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Abstract

Human-object interactions (HOI) recognition and pose esti-
mation are two closely related tasks. Human pose is an es-
sential cue for recognizing actions and localizing the inter-
acted objects. Meanwhile, human action and their interacted
objects’ localizations provide guidance for pose estimation.
In this paper, we propose a turbo learning framework to per-
form HOI recognition and pose estimation simultaneously.
First, two modules are designed to enforce message passing
between the tasks, i.e. pose aware HOI recognition module
and HOI guided pose estimation module. Then, these two
modules form a closed loop to utilize the complementary in-
formation iteratively, which can be trained in an end-to-end
manner. The proposed method achieves the state-of-the-art
performance on two public benchmarks including Verbs in
COCO (V-COCO) and HICO-DET datasets.

Introduction
Human-object interactions (HOI) recognition (Gkioxari et
al. 2017; Gupta, Kembhavi, and Davis 2009; Yao and Fei-
Fei 2010; Chen and Grauman 2014) aims to detect and rec-
ognize triplets in the form < human, action, object >
from a single image. It has attracted increasing attention, due
to its wide applications in image understanding and human-
computer interfaces. Although previous methods have made
significant progress, it is still a challenging task due to the
diversity of human activities and the complexity of back-
grounds.

Most existing methods perform HOI recognition in two
steps. First, a detector is employed to detect all objects in the
image. Then the action and interacted objects’ locations are
obtained mainly based on the human appearance. However,
these methods are easily influenced by the change of human
appearance. In contrast to source human appearance, human
pose contains structure information, which is a more robust
reference for both action recognition and object localization.
Though pose information also comes from appearance fea-
tures, from the viewpoint of HOI recognition task, it pro-
vides an indirect way to encode appearance features. There-
fore, considering pose estimation in HOI recognition is thus
a natural and intuitive idea. Gupta and Malik (2015) pro-
pose a dataset named Verbs in COCO (V-COCO), in which
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two kinds of information are labeled at the same time. How-
ever, most existing methods treat HOI recognition and pose
estimation as separate tasks, which ignore the information
reciprocity between two tasks.

Constructing a closed loop between HOI recognition and
pose estimation may bring improvement to each task as
shown in Fig 1. On one hand, human pose can improve
the robustness of HOI recognition. As for action recogni-
tion, human pose offers accurate analysis of human structure
rather than coarse information of human body appearance,
thus reducing the impact of changes in human appearance.
As for target localization, the locations of some keypoints
can reveal the location and direction of the interacted ob-
jects. For example, the keypoint of the wrist is very close
to the object in the action hold. Therefore, human pose is a
powerful cue for recognizing actions and localizing the in-
teracted objects. On the other hand, human action can guide
the distribution of keypoints vice versa. As a result, the rel-
ative position between the keypoints is clearer. Meanwhile,
their interacted objects’ localization can help localize spe-
cific keypoints. So human action and their interacted ob-
jects’ localization provide guidance for pose estimation.

In this paper, we propose a turbo learning method to si-
multaneously perform HOI recognition and pose estimation.
Specifically, a pose aware HOI recognition module is used
to perform HOI recognition based on both image and pose
features, which can reduce the influence of changes in hu-
man appearance. Meanwhile, a HOI guided pose estimation
module is used to perform pose estimation with clear rela-
tive distribution between keypoints, in which HOI features
are encoded into space location information. Then these two
modules form a closed loop in the similar way as an engine
turbo-charger, which feeds the output back to the input to
reuse the exhaust gas for better engine efficiency. The feed-
back process can gradually improve the results of both tasks.
To the best of our knowledge, this is the first unified end-to-
end trainable network for simultaneous HOI recognition and
pose estimation.

Our contributions are in three folds: (1) A pose aware
HOI recognition module is proposed, in which the human
pose can help to extract more accurate human structure in-
formation than the source appearance features. (2) A HOI
guided pose estimation module is introduced, where HOI
recognition features and image features form an attention
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Figure 1: HOI recognition and pose estimation can help each other. People doing the same action like running have similar
keypoints distribution. When there is a priori action pattern, the wrong pose estimation might be corrected. Meanwhile, when
there are several objects in the estimated action-type specific density area (red area), the model will be confused to find the target
object (green box). However, Some keypoints like wrist can refine the red area and help the model to localize the interacted
object successfully.

mask for pose estimation, which transforms the pattern of
human action into the general distribution of keypoints. (3)
A turbo learning framework is proposed to sequentially per-
form HOI recognition and pose estimation using the two
modules, which can gradually improve the results on both
tasks. The proposed method achieves the state-of-the-art re-
sults on two public benchmarks including V-COCO and
HICO-DET (Chao et al. 2017).

Related Work
HOI Recognition
HOI recognition is not a new problem in computer vi-
sion (Herath, Harandi, and Porikli 2017). Traditional meth-
ods (Hu et al. 2013; Delaitre, Laptev, and Sivic 2010;
Pishchulin, Andriluka, and Schiele 2014) usually use many
contextual elements in images to predict action categories,
including human pose, manipulated objects, scene, and
other people in images (Gupta, Kembhavi, and Davis 2009;
Maji, Bourdev, and Malik 2011; Desai and Ramanan 2012).
Likewise, deep methods also use one or several of these el-
ements to recognize HOIs, but most of them only consider
human appearance to be the key point of HOI recognition.
For example, Mallya and Lazebnik (2016) fuse CNN-based
human appearance features and global context features to
achieve the state-of-the-art performance on predicting HOI
labels; Gkioxari et al. (2017) use merely human features
to achieve the state-of-the-art performance in HOI recogni-
tion. Beyond that, Chao et al. (2017) use spatial relations be-
tween human and object positions to recognize HOIs. Shen
et al. (2018) focus on the difficulty of obtaining all the possi-

ble HOI samples in reality, and propose a zero-shot learning
method to tackle with the lack of data problem.

Combination of Action Recognition and Pose
Estimation
It’s not difficult to understand that there exists an intrinsic
connection between human actions and human poses (Wei
et al. 2016; Cao et al. 2017; Ning, Zhang, and He 2017;
Luvizon, Tabia, and Picard 2017; Xiaohan Nie, Xiong, and
Zhu 2015). Different people may have different skin colors
and appearance, dressing various clothes, but their poses are
similar when they are doing the same action due to the ho-
mogeneity of human body. Intuitively, adding pose informa-
tion would be beneficial for deep networks to recognize HOI
categories, but relevant researches are scarce, especially in
deep learning. In early times, Yao and Fei-Fei (2010) use
a random field model to encode mutual context of human
pose and objects, but their method needs to generate a set
of models, each modeling one type of human pose in one
action class. Desai and Ramanan (2012) propose a compo-
sitional model that uses human pose and interacting objects
to predict human actions, but the visual phraselets and tree
structure they use are too simple to capture sophisticated
HOI relations in large datasets. In connection with neural
networks, Shen et al. (2018) concatenate pre-computed pose
features and appearance features to improve model perfor-
mance on HOI recognition. Recently, Luvizon, Picard, and
Tabia (2018) design a single architecture for jointly 2D and
3D pose estimation from still images and action recogni-
tion from video sequences. Similar to their idea, our method
combines two tasks using one end-to-end trainable frame-
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work. On top of that, we adopt a novel turbo learning frame-
work that leads to better results in each sub-tasks.

Method
An overview of our framework is illustrated in Fig 2(a). We
propose an end-to-end turbo learning framework to integrate
two different tasks. After extracting the human appearance
features by the stem network, the pose aware HOI recog-
nition module is applied to predict HOI with both human
appearance features and human pose features. Then, the pro-
posed HOI guided pose estimation module updates the hu-
man pose result depending on HOI recognition result. The
two processes repeat for several times. The two modules
form a closed loop to gradually improve the results of both
pose estimation and HOI recognition. The closed loop can
be expanded by the time sequence as shown in Fig 2(b).

Pose Aware HOI Recognition
Inspired by (Gkioxari et al. 2017), we decompose HOI
recognition into two subtasks: action recognition and target
localization. We treat the action recognition task as a multi-
label task, since a person can simultaneously perform mul-
tiple actions (e.g., sit and hold). To avoid competition be-
tween classes, a set of binary sigmoid classifiers are used for
multi-label action classification as in (Gkioxari et al. 2017).
Hence, the action recognition model outputs a confidence
score sa for action a. Normally, the action score sa is calcu-
lated only based on the human appearance features F , which
can be written as sa = sigmoid(I(F )), where I( ) refers to
the fully connected transformation of the feature maps.

Previous methods predict two subtasks with appearance
features extracted from human bounding box. However, we
notice that the human region contains lots of background
information and the rough feature of human make the HOI
recognition easily influenced by the change in appearance.
Instead of only considering the human appearance feature,
we argue that the human pose estimation obtains detailed
analysis of human structure and could provide robust pose
prior for HOI recognition.

Therefore, we design two types of pose aware HOI mod-
ules to integrate human pose constraints. The first one is
a simple multi-task training, in which we extend the HOI
recognition branch with a pose estimation branch. It needs to
be noticed that these two tasks only share stem block. In the
second design, instead of integrating human pose informa-
tion implicitly, we further encode the human pose features as
input of HOI recognition task as shown in Fig 2(c). In order
to make full use of pose information, the pose estimation
features fk consist of two parts: the intermediate features
Pmid from the eighth convolution layer of pose estimation
branch, and the pose estimation branch’s output Pout. The
feature Pmid contains rich information of human pose and it
is abstract enough to encode all body part locations. The esti-
mation result Pout provides the exact structure of the human
body. Furthermore, the HOI features in the previous stage
also contribute to the HOI recognition in this stage, which
will be discussed in the later. Therefore, the concatenation
of pose estimation features, human appearance features F

and the HOI features in the previous stage are used as input
h of this module, which can be written as:

h = I([fn−1
k , F,Hn−1

mid , H
n−1
out ]), (1)

where [ ] refers to the concatenation of the feature maps.
Hn−1

mid and Hn−1
out represent the intermediate features and

recognition results of the previous HOI recognition module
respectively.

For the target localization task, each action predicts the
location of the associated object. To enforce the prior that the
interacting objects are around the human body, the position
of each object is represented relative to the human proposal
as ˆbo|h.

ˆbo|h = {xo − xh

wh
,
yo − yh

hh
, log

wo

wh
, log

ho

hh
}, (2)

where ho, wo indicate the height and width of the ground
truth target object, and hh, wh denote the height and width
of the human region proposal (i.e., its IoU overlap with the
ground-truth box is ≥ 0.5.). However, the human region pro-
posal and target object may vary in sizes, so we use the
smooth L1 loss as it is less sensitive to outliers. Note that
the actions without interactive objects will not produce loss
in this task.

Predicting the precise location is a challenging task. For
example, the target object usually does not appear in the re-
gion proposal bh for the action throw. Therefore, in the test
phase, the target localization branch estimates a probability
of object location instead of the precise position. We com-
bine the predicted probability µa and the detected objects
position bo|h from the object detection branch to precisely
localize the target. Specifically, given the human box bh and
action a, the target localization branch outputs the relative
position of associated object µa, then the target localization
probability gah,o can be written as:

gah,o = exp(−||bo|h − µa||2/2σ2), (3)

where σ is a hyperparameter to constrain search region,
we set it to 0.3 in the experiment. The detected object po-
sition bo|h is also encoded as Equation 2. After that, the
accurate localization of object ˆbo|h is obtained by ˆbo|h =
argmaxbo|h g

a
h,o.

HOI Guided Pose Estimation
The previous module has predicted action confidence and
the position of the associated object, then we propose a HOI
guided pose estimation module to improve the prediction of
human pose. However, the results of action recognition and
target localization are predicted by a fully connected net-
work and lots of spatial structures are lost. To encode HOI
feature into spatial constraint, which is important to human
pose estimation, we propose a HOI attention mask to refine
keypoint detection.

The architecture of HOI guided pose estimation module
is shown in Fig 2(d). In this module, an attention mask is
generated by the HOI features and then the attention mask is
performed on the keypoint feature. The modulated features
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Figure 2: (a) Overview of the proposed method. (b) Unfolded diagram of the turbo learning framework along time. (c) The
architecture of pose aware HOI recognition module. (d) The architecture of HOI guided pose estimation module.

are utilized to generate refined results of human pose esti-
mation. The HOI features fa include intermediate features
Hmid and recognition output Hout simultaneously, where
Hout consists of the results of action recognition and tar-
get localization, and Hmid contains the implicit information
about human action patterns. More formally, we define the
attention mask Attaction as Equation 4, and use R( ) to in-
dicate reshape operation.

Attaction = R(sigmoid(I([fa]))), (4)

After that, the modulated keypoint features p are achieved
as the element-wise multiplication results of attention mask
and pose estimation features in previous stage fn−1

k . fn−1
k

denotes the features of the previous pose estimation module.
Specifically, given attention mask Attaction, we generate the
input feature maps p as follows:

p = Attaction · fn−1
k . (5)

Then we feed the modulated features p into the keypoint
detection block to predict the human pose estimation result
in stage n. After the attention mask filtering, some false lo-
cated keypoints are corrected as shown in experiments. The
keypoint detection block consists of sequential 3×3 512-d
convolution layers, one deconv layer, one upsample layer
and the final convolution layer which projects 512 channels
of feature maps into K masks (K is the number of keypoints).
We model the location of ground truth as a one-hot mask
like (He et al. 2017). Specifically, the ground truth mask
is a one-hot m × m binary mask where only the pixel at
the ground truth location is foreground. Therefore, we re-
gard the pose estimation task as a kind of m×m categories
of classification tasks, so the training objective is to min-
imize the cross-entropy loss over an m × m-way softmax

output. Similar as the HOI recognition module, the pose es-
timation module only calculate the loss of region proposals
whose overlap of ground truth human box bh exceed overlap
threshold. Meanwhile, the invisible keypoints will not cause
loss.

Turbo Learning Framework
Better pose estimation results lead to better HOI recognition
result and better HOI recognition results lead to more ro-
bust pose estimation. To utilize the flow of complementary
information iteratively, we introduce a turbo learning frame-
work, which can be expanded as a sequence of pose aware
HOI recognition modules and HOI guided pose estimation
modules by the time step. Among them, a pose aware HOI
recognition module and a HOI guided pose estimation mod-
ule form a stage as shown in Fig 2(b). On the one hand,
the pose features provide the subsequent HOI recognition
module an expressive non-parametric encoding of each key-
point, allowing the HOI recognition module to learn explicit
human appearance and location of the keypoints that need to
be focused on. On the other hand, the HOI features provide
the subsequent pose estimation module a comprehensive en-
coding of a action pattern from all action classes, and the
general scope of some keypoints. As a result, each stage of
the turbo learning framework increasingly refines the action
classification results, the locations of target objects and each
keypoint. This framework is fully differentiable and there-
fore can be end-to-end trainable using backpropagation. The
whole loss function can be written as:

L =

N∑
i=1

(λi
poseL

i
pose + λi

HOIL
i
HOI) + Ldet, (6)
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where Ldet is the loss function for the detection task, Li
HOI

and Li
pose are losses for HOI recognition and pose estima-

tion in stage i. λi
pose and λi

HOI are the hyper-parameters to
control the balance in stage i. N is the total number of stages.

In each stage of the turbo learning framework, the input
consists of three parts: human appearance features F , HOI
features fn−1

a and the pose features fn−1
k . Among them, the

latter two parts are produced in the previous stage. Specifi-
cally, the set of input feature maps tn in stage (n < N − 1)
can be written as:

tn =
{
F, fn−1

k , fn−1
a

}
, (7)

where fn−1
k and fn−1

a denote the pose features and HOI fea-
tures in the (n− 1)-th stage respectively. The n-th stage not
only outputs the recognition results [sna , µ

n
a ] and human pose

heatmap kn, but also the feature maps for the (n + 1)-th
stage, which contain pose features fn

k and HOI features fn
a .

Experiment
Datasets and Metrics
V-COCO: V-COCO is a subset of COCO (Lin et al. 2014),
which is commonly used for HOI recognition. This dataset
includes ∼5k images in the trainval set and ∼5k images
in the test set. It annotates 17 keypoints of the human
body and 26 common action classes. Three actions (cut,
hit, eat) are annotated with two types of targets: instru-
ment and direct object, which means that the action is as-
sociated with two objects. For example, one man cuts the
pizza with a knife. As accuracy is evaluated separately for
the two types of targets, we extend the 26 action classes
to 29 classes, same as in (Gkioxari et al. 2017). For eval-
uation, we adopt the two Average Precision (AP) metrics
as in (Gupta and Malik 2015). The ’agent AP’ (APagent)
evaluates the AP of the pair < human, action >. Note
that APagent does note require localizing the target, so we
pay more attention to AProle which evaluates the AP of the
triplet < human, verb, object >.

HICO-DET: the HICO-DET dataset is an extension to
the “Humans Interacting with Common Objects” (HICO)
dataset (Chao et al. 2015). In HICO-DET, the annotation
of each HOI includes a human bounding box and an object
bounding box with a class label respectively. HICO-DET
contains about 48k images, ∼38k for training and ∼9k for
testing. It includes 600 interaction types, 80 unique object
types that are identical to the COCO categories, and 117
unique verbs. The official evaluation code of HICO-DET
reports the mean AP over Full test set (including all 600
HOI categories), Rare test set (including HOIs with less than
10 training instances only) and Non-Rare test set (including
HOIs with 10 or more training instances only) respectively.

Implementation Details
Our implementation is based on Faster R-CNN (Ren et al.
2015) built on ResNet-101 (He et al. 2016), and the Region
Proposal Network (RPN) is frozen and does not share fea-
tures with our framework for convenient ablation. We extract
7 × 7 features from region proposals by ROIAlign, and the

HOI recognition branch consists of two 1024-d fully con-
nected layers followed by dropout layers. The object detec-
tion branch consists of 3 residual blocks followed by specific
output layers, and the pose estimation branch consists of 8
convolution layers followed by 2 upsample layers(deconv,
interp, conv) and output layer(keypoint). The weight decay
is 0.0001 and the momentum is 0.9. We use synchronized
SGD on 8 GPUs, with each GPU hosting 1 image (the effec-
tive mini-batch size per iteration is 8 images). We train the
network for 10k iterations with a learning rate of 0.001 and
an additional 3k iterations with a learning rate of 0.0001.

For V-COCO, RPN and the object detection branch are
initialized by a Faster R-CNN model pre-trained on MS-
COCO, then we train on the V-COCO trainval (5k images)
split and report results on the test (5k images) split. We fine-
tune the object detection branch and train other branches
from scratch.

The objects in HICO-DET are not exhaustively annotated.
We adopt the same measure in (Gkioxari et al. 2017), using a
ResNet50-FPN object detector pre-trained on COCO to de-
tect objects in HICO-DET, and the object detection branch
is kept frozen during training. Due to the lack of pose anno-
tations in HICO-DET, keypoint detection branch cannot be
trained as well. Thus, we implement two strategies to adapt
to the situations where only the annotation of HOI is avail-
able. The details of these two strategies will be discussed
later.

Model Performance Analysis
In order to demonstrate the effectiveness of turbo learning
framework, we conduct some comparison experiments on
the V-COCO dataset. We also compare two strategies on
the HICO-DET dataset, where only the annotation of HOI
is available.

HOI Recognition with vs. without Pose Estimation The
pose features are important cues for recognizing actions and
localizing the interacted objects. Without pose features, ac-
tion recognition may be misleading by the human appear-
ance. Meanwhile, the target localization may be confused
when there are close objects. To demonstrate the impor-
tance of pose estimation to HOI recognition, we evaluate
a variant of our method in which only has the HOI recog-
nition model and the number of stages is one. The results
are shown in Fig 3(a) and Fig 3(b). Removing the pose es-
timation branch shows a degradation of 0.5% in APagent

and 1.1% in AProle, which demonstrates the contribution of
pose estimation to HOI recognition. To demonstrate the ben-
efits of regarding pose features as input, we also report the
results of simple multi-task training in Fig 3(a) and Fig 3(b).
Multi-task training means that when the number of stages is
one, pose estimation branch and HOI recognition branch are
jointly learned, but the pose features like Pmid and Pout do
not input to the HOI recognition branch. Using explicit in-
put shows an improvement of 0.2% in APagent and 0.8% in
AProle, which demonstrates the benefits of explicit input.

We also show some qualitative results in Fig 4(a) and
Fig 4(b). In the Fig 4(a), the action is easily classified as eat-
ing because of the presence of pizza, but actually the pizza is
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Table 1: Results on HICO-DET test set.

Method full rare non-rare
Gupta & Malik (Gupta and Malik 2015) 7.81 5.37 8.54

InteractNet (Gkioxari et al. 2017) 9.94 7.16 10.77
Proposed (Pre-train) 10.9 6.5 12.2

Proposed (Semiautomatic) 11.4 7.3 12.6

Table 2: Results on V-COCO test set.

Method APagent AProle

Gupta & Malik (Gupta and Malik 2015) 65.1 31.8
InteractNet (Gkioxari et al. 2017) 69.2 40.0

Proposed 70.3 42.0

far from the keypoint of the face. With the pose features, the
action is correctly classified as cutting. In the Fig 4(b), the
estimated area is in front of the human body. However, the
estimated area is near the left wrist with the pose features,
which help the model to successfully locate objects.

Pose Estimation with vs. without HOI Recognition To
demonstrate that HOI can guide the keypoints distribution,
we also evaluate a variant of our method which removes the
HOI recognition branch, so the pose estimation task only re-
lies on the image features extracted by the ROIAlign layer.
The pose estimation branch is the same as Mask-RCNN (He
et al. 2017) architecture, so “w/o HOI recognition” is actu-
ally the result of the Mask-RCNN baseline, and “RMPE” is
the result of the RMPE (Fang et al. 2017) baseline. But in
order to perform HOI recognition, we need not only detect
the person, but also detect other kinds of objects. Fig 3(c)
shows that removing HOI recognition task leads to 1% drop
on AP kp

50 , indicating that the HOI recognition features pro-
vide guidance on the relative distribution of keypoints.

We show two examples of improvement in keypoints de-
tection in Fig 4. In the Fig 4(c), the legs are easy to be missed
when people ride horse. However, the action “ride” has sim-
ilar keypoints distribution. With the HOI recognition fea-
tures, the keypoints are correctly detected. In the Fig 4(d),
the location of baseball provides guidance for the keypoints
of wrists, which improves the keypoints localization.

Benefits of Turbo Learning Framework Turbo learning
framework aims to reuse the cooperation of two tasks, and
refine both of the results. To demonstrate the benefits of
turbo learning framework, we show the recognition results
from stage 1 to stage 3 in Fig 3. From stage 1 to stage 2, the
improvement of APagent, AProle and AP kp

50 is 1.7%, 0.2%
and 0.4% respectively. From stage 2 to stage 3, the improve-
ment of APagent, AProle and AP kp

50 is 0.9%, 1.3% and 0.8%
respectively. As the number of stages increases, the results
of both HOI recognition and pose estimation are improved.

Pre-training vs. Semiautomatic Annotation Although
there are not many datasets where both annotations are avail-
able, e.g. HICO-DET dataset, we implement two strategies
to avoid the lack of pose annotations. The first strategy is
pre-training, in which we pre-train the model on the dataset
which has both annotations. Then we finetune the network

from the model pre-trained on V-COCO and remove the key-
point loss. Still, we allow the weights in keypoint detection
branch to be updated following gradients produced by HOI
recognition loss, and we find it yields better results. The sec-
ond strategy is semiautomatic annotation, in which we use
the model proposed in (Newell, Huang, and Deng 2017) to
semi-automatically annotate the keypoints on HICO-DET
dataset. The used model is trained on the COCO dataset,
which is readily applicable to other open source pose detec-
tors like Mask-RCNN. Then we take the keypoints detection
results as annotations for training the model on HICO-DET
dataset.

In Table 1, we show the comparison of two strategies. The
experiment on HICO-DET in (Gkioxari et al. 2017) has the
similar settings as ours, except that we do not use the Feature
Pyramid Network (FPN) (Lin et al. 2017) and interaction
branch in (Gkioxari et al. 2017). So we adopt their results as
a solid baseline. Table 1 shows that pre-training on a dataset
having both annotations will improve the HOI recognition
results, which is mainly because precise human body struc-
ture information learned on V-COCO can help the model to
be more robust to the changes in human appearance. The last
row of Table 1 shows that semiautomatic annotation can fur-
ther improve the HOI recognition results, which verifies that
our model is also applicable to the case where both HOI and
keypoint annotations are not simultaneously available.

Comparsion with the State-of-the-art Methods
As shown in Tables 1 and 2, the proposed method can
achieve the state-of-the-art performance on HICO-DET and
V-COCO. As (Gupta and Malik 2015) only reported AProle

on a subset that consists of 19 actions and only evaluated
on the val set of V-COCO, we adopt the solid baseline im-
plemented in (Gkioxari et al. 2017). It is worth noting that
our method does not use the FPN and interaction branch
as (Gkioxari et al. 2017), but the final AProle still outper-
forms 2% on V-COCO, which further proves the effective-
ness of our method. Although the keypoints of HICO-DET
are obtained by semiautomatic annotation rather than ground
truth, our method still outperforms 1.5% than InteractNet.

We also show some HOI recognition and pose estimation
results of the proposed model. In Fig 5(a), we only show one
triplet < human, action, object >. The results of one per-
son with several actions are shown in Fig 5(b), and results of
multiple persons are shown in Fig 5(c). These results show
our model can handle different HOI cases.

Conclusion
We propose a turbo learning method to perform both HOI
recognition and pose estimation. As these two tasks can pro-
vide guidance to each other, we introduce two novel mod-
ules: pose aware HOI recognition module and HOI guided
pose estimation module, in which each task’s features are
also treated as a part of input to the other task. These two
modules form a closed loop to utilize complementary in-
formation iteratively, which are trained end-to-end. As the
number of iterations increases, both results are improved
gradually. The proposed method has achieved the state-of-
the-art performance on V-COCO and HICO-DET datasets.
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