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Abstract

A smart grid is an efficient and sustainable energy system
that integrates diverse generation entities, distributed storage
capacity, and smart appliances and buildings. A smart grid
brings new kinds of participants in the energy market served
by it, whose effect on the grid can only be determined through
high fidelity simulations. Power TAC offers one such sim-
ulation platform using real-world weather data and complex
state-of-the-art customer models. In Power TAC, autonomous
energy brokers compete to make profits across tariff, whole-
sale and balancing markets while maintaining the stability
of the grid. In this paper, we design an autonomous broker
VidyutVanika, the runner-up in the 2018 Power TAC compe-
tition. VidyutVanika relies on reinforcement learning (RL) in
the tariff market and dynamic programming in the wholesale
market to solve modified versions of known Markov Deci-
sion Process (MDP) formulations in the respective markets.
The novelty lies in defining the reward functions for MDPs,
solving these MDPs, and the application of these solutions
to real actions in the market. Unlike previous participating
agents, VidyutVanika uses a neural network to predict the en-
ergy consumption of various customers using weather data.
We use several heuristic ideas to bridge the gap between the
restricted action spaces of the MDPs and the much more ex-
tensive action space available to VidyutVanika. These heuris-
tics allow VidyutVanika to convert near-optimal fixed tar-
iffs to time-of-use tariffs aimed at mitigating transmission
capacity fees, spread out its orders across several auctions
in the wholesale market to procure energy at a lower price,
more accurately estimate parameters required for implement-
ing the MDP solution in the wholesale market, and account
for wholesale procurement costs while optimizing tariffs. We
use Power TAC 2018 tournament data and controlled experi-
ments to analyze the performance of VidyutVanika, and illus-
trate the efficacy of the above strategies.

Introduction
A smart grid is an evolved electrical system that manages
electricity demand in a sustainable, reliable and economical
manner, built on advanced infrastructure and tuned to facil-
itate the integration of all the entities involved. 1 With the
efforts to move to sustainable energy sources, smart grids

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://new.abb.com/smartgrids/what-is-a-smart-grid

in theory, offer a stable and efficient mechanism to manage
such systems (Speer et al. 2015). Smart grids also offer the
flexibility of dynamically changing tariffs to the customers.
Electricity distributing agencies operating in the smart grid,
which we refer to as brokers, can signal the supply-demand
imbalance to the market through dynamic pricing strategies,
while simultaneously reducing the overhead costs of their
customers by buying energy in bulk from generating com-
panies. However, there are multiple challenges in the oper-
ationalization of smart grids, like managing highly fluctu-
ating supply-demand scenarios, engaging stakeholders with
ulterior motives, and handling automation failures of partic-
ipating entities.

In order to foresee such problems and examine potential
solutions, Power TAC (Ketter, Collins, and Weerdt 2017)
provides an open source simulator platform that replicates
crucial elements of a smart grid system and allows large-
scale experimentation. The simulation encourages the devel-
opment of autonomous broker agents that aim at making a
profit by offering electricity tariffs to customers in a retail (or
tariff) market, and trading energy in a competitive wholesale
market, while carefully balancing their supply and demand.
To this end, a Power Trading Agent Competition (Power
TAC) (Ketter, Collins, and Weerdt 2017) is held annually.

Machine Learning and Game Theory-based strategies are
essential for such broker agents to dynamically price tar-
iffs and predict customer usage while simultaneously plac-
ing bids in wholesale auctions. In the past, some broker
agents have used MDP to model strategies in the tariff mar-
ket (Cuevas, Rodriguez-Gonzalez, and De Cote 2017; Yang
et al. 2018), and wholesale market (Urieli and Stone 2014;
Urieli and Stone 2016a; Reddy and Veloso 2011), while oth-
ers have employed genetic algorithm, fuzzy-logic and tai-
lored heuristics for the same (Özdemir and Unland 2018a;
Rúbio et al. 2015; Liefers, Hoogland, and La Poutré 2014).
Less attention has been paid to utilize weather data, hav-
ing been used only to predict wholesale prices (Chowdhury
2016). Very few contributions have been made towards mod-
eling the entire system as a reinforcement learning problem
(Urieli and Stone 2016a), due to its complexity.

The goal of this paper is to design a learning broker with
the following objectives: (i) React to competing tariffs (ii)
Increase market share, i.e., subscribed customers (iii) De-
crease transmission capacity costs (iv) Decrease costs of
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energy procurement. We use different MDPs for our tariff
and wholesale market strategy. Though the MDPs are moti-
vated by (Urieli and Stone 2014) and (Cuevas, Rodriguez-
Gonzalez, and De Cote 2017), our novelty lies in their re-
ward structure, solution, and application of those solutions.
These are supplemented by a Neural Network based us-
age predictor, that also utilizes weather data. Our broker,
VidyutVanika, referred as V V throughout the paper, was the
runner-up in Power TAC 2018 Finals. We illustrate the ef-
ficacy of our strategies through different statistics from the
competition as well as controlled offline experiments.

Power TAC Game Description
This section provides a brief overview of the annual Power
Trading Agent Competition (Power TAC) tournament. For
the detailed specifications of the various components of
Power TAC, please refer (Ketter, Collins, and Weerdt 2017).

In Power TAC, multiple teams deploy autonomous elec-
tricity broker agents which have to operate and compete in
three smart electricity markets. The tournament consists of
numerous games played between participating broker agents
in different configurations. The duration of each game is
around 60 simulation days. The simulation time is dis-
cretized into time slots. Each such time slot represents an
hour, and is played out in 5 seconds of real time. Hence,
the duration of a single game in the tournament is roughly
around two hours of real time.

A broker agent in Power TAC develops a subscriber base
by offering attractive bilateral tariff contracts, and simulta-
neously attempts to fulfill its subscribers’ energy require-
ments by trading in the wholesale market. Typically, a bro-
ker agent performs three functions, (i) purchase from, or sell
power to, its subscriber base in the retail (or tariff ) mar-
ket; (ii) purchase or sell power in the wholesale market; and
(iii) rectify any supply-demand imbalance within its portfo-
lio through the balancing market.

The tariff market consists of customers of three differ-
ent power types, namely, consumers, producers and stor-
age. Consumers include offices, housing complexes, hospi-
tals and villages. A subset of these consumers accept cur-
tailment of their usage in exchange for discounted tariffs.
Producers in the tariff market use renewable sources such as
solar or wind to generate electricity. The Storage customers
possess storage capacity in the form of batteries or electric
vehicles connected to the smart grid. Broker agents compete
in the retail market to draw customers into their subscriber
base by offering attractive tariffs that are power type spe-
cific. Tariffs could be offered with fixed or variable rates, and
could be tiered or based on time of use. The wholesale mar-
ket in the Power TAC setting is a ‘day-ahead’ market that is
largely supplied by a single power generation company. At
any given time, broker agents participate in twenty-four pe-
riodic double auctions to buy or sell power in the wholesale
market for a future time slot that could be one to twenty-
four hours away. Broker agents participate in the balancing
market by exercising control over a customer’s storage in-
frastructure to store or withdraw power as needed, and by
offering suitable tariffs to customers accepting curtailment.

To support the functioning of brokers agents, the Power
TAC environment publishes a variety of information to all
the participating broker agents in a game. Before the start of
a game, a 14-day simulation exercise, called the bootstrap
period, is organized in which the distribution utility (DU) is
the only participant. The data generated during the bootstrap
period contains the name, characteristics and consumption
profile of all retail market customers, wholesale market data
pertaining to average cleared price and quantity, and weather
data of the geographical location of the customer base, all at
an hourly frequency. During the game, the Power TAC envi-
ronment publishes identities of competing broker agents, tar-
iff updates that includes new, revoked and superseding tar-
iffs published by competing broker agents, wholesale market
clearing data, aggregate energy consumption data for every
time slot, and weather reports and forecasts.

The goal of a broker agent in a Power TAC game is to
deploy suitable strategies in the wholesale, tariff and bal-
ancing markets to achieve a healthy cash position at the end
of the game. Apart from cash flows resulting from trades in
the wholesale and retail markets, a broker’s final cash po-
sition is also affected by balancing fees for failure to main-
tain a balance between supply and demand, tariff publication
fees, distribution fees, bank interest and transmission capac-
ity fees for contributions to peak demand events by a broker
agent’s subscriber base. The cash position of a broker is ag-
gregated across all the games played and then normalized in
order to determine the winner of the competition.

Overview of Broker Agent

Figure 1: Architecture of VidyutVanika

In this section, we present an overview of our autonomous
broker agent, V V . As shown in Figure 1, V V consists of
two main modules, namely, Tariff Module (TM) and Whole-
sale Module (WM). TM is responsible for publishing and
revoking tariffs in the tariff (or retail) market. WM gener-
ates bids/asks to purchase/sell energy contracts in the whole-
sale market. V V doesn’t actively participate in the bal-
ancing market. Tariff design is accomplished by formulat-
ing a Markov decision process (MDP) (Puterman 1994),

915



which we approximately solve using Q-learning (Watkins
and Dayan 1992). We model the bidding problem in the
wholesale market as a separate MDP, which we solve using
dynamic programming (Bellman 2013).

In addition to these two modules, V V incorporates a Cus-
tomer Usage Predictor (CUP) submodule built using neural
networks (NN) to predict the usage of all subscribed cus-
tomers in a future time slot, by using weather forecasts and
past usage pattern of each customer. V V aggregates the pre-
dicted usage across all its subscribed customers to estimate
the amount of energy to be procured in the wholesale mar-
ket. Doing so helps V V reduce the imbalance on its portfo-
lio. We note that, to the best of our knowledge, V V is the
first broker agent to use NN with the weather data to pre-
dict customer usage in Power TAC competition 2. In the fol-
lowing subsections, we discuss each module of V V in more
detail.

Tariff Module (TM)
Throughout a game, V V maintains two active time-of-use
(TOU) tariffs in the tariff market, namely (i) MDPTOU and
(ii) WeeklyTOU. MDPTOU is the result of solving an MDP
problem using Q-learning, and is revised every twenty-
four hours. WeeklyTOU is an empirically determined, fixed
weekly TOU tariff, which remains active throughout the du-
ration of the game. If MDPTOU makes losses for a sustained
period of time, V V revokes it and falls back upon Weekly-
TOU, as it is empirically proven to be reliable.

Generating MDPTOU is a two-step process - (1) Gener-
ate a Fixed Price Tariff (FPT) by solving an MDP using Q-
learning; (2) Convert the FPT to a TOU tariff for consump-
tion customers by predicting the overall demand profile for
the tariff market over the next 24 time slots. Both the steps
are described in detail in the following sub-subsections.

MDP & Q-Learning Model (MDPQLM)
Our Tariff MDP formulation is primarily motivated from the
work of (Cuevas, Rodriguez-Gonzalez, and De Cote 2017).
At any simulation time t, the state st of the MDP is a quadru-
ple that captures four features of the tariff market. The first
feature is rationality of the tariff market which is decided
based on whether the highest production tariff is lower or
higher than the lowest consumption tariff. The second is
the portfolio status of our broker agent V V which could be
surplus, balanced or deficit depending on the difference be-
tween the amount of energy acquired and committed in the
tariff market at time t. The third and fourth features rank the
V V ’s current consumption and production tariffs with re-
spect to prevailing tariffs of other competing broker agents.
In total, there are 96 possible states in the MDP. The ac-
tion at, at time t, is chosen from a set A of 8 actions, each
of which lets V V modify its previous production and con-
sumption tariff in a specific fashion. These include differ-
ent combinations of increasing, decreasing or tempering the
latest prevailing production or consumption tariff of broker
V V . A detailed description of the state and action space of
the MDP can be found in the supplement.

2based on past Power TAC agent publications

The key novelty in our MDP formulation is the reward
structure c.f. Cuevas, Rodriguez-Gonzalez, and De Cote.
The idea behind the reward structure is to capture the net
profit made by V V when it incurs no balancing charge.
Thus, the reward at time t is given by:

rt = θt,CPt,C − θt,PPt,P − θt,WWt (1)

The first term in Equation 1 represents the revenue generated
by selling energy θt,C at the tariff Pt,C to consumers of V V
at time t. Similarly, the second term represents the amount
paid to producers of V V for procuring energy θt,P at the
tariff Pt,P . The third term in represents the amount paid in
the wholesale market to satisfy the net unfulfilled demand
θt,W = θt,C − θt,P at unit wholesale procurement cost Wt.

We construct a Q-table using Q-learning to solve the
aforementioned MDP. For a state-action pair (st, at), the Q-
learning update rule with learning rate α and discount rate γ
is given by

Q̂(st, at)← (1−αt)Q̂(st, at)+α[rt+γmax
a

Q̂(st+1, a)],

where rt is the reward obtained at time t for taking action at
in state st. A Q-table is constructed through a training pro-
cess in which V V plays 100 games of every configuration
against broker agents from past the Power TAC tournaments
across 9 different game configurations. For each configura-
tion, V V starts with a zero-initialized Q-table and updates
the Q-table entries, across 100 games according to the up-
date rule specified above. While playing a game in the real
tournament, at any tariff publication time t, being in state
st, V V simply chooses an action at greedily according to
at = argmaxa∈A Q(st, a). The action thus chosen trans-
lates into a production FPT Pt,P and a consumption FPT
Pt,C . While the production FPT is published without any
change, the consumption FPT is modified to generate MDP-
TOU as explained in Tariff Designer (TaD).

Net Demand Predictor (NDP)
Before converting the consumption FPT into MDPTOU,
V V first estimates the overall net usage/demand of the tar-
iff market for all future twenty-four time slots. To this end,
at a simulation time slot t, V V estimates the net demand
D̂t+k, k ∈ {1, . . . , 24} as a weighted average of two histor-
ical net demand values, namely, net demand Dt+k−24 ob-
served at the same time slot of the previous day and the net
demand Dt+k−168 observed during the same time-slot of the
same day of the previous week. This enables V V to capture
the recent customer usage patterns in such a sensitive market
while also utilizing the weekly trends. More specifically, we
have,

D̂t+k = βDt+k−24 + (1− β)Dt+k−168 (2)

where β ∈ [0, 1] is a fixed parameter.

Tariff Designer (TaD)
Once the estimate of the net demand for the next twenty-four
time slots is obtained from NDP, MDPTOU for a time slot k
hours ahead of the current time slot t is computed as:

πt+k = Pt,C + ρ

(
D̂t+k,T −

∑24
j=1 D̂t+j,T

24

)
, (3)
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where ρ is an empirically determined constant and k ∈
{1, . . . , 24}. Equation (3) proposes MDPTOU for a twenty-
four hour time horizon. Observe that the tariff rate in Equa-
tion (3) at a time slot t modifies the fixed price consump-
tion tariff Pt,C provided by the Q-learning algorithm by an
amount that is proportional to the excess estimated demand
in that time slot over the mean estimated demand over the
24-hour period starting at t. The second term in Equation
(3) closely resembles the manner in which the transmission
capacity fees are calculated in the Power TAC simulation
(see section 7.2 of (Ketter, Collins, and Weerdt 2017)). As
a result, MDPTOU serves to mitigate the effect of trans-
mission capacity fees that the broker incurs in two ways.
First, it encourages the customers to shift some of their us-
age away from expected peak demand time-slot(s). Second,
the excess over the consumption FPT charged to a customer
is in proportion to that customer’s contribution to the ex-
pected net demand profile, and this helps offset some of the
transmission capacity fees that will actually result from that
customer’s usage profile.

Together, MDPQLM, NDP and TaD enable V V to select
actions in the large decision space of TOU tariffs by solving
an MDP with a much smaller action space.

Wholesale Module (WM)
In order to balance the future net usage in its tariff portfolio,
V V participates in the wholesale market auctions by plac-
ing bids/asks of the form (energy amount, limit-price). To
predict this net usage for a future time-slot, it uses a Neu-
ral Network (NN) based Customer Usage Predictor (CUP).
V V then determines the limit-price using the Limit Price
Predictor (LPP), and the energy amount using the Bid/Ask
Quantity Predictor (BAQP). Overall, the wholesale market
strategy of V V comprises of four major submodules - (i)
Customer Usage Predictor (CUP), (ii) Limit Price Predic-
tor (LPP), (iii) Bid/Ask Quantity Predictor (BAQP), and (iv)
Dummy Order Quantity and Price (DOQAP) Module

Customer Usage Predictor (CUP)
CUP is responsible for predicting the net usage of the bro-
ker’s tariff portfolio for a future target time-slot t, by sum-
ming over the predicted usage of each customer subscribed
to the broker for that target time-slot t. To predict the usage
of each customer, it uses a NN with two hidden layers of
size 7 each, and 10 epochs of training over the training data.
The input data consists of the weather report, time of day (0-
23), and day of week (1-7), while the target variable is the
actual usage of the customer. During prediction, the weather
forecast is used in place of the weather report to predict the
usage for the next 24 hours. A fresh model is initialized ev-
ery game for each customer, and then trained on the 336
data points obtained from the bootstrap data. The model is
then continuously updated via online training throughout the
game, as the broker gets more data points from the usage re-
ports for each subscribed customer.

Limit Price Predictor (LPP)
V V ’s Limit Price Predictor is primarily motivated by the
work of (Urieli and Stone 2014) on MDP-based wholesale
bidding strategy, which in turn is based on (Tesauro and

Bredin 2002). Although we use a similar MDP structure,
the novelty lies in the reward, solution and application to
place bids. The limit-prices generated from the MDP solu-
tion are used to bid for small energy quantities specified by
BAQP across multiple auctions, as opposed to bidding the
entire predicted energy requirement in a single auction as
proposed by Urieli and Stone.

V V maintains two instances of the MDP at all times - one
for bids, another for asks. Going forward, we describe the
components with respect to the bid MDP. At any given time-
slot t, the predictor computes 24 limit prices for 24 whole-
sale auctions for the time-slots t+ 1, . . . , t+ 24. The MDP
components are hence defined as:

1. States: s ∈ S = {0, 1, . . . , 24, success}, s0 := 24

2. Actions: limit-price ∈ R
3. Transition: Same state transition as Urieli and Stone;

can be found in supplement. The transition function
pcleared(s, limit-price) is determined by Equation (5).

4. Reward: At any state s ∈ {1, . . . , 24}, the reward is 0. At
terminal state s = 0, the reward is the negative of balanc-
ing price per unit energy. At terminal state s = success,
the reward is the negative of the limit-price of the cleared
bid. Since, for bids, we take the reward to be negative,
maximizing reward results in minimizing costs.

5. Terminal States: {0, success}
The solution to the MDP is a sequential bidding strategy

that minimizes the cost per unit energy procured. It is given
by a value function which equals the balancing-price at state
s = 0, and is recursively defined at all states by

V (s) =

⎧⎪⎪⎨⎪⎪⎩
balancing-price, if s = 0

min
limit-price

{pcleared × limit-price

+(1− pcleared)× V (s− 1)}, if s ∈ [1, 24]

(4)

The value function in Equation (4) is computed recur-
sively using dynamic programming. The solution gives an
optimal limit-price for each state s ∈ S. By definition, V V
is always in the states {1, . . . , 24} of 24 concurrent auc-
tions. Thus, V V solves the MDP once every time-slot, and
places 24 optimal limit-prices as bids to 24 auctions. The
balancing-price and the transition function pcleared are both
initially unknown. The former is estimated by averaging the
balancing-prices across past time-slots separately for posi-
tive and negative imbalance (for ask and bid MDPs respec-
tively). The transition function pcleared(s, limit-price) is
estimated from the past auction statistics as:

pcleared =

∑
ac∈auction[s],ac.LCP<limit-price ac.cleared-amount∑

ac∈auction[s] ac.cleared-amount
(5)

where auction[s] is the set of all past auctions in the state
s, and LCP is the Last Clearing Price, which is estimated in
the DOQAP submodule described below. Since V V iterates
over the same sequence of states S, auction statistics for each
state s gets re-used in the future for estimating pcleared.
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Bid/Ask Quantity Predictor (BAQP)
For a target time-slot t + 24, V V aims to procure its pre-
dicted energy amount from the wholesale market across all
24 possible auctions from {t, . . . , t+23}. BAQP is responsi-
ble for distributing the predicted energy requirement across
24 auctions, with the aim of buying more and selling less in
those auctions in which the prices are expected to be low,
and vice-versa.

Following the state notation from the MDP from LPP, for
each auction state s ∈ {1, . . . , 24} in which the broker par-
ticipates at time t, it takes its own corresponding predicted
net demand θ̂V V

t+s,T from CUP and market position Φt+s (the
amount it has already procured for t+s in the wholesale mar-
ket) to find the energy left to procure Et+s = θ̂V V

t+s,T−Φt+s.
Then the 24 limit-prices from LPP are used to distribute the
required energy among the bids to be placed in the remain-
ing auctions. The energy quantity to bid for each state s at
time t is given as:

e(s) =

⎧⎪⎪⎨⎪⎪⎩
Et+s∑24

j=s
limit-price[j]
limit-price[s]

, if Et+s > 0

Et+s∑24
j=s

limit-price[s]
limit-price[j]

, if Et+s < 0

0, if Et+s = 0

(6)

where s ∈ {1, . . . , 24}, limit-price[s] is the limit-price for
state s from Limit Price Predictor. The first case in Equation
(6) occurs when V V has to sell energy, and thus the energy
to be sold in an auction is directly proportional to the pre-
dicted limit-price of that auction, i.e. sell more at high price.
On the other hand, the second case occurs when V V has to
procure energy, and thus the energy to be bought in a target
auction is inversely proportional to its predicted limit-price
i.e. buy more at less price. The final bids of all states are of
the form (e(s), limit-price[s]).

Dummy Order Quantity and Price (DOQAP) Module
In each cleared auction, the Last Clearing Price (LCP) for
bids (asks) is higher (lower) than or equal to the clearing
price of the auction. However, the LCP is unknown to ev-
ery broker agent. Thus, having an good LCP estimation re-
sults in a better pcleared estimation. To estimate the LCP
in an auction in state s, V V places a fixed number of bids
and asks with the least tradable energy amount in the mar-
ket (0.01 MwH), and with prices equally spaced in the range
[β × limit-price[s], balancing-price], where β is a fixed
parameter. Such bids and asks are called dummy orders. Af-
ter clearance, the estimated LCP for bids in an auction in
state s is given by:

LCP (s) = min(dummy-bidscleared, limit-price[s]cleared) (7)

where dummy-bidscleared is the set of bid prices of
all dummy bids which got cleared in the state s, and
limit-price[s]cleared is the limit-price for the cleared fi-
nal bid made by the broker in state s. The latter is set to
infinity if the final bid doesn’t clear. To estimate LCP for
asks, we replace min by max, and dummy-bidscleared by
dummy-askscleared in Equation (7). LCP is then used to
update the transition function pcleared in Equation (5).

Results
We analyze the performance of our broker V V in Power
TAC 2018 and show the efficacy of certain sub-modules of
V V using controlled off-line experiments.

Power TAC 2018 Finals Results
The Power TAC 2018 Finals had 7 brokers from research
groups across the globe. The tournament had a total of 324
games, with all possible combinations of 7-broker games
(100 games), 4-broker games (140 games; 80 games for each
broker), and 2-broker games (84 games; 24 games for each
broker). Table 1 shows the net profit of all brokers across dif-
ferent game configurations, percentage of profit in compari-
son to the winning agent, AgentUDE, and the corresponding
normalized scores. Despite winning more games than Agen-
tUDE, V V was placed next to AgentUDE in overall ranking
of Power TAC 2018. This is because, the determination of
the winner is made based on normalized cumulative prof-
its in each configuration across all games in the tournament.
Specifically, AgentUDE netted high profits against compet-
ing agents (excluding V V ) in 2-player games that helped in
cementing its place as the winner of the tournament.

Table 2 shows the number of 1st and 2nd place finishes
by each broker across all three configurations. As seen, V V
won the most number of games in the tournament with 112
wins out of the 204 it participated in, with AgentUDE com-
ing second with 92 wins out of 204. V V had the most wins
in 7-broker and 4-broker games, and had the second high-
est number of wins, behind AgentUDE, in 2-broker games.
It is important to note that, overall, V V finished in the top
two, 72% of the time whenever it played in a game with
more than 2 brokers. In comparison, AgentUDE stood at
65%. On a head-to-head comparison with AgentUDE, out
of 100 7-broker games, AgentUDE and V V both shared 39
wins each. However in 4-Broker games in which both V V
and AgentUDE participated, V V won 31 times out 40, with
AgentUDE winning the remaining 9. In the four 2-broker
games involving both brokers, AgentUDE ended up winning
three games. V V led in all these three lost games almost till
the end, only to fall behind finally due to transmission ca-
pacity fees. Figure 2 shows the number of games in which
each broker ended up with a negative profit. CrocodileAgent
had the fewest games with negative profits, with V V coming
second in this category with four times the average market
share. Thus, V V managed to make up for its losses on a
consistent basis, and rarely ended up being non-profitable.

TM played a crucial role in V V ’s success, offering tar-
iffs which were attractive to majority of the customers and
contributed the most in revenue. Figure 3 shows the average
market share 3 to each broker across all three configurations
and overall. V V had the highest market share on average in
2-broker games, 7-broker games and overall, and the second
highest in 4-broker games. In contrast, AgentUDE had only
a quarter of the overall average market share of V V . While

3Note that the percentage will not sum up to 100 in some con-
figurations. E.g.: In 4-broker games, each broker plays 80 games,
where as in total 140 games are played
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Broker 7-broker 4-broker 2-broker Total 7-broker (N) 4-broker (N) 2-broker (N) Total (N)
AgentUDE 49964603 (100) 62138484 (100) 134908672 (100) 247011760 (100) 1.091 0.634 1.565 3.291

VidyutVanika 48197051 (96) 101942819 (164) 47541635 (35) 197681504 (80) 1.056 1.061 0.336 2.453
CrocodileAgent 27659543 (55) 45441732 (73) 62881837 (47) 135983111 (55) 0.648 0.455 0.552 1.655

SPOT -6979768 (-14) 32981756 (53) 49183707 (36) 75185695 (30) -0.041 0.322 0.359 0.64
COLDPower18 2063729 (4) 10289982 (17) 521330 (0.3) 12875040 (5) 0.139 0.078 -0.326 -0.109

Bunnie -67983216 (-136) -25049555 (-40) -19596577 (-15) -112629348 (-46) -1.254 -0.3 -0.609 -2.163
EWIIS3 -87271195 (-175) -206960249 (-333) -109800161 (-81) -404031605 (-164) -1.638 -2.25 -1.878 -5.766

Table 1: Power TAC 2018 – Net profits and normalized scores (denoted by (N)) of each broker

Brokers 7-Broker 4-Broker 2-Broker Total
1st 2nd 1st 2nd 1st 2nd 1st 2nd

VidyutVanika 39 21 54 14 19 5 55 20
AgentUDE 39 26 31 21 22 2 45 24

CrocodileAgent 8 34 13 41 15 9 18 41
SPOT 0 0 16 19 9 15 12 17

COLDPower18 0 3 5 29 8 16 6 24
Bunnie 13 15 21 16 9 15 21 22
EWIIS3 1 1 0 0 2 22 1 11

Table 2: Power Tac 2018 – Number of 1st and 2nd place
standings of each broker

Figure 2: Power TAC 2018 – Number of games with nega-
tive profits

one may expect a greater market share to lead to more prof-
its, it usually leads to higher transmission capacity fees and
distribution costs, which can cause higher losses unless man-
aged properly. As a result, agents with lower market share
often tend to make less losses, and end up winning. Figure 4
represents the average income and costs of all brokers across
all three configurations. V V clearly has less imbalance costs
while having almost similar number of customers as Bun-
nie, exhibiting the effectiveness of CUP. V V also had one of
the best tariff market income-to-cost ratio (1.14), with only
AgentUDE (1.43) and CrocodileAgent (1.32) having better
ratios. However, both AgentUDE and CrocodileAgent had
very low average market share compared to V V . Thus, V V
is very efficient at making profits despite having a higher

market share.

Figure 3: Power TAC 2018 – Average Percentage of cus-
tomers subscribed (out of 57000), i.e. market share, of each
broker

Figure 4: Power TAC 2018 – Average Income/Costs of each
broker

Controlled Offline experiments
For all controlled offline experiments, we played games
using randomly chosen weather files from the 324 games
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played in the Power TAC 2018 Finals.

To determine the prediction accuracy of NNs used in CUP,
we played a set of 30 games with V V being the sole partici-
pant. As all the customers end up subscribed to V V in such a
game, we determined the accuracy of each customer’s usage
prediction by comparing it to their actual usage. We got an
average prediction accuracy of 84% from these set of games.

Next, in order to identify the contribution of each sub-
module in V V , we performed controlled offline experiments
with test agents created by disabling multiple combinations
of submodules. Agent F DOQAP is generated from V V by
disabling the DOQAP submodule, and replacing the LCP
in the LPP MDP solution with the clearing price, as imple-
mented by (Urieli and Stone 2014). Agent F BAQP is gener-
ated from V V by disabling BAQP, which results in the agent
placing the entire predicted net demand in a single bid in
the wholesale market. Agent F DOQAP BAQP is generated
from V V by disabling both the DOQAP and BAQP sub-
modules as above. Agent F CUP is generated from V V by
replacing CUP by the usage predictor provided in the Power
TAC sample broker which essentially predicts customer us-
age by exponentially smoothing over the past usage records,
incrementally. Agent F WM is generated by disabling the
entire Wholesale Module, and replacing it by the wholesale
strategy provided in the Power TAC sample broker. F WM
essentially increases the limit prices as the target time-slot
gets closer with some randomization in the limit price deter-
mination. Agent F Reward is generated from V V by replac-
ing the MDPQLM reward function by the reward function
used by Cuevas, Rodriguez-Gonzalez, and De Cote. Agent
F TaD is generated from V V by disabling TaD and instead
offering FPTs from MDPQLM. In theory, this agent has
the same tariff strategy as proposed by (Cuevas, Rodriguez-
Gonzalez, and De Cote 2017), but with our reward function.
Agent F TaD CUP is generated by disabling both TaD and
CUP as described above. Agent F TM is generated from V V
by disabling TM, but keeping WeeklyTOU active. Finally,
F TM WM is generated by disabling both TM and WM in
the manner described above.

Each of these test agents were made to compete with the
full agent V V over 30 games. The results of these exper-
iments are reported in Table 3. Both TM and WM offer
significant improvements as compared to the base sample
broker strategy, with the former playing the biggest part in
V V ’s success. CUP, DOQAP and BAQP submodules play
a crucial role in V V ’s wholesale market strategy, and cause
a significant decrease in profit when removed, as seen from
the table. On the other hand, TaD submodule (responsible
for generating MDPTOU) is crucial to V V ’s tariff market
strategy, removal of which causes a sharp decline in the bro-
ker’s profit. Also note that, there is a significant decrease
in profit when we used the reward function from (Cuevas,
Rodriguez-Gonzalez, and De Cote 2017)4 in F Reward.

4We used a suitable value for the hyper-parameter in their re-
ward function

Brokers % of V V ’s profit

F Reward 75
F TaD 83
F CUP 84

F TaD CUP 75
F TM 73

F DOQAP 76
F BAQP 79

F DOQAP BAQP 71
F WM 90

F TM WM 72

Table 3: Performance of Test Agents vs Full agent V V

Related Work

Since 2012, several research groups have benchmarked, de-
ployed and published strategies using Power TAC. Özdemir
and Unland (2015; 2018a; 2018b), Power TAC 2014 &
2017 Winners, use Genetic Algorithm and aggressive pric-
ing to design tariffs for the tariff market, while using
adaptive Q-learning in the wholesale market. They also
predict the demand of customers using a combination of
SARIMA and AR models. Power TAC 2015 Winners, Ur-
ban and Conen, design their TOU Tariff rates using a Hill
Climbing algorithm. Past Power TAC participants Rúbio et
al. (2015) present a fuzzy-logic based trading mechanism,
while Liefers, Hoogland, and La Poutré (2014) use a heuris-
tic inspired from Tit-For-Tat strategy in Iterated Prisoner’s
Dilemma, to determine tariff rates based on competing tar-
iffs. Chowdhury et al. (2017, 2018) use an MDP & Q-
Learning based tariff market strategy and a Monte-Carlo
Tree Search based wholesale strategy, with the former in-
corporating the market share and cash position of the agent
into the state space while taking actions on maintaining, in-
crementing or decrementing tariff rates.

Inspired from Reddy and Veloso (2011), Cuevas,
Rodriguez-Gonzalez, and De Cote (2017) present an MDP-
based strategy to generate FPTs, which forms the base of
our TM after the reward structure modification. Based on
a similar MDP, a Recurrent Deep Multiagent Reinforce-
ment Learning framework with sequential clustering is pre-
sented by Yang et al. (2018). Urieli and Stone (2014;
2016a; 2016b), Power TAC 2013 winners, employ an MDP-
based wholesale market strategy, coupled with a Linear
Weighted Regression (LWR) based tariff market strategy
which chooses the best possible candidate tariff after esti-
mating its long-term utility. They also present the design and
optimization of TOU Tariffs from their LWR based FPTs,
but it is significantly different from our approach. We im-
prove upon their wholesale strategy by using LCP estimation
in DOQAP, and further boost its performance using BAQP.
To predict limit prices for the wholesale market auctions,
Chowdhury (2016) uses Decision Trees, Linear Regression
and NN with weather data. However, none of the past publi-
cations use NN with weather data for future customer usage
prediction.
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Conclusion
We described the critical elements of the strategy used by
our broker VidyutVanika (VV), the runner-up in Power TAC
2018 Finals. In particular, we described details our two
modules, TM and WM. TM and WM were responsible for
VidyutVanika’s actions in the tariff and wholesale market,
respectively. The novelty of VidyutVanika lay in (i) defin-
ing reward functions for the MDPs, (ii) solving the MDPs,
(iii) applying the MDP solutions to actions in the markets,
and (iv) NN based usage predictor incorporating available
weather data for better customer usage prediction. We illus-
trated the efficacy of our strategies by providing the detailed
analysis of: (i) the comparative market-wise performance of
VidyutVanika in the 2018 Power TAC finals and (ii) the of-
fline experiments to demonstrate the contribution of each
submodule of VidyutVanika.
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