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Abstract
Novice programmers often struggle with the formal syntax of
programming languages. In the traditional classroom setting,
they can make progress with the help of real time feedback
from their instructors which is often impossible to get in the
massive open online course (MOOC) setting. Syntactic error
repair techniques have huge potential to assist them at scale.
Towards this, we design a novel programming language cor-
rection framework amenable to reinforcement learning. The
framework allows an agent to mimic human actions for text
navigation and editing. We demonstrate that the agent can
be trained through self-exploration directly from the raw in-
put, that is, program text itself, without either supervision
or any prior knowledge of the formal syntax of the pro-
gramming language. We evaluate our technique on a publicly
available dataset containing 6975 erroneous C programs with
typographic errors, written by students during an introduc-
tory programming course. Our technique fixes 1699 (24.4%)
programs completely and 1310 (18.8%) program partially,
outperforming DeepFix, a state-of-the-art syntactic error re-
pair technique, which uses a fully supervised neural machine
translation approach.

Introduction
Programming oriented massive open online courses have
gained huge popularity in the last few years. Due to the large
number of student enrollments in these courses, providing
real time personalized feedback is infeasible for instructors.
Addressing this issue, a number of automated feedback gen-
eration techniques for programming assignments have been
developed in recent years. However, most of the existing
techniques focus on fixing semantic errors and work only
for programs that compile successfully (Piech et al. 2009;
Singh, Gulwani, and Solar-Lezama 2013; Kaleeswaran et al.
2016). These techniques require either SAT solving or test
execution, both of which are not possible for the programs
with syntactic errors.

Programmers rely on compilers to get feedback for syn-
tactic errors. However, compiler error messages do not al-
ways localize the errors accurately and are often difficult to
understand (Traver 2010). This makes syntactic errors very
time consuming to fix and a major learning hurdle for stu-
dents of introductory programming courses.
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Figure 1 illustrates an erroneous programming submis-
sion implementing a tax calculation algorithm in an intro-
ductory course on C programming. It has two syntactic er-
rors: (1) incorrect use of semicolon within the scanf func-
tion call in line 4 and (2) a missing closing brace at the end
of line 12. The Clang compiler generates the following error
message for it:

ex.c:4:12: error: expected ’)’
scanf("%f"; &ti);

ˆ
ex.c:4:7: note: to match this ’(’
scanf("%f"; &ti);

ˆ
ex.c:4:17: error: extraneous ’)’ before ’;’
scanf("%f"; &ti);

ˆ
ex.c:13:2: error: expected expression
else if(ti>1000000){
ˆ
ex.c:16:12: error: expected ’}’
return 0;}

ˆ
ex.c:2:11: note: to match this ’{’
int main(){

ˆ
4 errors generated.

Note that the above error message does not pinpoint either of
the errors precisely1. While the error message may be suffi-
ciently helpful for an expert programmer, a novice program-
mer may even end up introducing more errors in the program
by following the suggested fixes.

Our aim in this work is to develop a syntactic error re-
pair technique that can assist novice programmers by auto-
matically correcting common syntactic errors in programs.
When faced with an error, a programmer navigates through
the program text to arrive at a possible location of error and
then performs an edit to fix the error. Intuitively, this is like
playing a game, in which an agent starts with an incorrect
program as initial state and takes navigation and edit actions
to reach the goal state (error-free program).

Deep reinforcement learning has enjoyed great success in

1The GCC compiler precisely pinpoints both the errors in this
program but fails on many others. One such example is shown in
(Gupta et al. 2017).
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1 #include<stdio.h>

2 int main(){

3 float ti, tax;

4 scanf ( "%f" ; &ti);

e1

5 if(ti<200001){

6 printf("ti=0");}

7 else if(200000<ti && ti<500001){

8 tax=0.1*(ti-200000);

9 printf("%.2f", tax);}

10 else if(500000<ti && ti<1000001){

11 tax=30000+0.2*(ti-500000);

12 printf ( "%.2f" , tax ) ;

e2

13 else if(ti>1000000){

14 tax=130000+0.3*(ti-1000000);

15 printf("%.2f", tax);}

16 return 0;}

Figure 1: An erroneous program and the sequence of actions
taken by a trained agent to fix it: The error locations are
highlighted in the red color. The arrows show how the agent
navigates over the program text. The edit actions are marked
by e1 and e2.

training agents to play visual and text-based games at expert
levels (Mnih et al. 2015; Narasimhan, Kulkarni, and Barzi-
lay 2015; Wu and Tian 2016). Inspired by this, we approach
this problem through deep reinforcement learning. We pro-
pose a novel programming language correction framework,
in which an agent can mimic these actions. While the agent
can access and modify the program text, the compiler which
checks syntactic validity of the program text is a black-box
for the agent. As noted above, compilers usually do not pin-
point error locations precisely. Hence, we do not rely on a
compiler to aid in error localization or correction. Instead,
we design a reward function using only the number of error
messages generated by the compiler. The goal of the agent
is to perform edits necessary for successful compilation of
the program.

To see our framework in action, consider the example C
program shown in Figure 1 again. This program is given to
a trained agent which has not seen it during training. The
program is presented in a tokenized form to the agent and
the cursor position of the agent is initialized to the first to-
ken in the program. The navigation actions of the agent over
the program text are shown by arrows. As shown by the se-
quence of actions taken by the agent in Figure 1, the agent
correctly localizes and fixes both the errors. First, the agent
navigates to the error location at line 4 and replaces the in-
correct semicolon with a comma (marked by e1). Next, it
navigates to the error location at line 12 and inserts the miss-
ing closing brace (marked by e2). After these edits, the pro-
gram compiles successfully and the agent stops. In compari-

son, a brute-force search will have to enumerate all possible
edited versions of the program with up to two simultaneous
edits and compile each of them to identify the right edits.
This will be far more computationally expensive than using
the agent. A video demonstration of this example is available
at: https://youtu.be/kNtBT1fgJ-0

We represent the program text, augmented with the po-
sition of the cursor as a sequence of tokens which is then
embedded using a long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber 1997). The agent is al-
lowed a set of navigation and edit actions to fix the pro-
gram. It receives a small reward for every edit action which
fixes some compiler error and the maximum reward is given
for reaching the goal state, which is a compiler error-free
version of the program. The control policy of the agent is
learned using the asynchronous advantage actor-critic (A3C)
algorithm (Mnih et al. 2016).

Training an agent in this setting is non-trivial. As illus-
trated by the example above, the agent needs to both localize
the errors and make precise edits at the error locations to be
able to fix a program. A wrong edit only makes the program
worse by introducing more errors and consequently, makes
the task even more difficult. To overcome this, we configure
the environment to reject all the edits that do not reduce the
number of compilation errors. This significantly prunes the
state space that an agent is allowed to explore, allowing it to
train in a reasonable amount of time. This also prevents an
agent from performing arbitrary edits such as deleting erro-
neous lines. We call our technique RLAssist.

DeepFix (Gupta et al. 2017) is a state-of-the-art, end-to-
end syntactic error repair technique. We compare RLAs-
sist with DeepFix on the task of fixing typographic er-
rors in 6975 C programs from a publicly available dataset.
These programs were written by students during an intro-
ductory programming course and span 93 different pro-
gramming problems (Gupta et al. 2017; Das et al. 2017).
These programs use non-trivial constructs of the C lan-
guage such as conditionals, switch statements, nested loops,
multi-dimensional arrays, multiple procedures, and recur-
sion. DeepFix uses a fully supervised neural machine trans-
lation approach.

In contrast, RLAssist is a deep reinforcement learning
based technique. We demonstrate that RLAssist outperforms
DeepFix, although it is trained through self-exploration us-
ing erroneous programs only, i.e., without any supervision.
RLAssist fixes 24.4% programs from the test set completely
and resolves 35.1% error messages. Relative to DeepFix,
this is an improvement of 4.6% and 13.8% respectively. We
further show that we can accelerate the training of RLAssist
by a factor of 5 by leveraging expert demonstrations for only
one tenth of the training dataset. The main contributions of
this work are as follows:

1. We design a novel framework for programming language
correction amenable to reinforcement learning and train
our agent using A3C.

2. We empirically show that our technique, RLAssist, out-
performs a fully supervised state-of-the-art syntactic error
repair technique, DeepFix, on a publicly available dataset
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of thousands of C programs.

3. We achieve more than 5× training speedup for RLAssist
using expert demonstrations for only one tenth of its train-
ing data.

4. We provide the source code of RLAssist online at: https:
//bitbucket.org/iiscseal/rlassist.

Background
Reinforcement Learning
In reinforcement learning, an agent interacts with its en-
vironment over a number of discrete time steps. At each
time step t, the environment presents a state st ∈ S to the
agent. In response, the agent selects an action at from the
set of allowed actions A. This selection is controlled by the
agent’s policy π(a|s) = Pr{at = a|st = s}. The action
is passed on to the environment and its execution may mod-
ify the internal state of the environment. The agent then re-
ceives the updated state st+1 and a scalar reward rt. This
interaction, which is also called an episode, stops when the
agent reaches a goal state. The objective of the agent is to
maximize the expected sum of discounted future rewards
Gt from each state st. For an episode terminating at time
step T , Gt =

∑T−t−1
k=0 γkrt+k, where the discount rate

γ ∈ (0, 1] (Sutton and Barto 1998).

Asynchronous Advantage Actor-Critic (A3C)
One of the many ways to solve an RL problem is to use
policy gradient methods. These methods learn a parameter-
ized policy π(a|s; θ), where θ represents the parameters of
a function approximator, such as a neural network. One ex-
ample of policy gradient methods is the actor-critic meth-
ods, which learn both π(a|s; θ), the ‘actor’, and the value
function V (s;w), the ‘critic’. Here, V (s;w) defines the ex-
pected reward from state s, with w being the parameters of
a function approximator. The critic evaluates how advanta-
geous is it to be in the new state reached by taking an ac-
tion at sampled from the distribution given by π(st). Based
on this evaluation, the parameterized policy is updated us-
ing an appropriate optimization technique such as gradient
ascent (Sutton and Barto 1998).

The A3C algorithm uses multiple asynchronous parallel
actor-learner threads to update a shared model, stabilizing
the learning process by reducing the correlation of an agent’s
experience. It has also been observed to reduce training time
by a factor that is roughly linear in the number of parallel
actor-learners (Mnih et al. 2016). We use A3C in this work.

Technical Details
A Framework for Programming Language
Correction Tasks
When faced with an error, a programmer navigates the pro-
gram text to arrive at the location of error and then performs
an edit operation to fix the error. In the presence of multiple
errors, the programmer can repeat these steps. We present a
programming language (PL) correction framework in which
an agent can mimic these actions. Figure 2a shows the block

diagram of our PL correction framework. We now describe
the components of this framework and their instantiation for
our task of correcting syntax errors in C programs.

States A state is a pair ⟨string, cursor⟩, where string
is the program text, and cursor ∈ {1, . . . , len(string)},
where len(string) denotes the number of tokens in the
string. The environment also keeps track of the number of
errors in string. These errors can either be determined from
the ground truth whenever available or estimated using the
error messages generated by a compiler upon compiling the
string. For compilation, we use the GNU C compiler.

We encode the state into a sequence of tokens as follows.
First, we convert the program string into a sequence of lex-
emes. The lexemes are of different types, such as keywords,
operators, types, functions, literals, and variables. In addi-
tion, we also retain line-breaks as lexemes to allow two-
dimensional navigation actions over the program text. We
use a special token to represent cursor, which is inserted in
the sequence of lexemes right after the token whose index is
held by cursor.

Next, we build a shared vocabulary across all pro-
grams. Except some common functions such as printf
and scanf, all other function and variable identifiers are
mapped to a special token ID. Similarly, all the literals are
mapped to special tokens according to their type, e.g., num-
bers to NUM and strings to STR. All remaining tokens are
retained without any modifications. This mapping reduces
the size of the vocabulary seen by the agent.

Note that this encoding is only required for feeding the
state to the agent. The actions predicted by the agent based
on this encoding are executed by the environment on the
original program string.

Actions and Transitions The agent actions are divided
into two categories, the first which update the cursor and
the second which modify the string. We refer to the first cat-
egory of actions as navigation actions and the latter as edit
actions. The navigation actions allow an agent to navigate
through the string. These actions only change the cursor
of a state and not the string. The edit actions on the other
hand, are used for error correction. They only modify the
string and not the cursor. Wrong edit actions introduce
more errors in the string rather than fixing them. An edit ac-
tion is categorized as wrong if it does not reduce the number
of error messages in the program string. We configure the
environment to reject all such edits to prune the state space
from which fixing the program becomes even more difficult.
This also prevents an agent from performing arbitrary edits
such as deleting erroneous lines.

For our task, we allow only two navigation actions,
move right and move down. These set the cursor to the next
token on the right or to the first token of the next line respec-
tively. The move right (respectively, move down) action has
no effect if the cursor is already set to the last token of a
line (respectively, any token of the last line). Note that the
move down action is possible because we retain the line-
breaks in the state encoding. This choice of navigation ac-
tions allows an agent to systematically reach all potential
error locations in the program while keeping the number of
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Figure 2: Design of RLAssist.

navigation actions low.
Based on our study of common typographic errors that

novice programmers make, we design three types of edit ac-
tions. The first is a parameterized insert token action which
inserts the parameter token immediately before the cursor
position. The parameter can be any token from a fixed set
of tokens which we call mutable tokens. The second is the
delete action, which deletes the token at the cursor position.
However, the token is deleted only if it is from the set of mu-
table tokens. We restrict the set of mutable tokens to the fol-
lowing five types of tokens: semicolon, parentheses, braces,
period, and comma. The third edit action is a parameterized
replace token1 with token2 action which replaces token1 at
the cursor position with token2. We have the following four
actions in this class: (1) replace ‘;’ with ‘,’, (2) replace ‘,’
with ‘;’, (3) replace ‘.’ with ‘;’, and (4) replace ‘;)’ with
‘);’. Although atomic replacement actions can be substi-
tuted with a sequence of delete and insert actions, having
them prevents the cases where the constituent delete and/or
insert actions can be rejected by the environment.

Episode, Termination, and Rewards An episode starts
with an erroneous program text as string and the curosr
set to its first token. The goal state is reached when the
edited program compiles successfully. An agent is allowed
max episode len number of discrete time steps to reach
the goal state in an episode after which the episode is ter-
minated. Also, the agent is allowed only one pass over
the program in an episode, i.e., once the agent navigates
past the last token of a program, the episode is termi-
nated. In each step, the agent is penalized with a small
step penalty in order to encourage it to learn to fix a pro-
gram in the minimum number of steps. The agent is given
maximum reward for reaching the goal state. Also, a
small intermediate reward is given for taking an edit ac-
tion that fixes at least one error.

Model
We use the A3C algorithm for the programming language
correction task. Figure 2b shows the block diagram of
our agent. Our model first uses a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) network
for embedding the tokenized state into a real vector. The
LSTM network maps each token xi of an input sequence
(x1, . . . , xn) to a real vector yi. The final state embedding is
calculated by taking an element-wise mean over all the out-
put vectors (y1, . . . , yn) following (Narasimhan, Kulkarni,
and Barzilay 2015). Given this state embedding, we use two
separate fully connected linear layers to produce the policy
function π(a|s; θ), and the value function V (s;w) outputs.
Finally, before updating the network parameters, the gradi-
ents are accumulated using the following rules:

dθ ← dθ +∇θ′ log π(at|st; θ′)(R− V (st;w
′))

+ β∇θ′H(π(st; θ
′))

dw ← dw +∇w′(R− V (st;w
′))2

where R =
∑k−1

i=0 γirt+i + γkV (st+k;w
′), H is the en-

tropy, and β is a hyperparameter to control the weight of the
entropy regularization term; θ′ and w′ are the thread specific
parameters corresponding to θ and w respectively (Mnih et
al. 2016).

Experiments
Dataset
We use the publicly available dataset originally developed
in the DeepFix (Gupta et al. 2017) work. The programs in
the dataset span 93 programming problems in an introduc-
tory programming course and make use of non-trivial C lan-
guage constructs. The program lengths range from 75 to 450
tokens. DeepFix uses five fold cross validation for its experi-
ments by partitioning the 93 programming problems. In each
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Dataset statistics Technique Results
Erroneous Error Avg. Completely Partially Error
programs msgs. tokens fixed fixed messages

programs programs resolved

DeepFix 1625 (23.3%) 1129 (16.2%) 5156 (30.8%)
6975 16766 203 RLAssist 1699 (24.4%) 1310 (18.8%) 5884 (35.1%)

RLAssist+Demo 1854 (26.6%) 1426 (20.4%) 6652 (39.7%)

Table 1: Summary of the test dataset and performance comparison of DeepFix, RLAssist, and RLAssist+Demo on it for typo-
graphic errors. Note that we take the most recent version of the dataset and improved results for DeepFix from its webpage:
https://bitbucket.org/iiscseal/deepfix.

fold, the correct programs for the 4/5th of the programming
problems are used to generate about 165K training exam-
ples. Each correct program x is mutated to generate up to
five training examples of the form (x′, y′), where x′ is the
mutated program and y′ is the required correction to it. The
erroneous programs for the remaining 1/5th of the program-
ming problems are used for testing without any modifica-
tion. Summed across all the folds, the test set contains 6975
erroneous programs with 16766 compilation error messages,
as shown in Table 1. This experimental setup requires a
learning algorithm to learn the syntactic validity as per the
language syntax so that it can generalize to unseen program-
ming problems.

For our experiments, we use the same experimental
setup as DeepFix. However, we use only the incorrect pro-
grams (x′) from the training dataset and discard the corre-
sponding fixes (y′).

Experiment Configuration and Training
We implement our technique in Tensorflow (Abadi et al.
2016). We find a suitable configuration of the PL correction
framework and the learning model for our task through ex-
perimentation. In particular, the LSTM encoder in our model
has two recurrent layers with 128 cells each. Our vocabu-
lary has 91 tokens, which are embedded into 24-dimensional
vectors. We set the discounting factor γ = 0.99, the maxi-
mum number of exploration steps before a neural network
parameter update is made tmax = 24, and entropy regular-
ization factor β = 0.01. The LSTM encoder for state embed-
ding and the policy network are trained together in an end-
to-end manner. We use 32 parallel agents, and a learning rate
of 0.0001 for optimizing our model using the ADAM opti-
mizer (Kingma and Ba 2014). We also use gradient clipping
to prevent the gradients from exploding (Pascanu, Mikolov,
and Bengio 2013). We configure the PL correction frame-
work for our task by setting max episode len = 100,
step penalty = −0.01, maximum reward = 1, and
intermediate reward = 0.02. We train RLAssist for 30
epochs (1 epoch ≈ 165K episodes), which takes 3 weeks
on an Intel(R) Xeon(R) E5-2630 v4 machine, clocked at
2.20GHz with 32GB of RAM.

Evaluation
In this section, we first discuss the training performance of
RLAssist. Next, we discuss how we can accelerate the train-

ing of RLAssist by leveraging only a small amount of expert
demonstrations. Later, we compare it with DeepFix on the
test dataset described earlier.

Training Performance of RLAssist In order to evaluate
the training performance of RLAssist, we use the following
metrics: (1) the percentage of error messages resolved, (2)
the average episode length, (3) the average number of edit
actions, and (4) the average reward obtained by the agent as
the training progresses. We report the training performance
on one of the folds. For ease of plotting, the average reward
shown in the figures is scaled by a factor of 100. Figure 3a
illustrates the training performance of RLAssist.

RLAssist learns to solve the task very well and is able
to resolve about 90% of the error messages after training
for about four million episodes. In the last epoch of train-
ing, the agent reaches the goal state for 79% of the episodes.
Furthermore, it manages to resolve 36% of the error mes-
sages for the programs corresponding to the remaining 21%
episodes. At the same time, the average scaled reward also
reaches the maximum of about 30 from −100, the scaled
reward obtained at the beginning of the training. The maxi-
mum scaled reward is almost always less than 100 because
of the penalty that the agent incurs for navigating to the er-
ror location. The average length of an episode comes down
to 54 from the maximum allowed episode length of 100 con-
sisting about 27 navigation and 28 edit actions. This is much
smaller than what a systematic brute-force search would re-
quire in a combinatorial search space. For the 79% of the
programs that RLAssist fixes in the last epoch, the average
number of rejected edit actions per episode is only about 5.
This shows that RLAssist not only learns to fix a program
but it also learns to do so by taking reasonably precise navi-
gation and edit actions.

Accelerating Training with Expert Demonstrations Re-
inforcement learning tends to be slow for the tasks with
large state spaces as the time required for gathering infor-
mation by state exploration increases. One way to mitigate
this problem is to guide the agent with expert demonstra-
tions (Argall et al. 2009). Motivated by this, we further de-
sign a scheme to enable the agent to take advantage of expert
demonstrations.

We configure an agent to use expert demonstrations as fol-
lows. For the episodes for which a demonstration is avail-
able, the agent follows the predetermined sequence of ac-
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Figure 3: Training performance of RLAssist and RLAssist+Demo. The X-axis
shows the number of training episodes in millions. epLen and fix% stand for
episode length and the percentage of error messages resolved, respectively.

Figure 4: PCA projection of embeddings of 350 programs
in three different states. The first, the second, and the third
states (defined in the text) are shown by diamonds, squares,
and circles, respectively.

tions provided, instead of sampling driven by the policy.
The updates to the policy network parameters are made as
if the predetermined action was sampled. For the rest of
the episodes, the agent takes the actions sampled using the
policy, following the standard A3C algorithm. We derive
demonstrations for one tenth of training programs from their
fixes. Additionally, we add a small edit penalty to discour-
age the agent from taking unnecessary edit actions. We refer
to this configuration as RLAssist+Demo.

As shown in Figure 3b, RLAssist+Demo benefits im-
mensely from the demonstrations and starts making visible
progress after training for only 0.2 million episodes com-
pared to 1.2 million episodes for RLAssist. It resolves about
90% of the error messages after training for about a million
episodes, 3 millions episodes earlier than RLAssist. The ad-
ditional edit penalty also helps in reducing the number of
average edit actions per episode by a factor of 3. Note that
RLAssist fails to train with edit penalty as it stops explor-
ing edit actions very early in the training due to more nega-
tive reward.

This shows that while RLAssist is able to train with er-
roneous programs alone, it can benefit when even a small
amount of labeled data (i.e., erroneous programs and their
fixes) is available. We train RLAssist+Demo for 10 epochs,
which takes about 4 days on the same machine used for

Completely Partially Completely
fixed fixed or partially

programs programs fixed programs

DeepFix∗ 264 247 398
RLAssist∗ 335 428 650

Table 2: Comparison of DeepFix and RLAssist on the num-
ber of programs fixed ∗exclusively by each technique.

RLAssist, achieving more than 5 times speedup in train-
ing time. In our experiments, we observed that using more
demonstrations did not result in significant speedup in train-
ing while reducing the demonstrations slowed it down.

Comparison with DeepFix In Table 1, we show the
comparison of RLAssist and RLAssist+Demo with Deep-
Fix (Gupta et al. 2017) on the test dataset. For this com-
parison, we use the number of error messages resolved, and
completely and partially fixed programs; the same metrics as
reported in (Gupta et al. 2017). Further in Table 2, we also
report the number of programs which are fixed exclusively
by DeepFix or RLAssist.

As shown in Table 1, the test dataset has 16766 error mes-
sages from 6975 erroneous programs out of which Deep-
Fix resolves 5156 error messages, fixing 1625 programs
completely and 1129 partially. RLAssist resolves 5884 er-
ror messages, fixing 1699 programs completely and 1310
partially. Thus RLAssist outperforms DeepFix by a relative
margin of 13.8% and 4.6% in terms of error messages re-
solved and completely fixed programs, respectively. Relative
to DeepFix, the percentage of programs fixed partially by
RLAssist is 15.2% higher. At test time, both RLAssist and
DeepFix take less than a second to fix a program. RLAs-
sist+Demo performs even better and resolves 6652 error
messages, fixing 1854 programs completely and 1426 par-
tially. It outperforms DeepFix by a relative margin of 29%
and 14.1% in terms of error messages resolved and com-
pletely fixed programs, respectively. Relative to DeepFix, it
fixes 26.3% more programs partially.

One reason for better performance of RLAssist is that

935



it works at a finer token-level granularity compared to the
coarser line-level granularity of DeepFix. RLAssist can edit
an incorrect line in place, whereas DeepFix has to produce a
complete replacement of the erroneous line. This requires it
to copy the correct token subsequences from the input while
simultaneously rectifying the erroneous tokens. Another rea-
son is that DeepFix halts when it cannot fix a line, i.e., if it
fails to fix an erroneous line, it cannot fix the subsequent
erroneous lines. This limitation arises because of the iter-
ative nature of DeepFix. If a fix suggested by DeepFix is
accepted by the compiler, the fix is applied and the updated
program is shown to DeepFix to identify the next fix. How-
ever, if it is rejected, the iterative procedure stops. RLAssist,
on the other hand, does not have this limitation. If the action
taken by the agent is rejected by the environment, it takes
the next highest probability action and continues to attempt
other fixes.

Embedding Visualization We select 350 test programs
containing only one error per program. Next, we get embed-
dings corresponding to the following three states of each of
these programs: (1) when the cursor is set to the first token
of the line preceding the erroneous line, (2) when the cursor
is set to the first token of the erroneous line, and (3) when the
cursor is set to the error location and the program has been
fixed. Figure 4 shows the first three principal components of
these embeddings. It can be seen that the three states form
three distinct clusters with almost no overlap. This shows
that RLAssist’s encoder learns to capture not only the syn-
tactic validity of the programs but also the location of the
errors in them.

Related Work
Natural language correction is a well researched problem.
Some of the earlier works in this area have focused on
identifying and correcting specific types of grammatical er-
rors such as misuse of verb forms, articles, and prepositions
(Han, Chodorow, and Leacock 2006; Chodorow, Tetreault,
and Han 2007; Rozovskaya and Roth 2010). The more re-
cent works consider a broader range of error classes, often
relying on language models, and machine translation (Ng
et al. 2014; Rozovskaya et al. 2014). Although natural lan-
guages and programming languages are similar to some
extent, the latter have procedural interpretation and richer
structure.

Due to the huge popularity of programming oriented mas-
sive open online courses (MOOCs), recent years have seen
increasing interest in developing automated techniques for
syntactic error repair in student programs. sk p (Pu et al.
2016) and SynFix (Bhatia, Kohli, and Singh 2018) learn syn-
tactic error repair limited to a specific programming problem
by training neural networks on the correct submissions of the
same problem. Therefore, unlike RLAssist, these techniques
cannot be used for real time feedback generation for novel
programming problems as they need to train their model
for each problem separately. TRACER (Ahmed et al. 2018)
uses both hand designed abstractions and supervised learn-
ing techniques for learning error correction models on ab-
stract statements. It takes only an incorrect statement as its

input, and consequently fails to handle many frequent errors
requiring global context such as opening/closing a missing
brace. RLAssist, on the other hand, takes complete program
as input and does not suffer from this limitation. While Syn-
Fix and TRACER use compiler based heuristics, sk p per-
forms a brute force, enumerative search for localizing errors.

DeepFix (Gupta et al. 2017) is a state-of-the-art, end-to-
end, supervised syntactic error repair technique. It is more
general than the previous three techniques as it learns to
predict both the error locations and the fixes without rely-
ing on any heuristics. We propose a reinforcement learning
framework in which an agent can learn syntactic error repair
directly from raw program text through self-exploration, i.e.
without any supervision.

Syntactic error repair techniques for student programs are
useful for not only students but also instructors. A recent
study (Yi et al. 2017) noted that automated program repair
techniques can be used by human graders to decrease the
amount of grading time. GradeIT (Parihar et al. 2017) uses
simple rewrite rule based syntactic error repair to grade sub-
missions that do not compile. Integrating our technique can
further improve the performance of such systems.

Through deep reinforcement learning, agents have been
trained to play visual and text-based games at expert lev-
els (Mnih et al. 2015; Narasimhan, Kulkarni, and Barzi-
lay 2015; Wu and Tian 2016). At a high level, our prob-
lem is similar to text-based games in which both the state
space and cues for completing the quest are given in a tex-
tual form (Narasimhan, Kulkarni, and Barzilay 2015). How-
ever, the state space in these games is manually created by
their developers and is of small size. Similarly, the transi-
tions between states is also constrained. In contrast, the state
space for our problem is combinatorial in the size of a given
program. Training an agent is challenging in this large state
space, which we overcome by constraining the agent to ex-
plore only those states which take it closer to the goal state.

Learning from demonstration (LfD) approaches
train an agent using expert demonstrations. Behavioral
cloning (Ross, Gordon, and Bagnell 2011) is one particular
class of LfD techniques to make the agent mimic expert
demonstrations using supervised learning. We complement
the self-exploration with expert demonstrations to accelerate
the training. Inverse reinforcement learning is another class
of LfD techniques. These use demonstrations to first infer
a reward function which is then used to learn the pol-
icy (Abbeel and Ng 2004). These methods have been used
for the tasks where there is no obvious reward function, e.g.,
autonomous driving (Abbeel and Ng 2004) and acrobatic
helicopter maneuvers (Abbeel et al. 2007). For our task, the
rewards are well defined and can be calculated easily.

Conclusions and Future Work
We address the problem of syntactic error repair in student
programs and present a novel deep reinforcement learning
based solution, called RLAssist, for it. We compare RLAs-
sist with a state-of-the-art technique, DeepFix, on the task of
correcting typographic errors in 6975 student-written erro-
neous C programs. Our experiments show that RLAssist out-
performs DeepFix without using any labeled data for train-
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ing. Moreover, we show that RLAssist trains much faster
and converges to a better policy when expert demonstrations
are available for as little as one tenth of its training data.

RLAssist is programming language agnostic and has been
evaluated on C programs. In future, we will experiment with
other programming languages as well. We plan to extend
RLAssist to target more classes of errors, and devise RL
algorithms that can learn and exploit deeper syntactic and
semantic properties of programs.
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