, −0.985, 0.985⟩
This reflects the fact that the left action was undersampled
while right was oversampled.

△

Continuing in this vein, we define the exploration effort
function as follows:

Definition 1. The exploration effort from s to s′ (under time
limit m) is the expected auxiliary return when the agent tran-
sitions from s to s′ within m steps, via policy π:

Eπm(s, s′) = Eπ[

T−1∑
k=0

γkr̂π(sk, ak) | s0 = s, sT = s′, T <m]

(4)

△
In the absence of prior knowledge, the auxiliary rewards in
Equation 3 have zero expectation under π. However, knowl-
edge of s′ means that the expectation in Equation 4 may be
non-zero. Returning to the example in Freeway, if we knew
that the chicken was at the bottom of the road in s, then at the
top of the road in s′, we would expect the interleaving aux-
iliary return in the up dimension to be positive (assuming π
is untrained and does not yet favour the up button).

To train an estimator for the exploration effort function,
we sample state pairs from the agent’s replay memory that
are less than m time steps apart, as well as the interleaving
auxiliary rewards. In addition to calculating Monte Carlo tar-
gets, as per Example 1, we also calculate one-step targets as
follows:

Eπm(st, s
′)one-step target = r̂(st, at) + γEπm−1(st+1, s

′)

This allows us to train towards a mixed Monte Carlo target
(Bellemare et al. 2016a), using proportion η of the Monte
Carlo target and proportion (1 − η) of the one-step tar-
get. Using a mixed return helps mitigate the variance of the
Monte Carlo estimates, while also propagating distant re-
wards faster than pure one-step updating. To avoid main-
taining separate estimators for Eπm and Eπm−1, we bootstrap
one-step targets from Eπm, with the justification that the func-
tions should be very similar for large enough m.

Deriving a Distance Measure from EE
In certain situations, the exploration effort between strategi-
cally similar states may be large. For example, suppose that
an agent is playing Montezuma’s Revenge via a uniform ran-
dom policy, and that the protagonist was positioned against
a wall in s, then later against the same wall in s′. Given this
knowledge, it is likely the policy oversampled actions that
ran the protagonist into the wall versus those that would have
escaped the wall. Therefore, simply treating the magnitude
of the exploration effort vector as distance is inappropriate.
In the worst case, it could cause the state partitioning algo-
rithm to generate duplicate representative states.

Fortunately, we can address this issue via a mathematical
method. Let ŝ ∈ S be an arbitrary reference point. Then,
define the distance between s and s′ relative to ŝ as:

dŝπ,m(s, s′) = max(∥Eπm(ŝ, s)− Eπm(ŝ, s′)∥,
∥Eπm(s, ŝ)− Eπm(s′, ŝ)∥)

(5)

To paraphrase, this measure finds the displacement of both s
and s′ from the reference point, treating the magnitude of the
difference as distance. Observe that the distance from a state
to itself is always zero, and the two-way maximum ensures
that the measure is invariant to the order of the arguments.
Taking this one step further, we define the distance between
s and s′ relative to a reference set, Ŝ ⊆ S, as:

dŜπ,m(s, s′) = max
ŝ∈Ŝ

dŝπ,m(s, s′) (6)

In our implementation we use this measure, with Ŝ equal to
the set of representative states,R.

Pellet Rewards
The approach presented thus far does in fact yield partitions
for sparse reward Atari games that resemble intuitive sub-
goals. (Skip to Figure 3 for a preview.) However, we have not
yet shown how these partitions can be exploited, nor demon-
strated that such an approach actually aids exploration. To
enable us to address these points, in this section we propose
a partition-based intrinsic reward scheme, dubbed pellet re-
wards. Our approach takes its name and inspiration from
the collectable pellets in Ms. Pacman which, from an ex-
ploration perspective, have a number of desirable effects:

1. They compel the player to perform an approximate depth-
first search of the environment, as it is generally more effi-
cient to continue forward rather than to retreat over a trail
of consumed pellets. However, they do not disincentivise
the player from backtracking upon hitting a dead-end.

2. The player has no incentive to remain stationary after col-
lecting a pellet (which address the issue of “soaking up”
novelty bonuses, as discussed in the background section).

3. The player’s incentive to avoid death depends on how
many pellets they have already collected. Once the player
has collected all low-risk pellets, there is no reason not to
attempt high-risk pellets.

884

We mimic the pellet mechanic by paying the agent a nov-
elty bonus on its first transition (per episode) into a parti-
tion. Visited partitions become “collected”, meaning no fur-
ther novelty bonus is paid for reaching those partitions until
the next episode. Similarly to previous schemes (Bellemare
et al. 2016a; Martin et al. 2017; Ostrovski et al. 2017), the
bonus takes the form β/

√
np, where β is a constant scale

factor and np is partition’s visit count in episodes.
One downside of creating partitions on a schedule is that

sometimes the algorithm creates seemingly redundant parti-
tions in regions that have already been thoroughly explored.
This has the potential to cause destabilising novelty bonuses.
Further, since the distance measure is continually changing,
visits that were assigned to a partition at an earlier time
may no longer be valid. To address these issues, we cal-
culate np as an inferred visit count. That is, we calculate
a moving average of the partition’s visit rate, rp, and set
np = rp × totalEpisodeCount. This ensures that new par-
titions that are frequently visited quickly attain large counts,
and partitions whose borders change significantly will also
have their counts shift accordingly.

Experimental Configuration
In this section, we focus on explaining non-standard or
otherwise pertinent aspects of our configuration for Atari
games that warrant some comment. All other settings can
be found in our source code3.

Environment. We used version 0.6 of the Arcade Learning
Environment (ALE) (Bellemare et al. 2013), injecting
stochasticity via sticky actions (Machado et al. 2018a)
with a stickiness of 0.25. To expose the agent to “risky
exploration” scenarios (as explained in the background), we
considered episodes to be terminated upon life loss.

Architecture. Since the exploration effort function takes
two screens as input and acts as a kind of similarity measure,
we approximated it via a Siamese architecture (Bromley et
al. 1994). First, the screens are passed through two parallel
encoders, whose weights are shared. The structure of the
encoders is identical to the combined preprocessing and
convolutional section of Mnih et al.’s (2015) network,
except that we reduce the number of convolutional filters
from (32, 64, 64) to (16, 16, 16) and input only a single
screen rather than a four frame history. The encoders feed
into a parallel mean and subtraction layer, followed by
a fully connected layer of 128 units, then finally into an
output layer with one node per action. Our Q-network
architecture matches that of Mnih et al. (2015), except that
we additionally feed the values of the collected pellets to
the fully connected layer. As in Bellemare et al. (2016a), the
Q-function is trained via mixed Monte Carlo updates.

Exploration Effort Training Parameters. The auxiliary
reward scale factor, κ, was set to 1. The time separation
constant, m, was set to 100. Both the EE and Q-function
were trained via mixed Monte Carlo updates with η = 0.1.

3https://bitbucket.org/mchldann/aaai2019

To further mitigate the large variance of the EE targets, the
Monte Carlo deltas were clipped to 0.5. Prior to commenc-
ing Q-learning, the EE function was trained for 8 million
frames (2 million samples) on experience generated via a
uniform random policy. From that point on, it was trained in
tandem with the Q-function.

Partition / Pellet Configuration. Pellet rewards were
calculated using partition visits at sample time rather than
the time of insertion into the replay memory. We set the
pellet reward scale factor, β, to 1, but clipped bonuses to
a maximum of 0.1. The time between partition additions
was initially set to 80,000 frames, then increased by 20%
with each addition. Experience collection for Q-learning
commenced once there were 5 partitions in existence.

Improved Baseline Exploration. The usual ϵ-greedy decay
schedule, whereby ϵ is annealed to a small value over the
first 4 million frames (Mnih et al. 2015), risks “dooming”
agents that have discovered few rewards by the end of the
schedule. In essence, favouring the greedy action 90+% of
the time before the agent has learned anything is too com-
mittal and may harm the agent’s chances of ever learning.
To mitigate this issue, we fix ϵ = 1 for the remainder of
the episode whenever the agent exceeds 500 actions without
receiving a reward (either a pellet or an extrinsic reward).
Our rationale is that DQN’s default discount of γ = 0.99
effectively limits the agent’s planning horizon to around 500
actions (as 0.99500 ≈ 0.01). Assuming there is some way
to achieve a positive return within this time frame, reward-
less trajectories of greater length indicate that the agent may
not have explored the current region sufficiently. As we shall
see in the next section, this tweak yields a more competitive
benchmark and helps contextualise certain results.

Results and Discussion
We applied our approach to three sparse reward Atari games:
Venture, Freeway and Montezuma’s Revenge. In addition, we
tested it on two games with dense rewards: Battlezone and
Robot Tank. The reason for including the latter games was
not to see whether pellet rewards would be beneficial, but
rather to see if they would be detrimental in games where
standard DQN already performs well. In previous work (Os-
trovski et al. 2017), novelty bonuses had an adverse affect in
the two games chosen.

We benchmarked our method against a configuration that
was identical in every respect except that pellet rewards were
turned off. For each game, we conducted 5 training runs per
agent. To make it easier to see the effect of pellet rewards on
learning progress, we have plotted all training curves in Fig-
ures 1 and 2 from the point where Q-learning commenced.
However, it should be noted that the pellet rewards agent
was given an additional 8 million frames to pre-train the ex-
ploration effort function, plus a further 460,000 frames to
generate the first 5 partitions. For Freeway, the graph’s time
scale has been shrunk to emphasise the early learning phase.
At 30 million frames, the agents’ average scores were virtu-
ally identical (pellet rewards: 33.4, baseline: 33.3).

885

https://bitbucket.org/mchldann/aaai2019

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

With Pellets
No Pellets

(a) Venture

 0

 5

 10

 15

 20

 25

 30

 35

 0 2x106 4x106 6x106 8x106 1x107

With Pellets
No Pellets

(b) Freeway

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

With Pellets
No Pellets

(c) Montezuma’s Revenge

Figure 1: Average score versus training frames on sparse reward games (averaged over the last 100 episodes).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

With Pellets
No Pellets

(a) Battlezone

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

With Pellets
No Pellets

(b) Robot Tank

Figure 2: Average score versus training frames on dense reward games (averaged over the last 100 episodes).

In all three sparse reward games, our approach identified
meaningful subgoals. In Venture, it placed subgoals in all the
main rooms. In Freeway, it generated representative states
resembling intermediate waypoints for the chicken crossing
the road. For Montezuma’s Revenge, the first 20 representa-
tive states found on a particular run are shown in Figure 3.
Like the human experts in Kulkarni et al.’s (2016) work, our
method generated subgoals corresponding to the bottom-
right ladder (#2 and #6), bottom-left ladder (#8), top-right
door (#5), top-left door (#3) and middle-ladder (#4 and #7).

The resultant pellet rewards clearly aided extrinsic re-
ward discovery in these games, as evidenced by the training
curves in Figure 1. In Venture, all runs of the pellet agent
reached an average of ≈1000 points by 15 million frames,
while the baseline agent’s training curves were slower and
more staggered, indicating that it relied more on luck to
discover extrinsic rewards. By 30 million frames, one of
the baseline runs remained stuck on zero score. Results in
Freeway were similar, with the baseline exhibiting staggered
starts while the pellet agent progressed so reliably that its
five runs are virtually indistinguishable in Figure 1b.

On Montezuma’s Revenge, none of the baseline runs made
progress within the time given. By contrast, the pellet re-
wards agent learned to reach the key, open the right-hand
door, descend a ladder to reach a sword then climb back up
the ladder to kill an enemy with the sword for a total of 2,500
points, achieving this consistently in 4 out of 5 runs by the
end of training4. Impressively, the agent learned to retrace

4On the other training run, the agent formed a hard-to-unlearn
preference for exiting the first room via the left door, from where it

its steps from the key to reach a door without suiciding. As
far as we are aware, the only previous agent to display this
behaviour is that of Roderick, Grimm, and Tellex (2018), but
it exploited a handcrafted state representation.

One surprising result is the performance of the baseline
in Venture, as baselines in previous work average less than
100 points in this game (Bellemare et al. 2016a; Martin et
al. 2017; Ostrovski et al. 2017). The fact that our baseline
began improving well after 4 million frames (i.e. after ϵ had
fully decayed) suggests that premature annealing of ϵ was a
significant problem for previous agents.

Relation to Previous Novelty-Driven Methods
The previous methods most comparable to ours are those of
Bellemare et al. (2016a; 2016b) and Ostrovski et al. (2017).
Individual comparisons are provided below, but broadly
speaking, these methods differ from ours in three main re-
spects: (1) They do not identify subgoals. (2) They pay an in-
trinsic reward at every frame, whereas we pay bonuses only
on pellet collection. (3) They consider episodes to be ter-
minated after the loss of all lives (which mitigates the “risky
exploration” problem discussed in the background), whereas
we terminate episodes after individual life loss.

Bellemare et al.’s (2016a; 2016b) agent, which is based
on the CTS density model, is currently the strongest agent
for Montezuma’s Revenge (averaging 3439 points after 100
million frames). While our agent never scored more than

is difficult to score. Bellemare et al.’s (2016a) state-of-the-art agent
also experienced this issue; see Figure 2 in their work, noting the
minimum score line that persists until around 60 million frames.

886

1 2 3 4 5 6 10987

11 12 13 14 15 16 20191817

Figure 3: The first 20 representative states found over one training run on Montezuma’s Revenge.

2500 points, we trained under the harder episode termina-
tion condition. Bellemare et al.’s A3C+ agent averaged only
143 points with this setting5, suggesting that it was more sus-
ceptible to the risky exploration problem. In addition, their
strongest agent achieved only≈350 points in Venture, which
was far surpassed by even our baseline configuration.

Ostrovski et al.’s (2017) agent, which is the strongest for
sparse reward Atari games overall, uses a more sophisti-
cated, neural density model in place of CTS. It is difficult
to compare our results directly with theirs because they try
a number of different configurations and it is unclear which
constitutes the “main” agent, but on the three sparse reward
games tested here, their results were broadly comparable to
ours (≈1000–1200 in Venture, ≈30 in Freeway and ≈1500–
3000 in Montezuma’s Revenge). However, on the dense re-
ward games we tested (Battlezone and Robot Tank) their
scheme was heavily detrimental, reducing scores by 30–50%
over the course of training6. For this to have occurred, the
cumulative effect of their per-frame intrinsic rewards must
have been large enough to distract the agent from the extrin-
sic rewards. By contrast, it seems that pellet rewards had a
milder effect on the task objective, as they caused no notice-
able impact in these games (see Figure 2).

Relation to Previous Subgoal-Based Methods

The only previous approach we are aware of that derives
subgoals autonomously and reaches a competitive score on
Montezuma’s Revenge is that of Vezhnevets et al. (2017).
However, their agent took somewhere in the order of one
billion frames to match our agent’s 30 million frame score.
Machado et al.’s (2018b) eigenoption method autonomously
discovered some useful options on the first screen of Mon-
tezuma’s Revenge, but to the best of our knowledge has not
yet yielded a successful game playing agent. Further, the op-
tions showcased in their paper were selected from amongst
hundreds of derived options. While our method did identify
some seemingly redundant subgoals (e.g. see subgoals #9
and #10 in Figure 3), it was more selective than the eigenop-
tion method overall.

5They do not report results for their non-AC3+ agent with ter-
mination after life loss, but it was also harmed by this setting.

6See Figure 17 in their appendix, noting that the agents with
mixed Monte Carlo returns are most comparable to ours.

Relation to Novelty-Driven Planning
Beyond Deep RL, the idea of favouring novel states has also
been applied in Atari planning agents (Lipovetzky, Ramirez,
and Geffner 2015). However, the strongest Atari planning
agents rely on the provision of an exact model, and we are
not aware of any planning agents that attain competitive
scores on games such as Montezuma’s Revenge and Venture
whilst also operating in real-time.

Future Work
In the future, we believe it will be valuable to incorporate
uncertainty estimates into the exploration effort function,
perhaps leveraging recent work by Gal (2016) and others.
Our reason is that, ideally, the approach should account for
changes to the state distribution as the agent learns. When
the agent first experiences states with large visual novelty
(e.g. when it first reaches beyond the first room in Mon-
tezuma’s Revenge), the EE estimates are liable to be inaccu-
rate. On one hand this is not a major problem, since inaccu-
rate EE values will usually result in large distance estimates
(due to the way Equations 5 and 6 are structured), meaning
the agent will be inclined to place subgoals in such areas.
Intuitively, this should be beneficial. However, to ensure the
reliability of the distance estimates, it would be preferable
for Equation 6 to ignore values with large uncertainty.

Conclusion
In this paper, we proposed a new approach to the impor-
tant problem of identifying subgoals autonomously in high-
dimensional state spaces. Our experiments in the Atari do-
main showed that our method was capable of identifying
meaningful subgoals from raw pixels. We proposed a novel
intrinsic reward scheme for exploiting the subgoals and used
it to train an agent that was competitive with state-of-the-art
methods on three sparse reward games. In addition, our ap-
proach mitigated the “risky exploration” problem, and per-
formed gracefully on two games where a previous intrinsic
reward scheme was detrimental.

Algorithm Pseudocode
A sketch of our full approach is provided in Algorithm 1.
For comprehensive implementation details and a complete
list of parameter settings, please refer to our source code
(https://bitbucket.org/mchldann/aaai2019).

887

https://bitbucket.org/mchldann/aaai2019

Algorithm 1 Q-learning with Pellet Rewards

1: var: current set of rep. states,R = {sp1
, sp2

, . . . , spn
}

2: var: time elapsed since last partition added, tpartition
3: var: time gap between partition additions, Tadd
4: var: current candidate for the next rep. state, s̃pn+1

5: var: max dist. veered since last partition addition, Dmax
6: var: the set of partitions visited in the episode so far, v
7: var: Monte Carlo mixing coefficient for Q-learning, ηQ
8: var: Monte Carlo mixing coefficient for EE, ηE
9:

10: procedure MAINLOOP()
11:
12: RESET()
13:
14: // Add representative state for first partition
15: sp1 ← s
16: R ← {sp1}
17: tpartition ← 0
18:
19: for each episode do
20:
21: while s is not terminal do
22:
23: π ← ϵ-greedy policy derived from Q
24: Select a ∼ π(s, ·)
25:
26: Calculate aux. reward r̂π as per Eq. 3
27: Take action a, observe r, s′
28:
29: // Determine the current partition
30: spc

← argminspi∈R d(s′, spi
)

31:
32: // Update the set of visited partitions
33: v′ ← v ∪ spc

34:
35: // Update the best candidate according
36: to the
37: // distance measure defined by Equation 6
38: if d(s′, spc) > Dmax then
39: s̃pn+1

← s′

40: Dmax ← d(s′, spc
)

41: end if
42:
43: Store transition info {s, v, a, r̂π, r, s′, v′}
44: in the replay memory
45:
46: // Add a new rep. state every Tadd steps
47: tpartition ← tpartition + 1
48: if tpartition > Tadd then
49: R.add(s̃pn+1)
50: Dmax ← 0
51: tpartition ← 0
52: end if
53:
54: QLEARN()
55: EELEARN()

56: s← s′

57: v ← v′

58: end while
59:
60: Update all partitions’ visit counts based on v
61: RESET()
62:
63: end for
64: end procedure
65:
66:
67: procedure RESET()
68: Reset the game and set s equal to the initial state
69: v ← {}
70: end procedure
71:
72:
73: procedure QLEARN()
74:
75: Sample random minibatch of transitions
76: {s, v, a, r, s′, v′} from replay memory
77:
78: if v ̸= v′ then
79: r+ ← pellet reward for the partition visited
80: (i.e. the single partition in v′ \ v)
81: else
82: r+ ← 0
83: end if
84: targone-step ← r + r+ + γmaxa Q(s′, v′, a)
85:
86: Calculate extrinsic and intrinsic returns, R and R+,
87: via the remaining history in the replay memory
88:
89: targMC ← R+R+

90: targmixed ← (1− ηQ)targone-step + ηQtargMC
91: Update Q(s, v, a) towards targmixed
92:
93: end procedure
94:
95:
96: procedure EELEARN()
97:
98: Sample a minibatch of state pairs and interleaving
99: auxiliary rewards {st, st+k, {r̂πt , . . . , r̂πt+k−1}}
100: from the replay memory with k < m
101:
102: targone-step ← r̂πt + γEπm(st+1, st+k−1)
103:
104: targMC ←

∑k−1
i=0 γir̂πt+i

105:
106: targmixed ← (1− ηE)targone-step + ηEtargMC
107:
108: Update Eπm(st, st+k−1) towards targmixed
109:
110: end procedure

888

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research.
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016a. Unifying Count-Based
Exploration and Intrinsic Motivation. In Advances in Neural
Information Processing Systems, 1471–1479.
Bellemare, M. G.; Srinivasan, S.; Ostrovski, G.; Schaul,
T.; Saxton, D.; and Munos, R. 2016b. Unifying Count-
Based Exploration and Intrinsic Motivation. arXiv preprint
arXiv:1606.01868.
Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
R. 1994. Signature Verification using a “Siamese” Time
Delay Neural Network. In Advances in Neural Information
Processing Systems, 737–744.
Dietterich, T. G. 2000. Hierarchical Reinforcement Learn-
ing with the MAXQ Value Function Decomposition. Jour-
nal of Artificial Intelligence Research (JAIR) 13:227–303.
Digney, B. L. 1998. Learning Hierarchical Control Struc-
tures for Multiple Tasks and Changing Environments. In
Proceedings of the 5th International Conference on Simula-
tion of Adaptive Behavior, volume 5, 321–330.
Gal, Y. 2016. Uncertainty in Deep Learning. Ph.D. Disser-
tation, University of Cambridge.
Hengst, B. 2002. Discovering Hierarchy in Reinforcement
Learning with HEXQ. In Proceedings of the 19th Inter-
national Conference on Machine Learning, volume 2, 243–
250.
Konidaris, G., and Barto, A. 2009. Skill Discovery in
Continuous Reinforcement Learning Domains Using Skill
Chaining. In Advances in Neural Information Processing
Systems, 1015–1023.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical Deep Reinforcement Learn-
ing: Integrating Temporal Abstraction and Intrinsic Motiva-
tion. In Advances in Neural Information Processing Sys-
tems, 3675–3683.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical Planning with Simulators: Results on the Atari Video
Games. In Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI), volume 15, 1610–
1616.
Machado, M. C.; Bellemare, M. G.; and Bowling, M. 2017.
A Laplacian Framework for Option Discovery in Reinforce-
ment Learning. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, 2295–2304.
Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness, J.;
Hausknecht, M.; and Bowling, M. 2018a. Revisiting the Ar-
cade Learning Environment: Evaluation Protocols and Open
Problems for General Agents. Journal of Artificial Intelli-
gence Research.
Machado, M. C.; Rosenbaum, C.; Guo, X.; Liu, M.; Tesauro,
G.; and Campbell, M. 2018b. Eigenoption Discovery

through the Deep Successor Representation. In Interna-
tional Conference on Learning Representations.
Machado, M. C.; Srinivasan, S.; and Bowling, M. H.
2015. Domain-Independent Optimistic Initialization for Re-
inforcement Learning. In AAAI Workshop: Learning for
General Competency in Video Games.
Martin, J.; Sasikumar, S. N.; Everitt, T.; and Hutter, M. 2017.
Count-Based Exploration in Feature Space for Reinforce-
ment Learning. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-Level
Control Through Deep Reinforcement Learning. Nature
518(7540):529–533.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep Exploration via Bootstrapped DQN. In Advances in
Neural Information Processing Systems, 4026–4034.
Ostrovski, G.; Bellemare, M. G.; van den Oord, A.; and
Munos, R. 2017. Count-Based Exploration with Neural
Density Models. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, 2721–2730.
Parr, R., and Russell, S. 1998. Reinforcement Learning with
Hierarchies of Machines. Advances in Neural Information
Processing Systems 1043–1049.
Roderick, M.; Grimm, C.; and Tellex, S. 2018. Deep Ab-
stract Q-Networks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems,
131–138. International Foundation for Autonomous Agents
and Multiagent Systems.
Şimşek, Ö.; Wolfe, A. P.; and Barto, A. G. 2005. Identifying
Useful Subgoals in Reinforcement Learning by Local Graph
Partitioning. In Proceedings of the 22nd International Con-
ference on Machine Learning, 816–823. ACM.
Stadie, B. C.; Levine, S.; and Abbeel, P. 2015. Incentivizing
Exploration in Reinforcement Learning with Deep Predic-
tive Models. arXiv preprint arXiv:1507.00814.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artificial Intelligence
112(1):181–211.
Thrun, S.; Schwartz, A.; et al. 1995. Finding Structure in
Reinforcement Learning. Advances in Neural Information
Processing Systems 385–392.
Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.; Jader-
berg, M.; Silver, D.; and Kavukcuoglu, K. 2017. FeUdal
Networks for Hierarchical Reinforcement Learning. In Pro-
ceedings of the 34th International Conference on Machine
Learning, volume 70, 3540–3549.
Wawrzynski, P. 2015. Control Policy with Autocorrelated
Noise in Reinforcement Learning for Robotics. Interna-
tional Journal of Machine Learning and Computing 5(2):91.
Zahavy, T.; Ben-Zrihem, N.; and Mannor, S. 2016. Gray-
ing the black box: Understanding DQNs. In Proceedings
of the 33rd International Conference on Machine Learning
(ICML-16), 1899–1908.

889

