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Abstract

Despite the great success of word embedding, sentence em-
bedding remains a not-well-solved problem. In this paper,
we present a supervised learning framework to exploit sen-
tence embedding for the medical question answering task.
The learning framework consists of two main parts: 1) a sen-
tence embedding producing module, and 2) a scoring mod-
ule. The former is developed with contextual self-attention
and multi-scale techniques to encode a sentence into an em-
bedding tensor. This module is shortly called Contextual
self-Attention Multi-scale Sentence Embedding (CAMSE).
The latter employs two scoring strategies: Semantic Match-
ing Scoring (SMS) and Semantic Association Scoring (SAS).
SMS measures similarity while SAS captures association be-
tween sentence pairs: a medical question concatenated with
a candidate choice, and a piece of corresponding supportive
evidence. The proposed framework is examined by two Medi-
cal Question Answering(MedicalQA) datasets which are col-
lected from real-world applications: medical exam and clin-
ical diagnosis based on electronic medical records (EMR).
The comparison results show that our proposed framework
achieved significant improvements compared to competitive
baseline approaches. Additionally, a series of controlled ex-
periments are also conducted to illustrate that the multi-scale
strategy and the contextual self-attention layer play impor-
tant roles for producing effective sentence embedding, and
the two kinds of scoring strategies are highly complementary
to each other for question answering problems.

Introduction
Embedding learning in word-level has achieved much
progress(Bengio et al. 2003; Mikolov et al. 2013b; Mikolov
et al. 2013a; Pennington, Socher, and Manning 2014) and
the pre-trained word embeddings have been almost a stan-
dard input to a certain deep learning framework for solv-
ing upstream applications, such as reading comprehension
tasks (Raison et al. 2018; Wang et al. 2018; Zhang et al.
2018; Chen et al. 2017; Cheng, Dong, and Lapata 2016;
Dhingra et al. 2016; Seo et al. 2016). However, learning
embeddings at sentence/document level is still a very dif-
ficult task, not well solved at present. The study of sen-
tence embedding runs along the two lines: 1) exploiting
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semantic/linguistic properties (Zhu, Li, and Melo 2018;
Baroni et al. 2018) obtained within sentence embeddings,
and 2) designing learning methods to produce effective sen-
tence embeddings. All of the learning methods can be gener-
ally categorized into two groups: 1) obtaining universal sen-
tence embeddings with an unsupervised learning framework
(Hill, Cho, and Korhonen 2016; Kiros et al. 2015; Le and
Mikolov 2014), and 2) producing task-dependent sentence
embeddings with a supervised learning framework (Palangi
et al. 2016; Tan et al. 2016; Cheng, Dong, and Lapata 2016;
Lin et al. 2017).

Though plenty of successful deep learning models are
built at word level (word embedding), there are still some
different and valuable merits obtained within sentence em-
bedding. For example, most reading comprehension mod-
els calculate a pairwise similarity at word level to extract
keywords in the answer. However, these fine-grained mod-
els maybe misled under certain circumstances, such as long
paragraph with lots of single noisy words which are similar
to those words that appear in the question but unrelated to
the question answering. Furthermore, models built on sen-
tence embeddings sometimes can be more interpretable. For
example, we can encode a sentence into several embeddings
to capture different semantic aspects of the sentence. As we
known, sometimes interpretability becomes more crucial for
certain real applications, such as tasks from the medical do-
main.

In this paper, we focus on developing supervised sentence
embedding learning framework for solving medical question
answering problems. To maintain model interpretation, we
also adopt the self-attention structure proposed by (Lin et
al. 2017) to produce sentence embeddings. The only differ-
ence is that a contextual layer is used in conjunction with the
self-attention. Under certain circumstances, the valuable in-
formation resides in a unit whose size is between word and
sentence. Take medical text for an instance, a large amount
of the medical terminologies are entities consist of several
sequential words like Acute Upper Respiratory Infection. It
requires a flexible scale between word and sentence-level
to encode such sequential words as a single unit and as-
sign words in the unit with similar attention, instead of treat-
ing them like a bag of unrelated words, which can be mis-
led easily by noisy words in long paragraphs when com-
puting pairwise word similarities. For example, sentences
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that include Acute Gastroenteritis and Acute Cholecystitis
may be considered to some extent related to question that
describes Acute Upper Respiratory Infection because Acute
appears in all of them, even though these sentences con-
centrate on totally different diseases. Therefore we propose
contextual self-attention and multi-scale strategy to produce
sentence embedding tensor that captures multi-scale infor-
mation from the sentence. The contextual attention detects
meaningful word blocks(entities) and assigns words in the
same block with similar attention value. The multi-scale al-
lows the model to directly encode sequential words as an in-
tegral unit and extracts informative entities or phrases. The
contextual attention is a soft assignment of attention value,
while the multi-scale strategy is a hard binding of sequential
words. Even though being able to preserve more informa-
tion by producing a tensor, Lin et al. simply calculate sim-
ilarities between corresponding semantic subspaces and fail
to capture the association between different subspaces. In an
attempt to fully exploit the abundant information lies in the
tensor, we propose two scoring strategies: Semantic Match-
ing Scoring(SMS) and Semantic Association Scoring(SAS).

In the rest of this paper, we will first define the med-
ical question answering task and introduce two datasets.
Then, the supervised sentence embedding learning frame-
work (consisting of sentence embedding producing module
CAMSE and scoring module) are introduced, and a series of
comparison results and some crucial analysis are presented.

MedicalQA Task Description
Here, we define the MedicalQA task with three components:

- Question: a short paragraph/document in text describing
a medical problem.

- Candidate choices : multiple candidate choices are given
for each question, and only one is the correct answer.

- Evidence documents: for each candidate choice, a collec-
tion of short documents/paragraphs1 is given as evidence
to support the choice as the right answer.

The goal of MedicalQA is to determine the correct answer
based on corresponding evidence documents with an appro-
priate scoring manner.

(Q, {c1, c2, ...cnc
}, {D1, D2, ..., Dnc

}) → c∗, (1)

where nc is the number of candidate choices for each
question, ci is the ith candidate choice, and Di =
{di1, di2, ...dine

} is the set of evidence documents for the
choice ci, where i = 1, 2, ..., nc is the index of candidate
choice, and ne is the number of evidence documents for each
choice.

In the rest of this section, we will introduce two kinds of
medical question answering problems, which are from real-
world applications and can be transformed into MedicalQA
task as defined in formula (1). The first task comes from a
medical exam: the General Written Test (GWT) of National

1In the rest of this paper, we will not specifically differentiate
sentences from documents/paragraphs. These terms can be used
interchangeably.

Medical Licensing Examination in China (NMLEC), and
the second task is Clinical Diagnosis based on Electronic
Medical Records(CD-EMR).

MedicalQA#1:NMLEC
Data source NMLEC is an annual certification exam
which comprehensively evaluates doctors’ medical knowl-
edge and clinical skills. The General Written Test part of
NMLEC consists of 600 multiple choice questions. Each
question is given 5 candidate choices (one example is pre-
sented in Fig. 1), and only one of them is the correct answer.
The exam examines more than 20 medical subjects

Question: A male patient, aged 20 years old.  He had diarrhea 3 weeks 
ago, and 2 days later the symptoms improved but he did not mind. 1 days 
ago in the morning he felt weakness in limbs and pains in double legs. 
Gradually illness turned more serious. His family found his double eyelid 
cannot fully close, no dysphagia, and urinary and stool were normal. 
Admission examination: clear consciousness, speak normally, bilateral 
peripheral facial paralysis, limb muscle strength Ⅱ, low muscle tension, no 
obvious sensory disturbance. This patient is most likely diagnosed as: ( )

(A)  Guillain-Barre syndrome  (B) Parkinson's disease  
(C)  Purulent meningitis   (D)  Myasthenia gravis              
(E) Acute myelitis

Figure 1: An example question from the General Written
Test part of NMLEC.

Training/test set We collected 10 suites of the exam, to-
tally 6,000 questions, as the test set. To avoid test ques-
tions appearing in the training set with minor variance, we
dropped the training questions which are very similar to the
questions from the test set, resulting in totally 250,000 med-
ical questions as the training set. The similarity of two ques-
tions is measured by comparing Levenshtein distance(Lev-
enshtein 1966) with a threshold ratio of 0.8.

Evidence documents The General Written Test of NM-
LEC mainly examines medical knowledge from medical
textbooks. Therefore, we first collected totally more than 30
publications (including textbooks, guidebooks etc.) as evi-
dence source. Then we produced evidence documents from
the evidence source with a text retrieval system built upon
Apache Lucene with BM25 ranking.

MedicalQA#2:CD-EMR
Data source A large amount of electronic medical
records(EMRs) are collected from the outpatient department
of basic level hospitals. An example of the EMRs sample is
listed in Fig.2. The EMRs mainly consists of three parts:

- Chief complaint: a very brief description of the patient’s
illness symptom.

- History of present illness2: a more detailed inter-
view (comprehensive description to the patient’s illness)
prompted by the chief complaint or presenting symptom.

2History of Present Illness, commonly abbreviated HPI, is also
termed History of Presenting Complaint (HPC) in medical domain.
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- Disease code: a code consisting of a combination of up-
percase and numbers with a length of four. Each code in-
dicates only one disease.

Chief complaint: Sore throat for 5 days.
 
History of present illness: After catching a chill 5 days 
ago, the patient began to suffer from sore throat, which 
worsened when swallowing. No nasal obstruction. No 
hoarseness. No cough. No fever. No expiratory dyspnea. 
The patient has no difficulty in somnus and eating.

Disease code: J06.9

Figure 2: An example EMR data.

Questions & candidate choices To transform the EMRs
data (see Fig.2) into a standard MedicalQA task defined
above, here we concatenate each chief complaint and its cor-
responding history of present illness, and treat the concate-
nation as a medical question. There are totally 98 disease
codes in our data.

Training/test set We collected EMRs data during a long
period from the outpatient department of basic level hospi-
tals as the training set, and the next period data collected
from the same hospitals are used as test set. Here, we use the
next period data as the test set. The main purpose is to make
the problem more suitable for real applications (learning
from historical data, but predicting over present/future data).
All training/test EMRs data are transformed into MedicalQA
questions via the method mentioned above. The training set
has 75265 items, and the test set has 16551 items.

Evidence documents Since MedicalQA#2 are collected
from real-world EMRs data, the question description varies
significantly due to the diversity of human doctors’ writing
styles and deviates from textbook styles as well. Using a text
retrieval system to retrieve evidence documents as done in
MedicalQA#1 is not a good choice (We have a try, but the
results are terrible). Here, we selected similar question sam-
ples from training set as evidence documents. All training
questions are used to train a simple LSTM-MLP classifier.
The output of LSTM-MLP is treated as a representation of
the problem and we use it to select nearest neighbors of each
problem as their supportive documents for each disease.

The Framework
According to the MedicalQA task defined above (1), the
key to determining the correct answer from many candi-
date choices is to evaluate the supportive degree of an ev-
idence document to the corresponding candidate choice. In
this study, we consider the supportive degree into two as-
pects: how semantic similarity between the sentence pairs
(question concatenated with a candidate choice, and the cor-
responding evidence document), and how association across
the sentence pairs. The former is degreed with Semantic
Matching Scoring (SMS) and the latter is measured with Se-
mantic Association Scoring (SAS). In the rest of this section,

we will first introduce the sentence embedding producing
module CAMSE and then present the scoring module con-
sisting of SMS and SAS.

CAMSE
The sentence embedding producing module CAMSE is pre-
sented in Fig.3. We will introduce its details layer by layer.

Input layer & multi-scale context layer For each word
of the input sentence, we lookup its embedding from pre-
trained embedding matrix. Then we implement a multi-scale
convolution operation on word embeddings with variable
window size i(i = 1, 2, 3, ..., k). (see Fig.3 (a)).The vari-
ation of granularity enables the model to not only process
single words, but also bind sequential i words as an integral
representation for the potential terminology of entities or
phrases, like chronic bronchitis. The outputs of convolution
with different window sizes are processed separately with
different bidirectional LSTM networks to generate semantic
encodings.

Contextual self-attention layer Similar to previous self-
structured sentence embedding model(Lin et al. 2017), at
each scale a sentence Hi = (hi

1, h
i
2, h

i
3, ..., h

i
n) with vari-

able length n is encoded into a fixed-shaped 2-D feature
matrix. The multi-attention mechanism attends to different
semantic components of the sentence, and preserve more in-
formation than a single vector. We encode each word in the
sentence into a r-dimensional attention vector, representing
its significance in corresponding semantic sub-spaces.

As Fig.3 (b) shows, we first use an unbiased 1-layer
feed-forward network to compress the word representation.
W i

s1 ∈ R2u1×da , da is the size of hidden state and u1 is the
one-direction output size of Bi-LSTM in the previous layer.

M i,1 = tanh(HiW i
s1) (2)

The hidden states M i,1 = (mi,1
1 ,mi,1

2 , . . . ,mi,1
n ) are pro-

cessed with a 1-layer Bidirectional LSTM to integrate con-
text information. Although the LSTM network in multi-
scale context layer has contained dynamic information, we
still adopt another Bi-LSTM layer here to separate the func-
tion of two Bi-LSTM networks. The first Bi-LSTM layer
concentrates on semantic encoding which is further utilized
when producing sentence embeddings. The output embed-
dings of sequential words in entities can vary significantly
after the first Bi-LSTM layer, in order to preserve the di-
verse semantic information in a sentence. The second layer,
on the other hand, focuses on detecting the meaningful word
blocks and assigns words in them with similar attention val-
ues. The contextual information is incorporated so that the
attention layer can better capture word blocks and treat the
words in a block equally, even though their semantic embed-
dings might vary drastically.

mi,2
t = Bi-LSTM(mi,2

t−1,m
i,1
t ) (3)

M i,2 = (mi,2
1 ,mi,2

2 , . . . ,mi,2
n ), where M i,2 ∈ Rn×2u2 ,

u2 is the one-direction output size of Bi-LSTM in the con-
text unit. The outputs of Bi-LSTM network at steps are then
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Figure 3: The framework of sentence embedding learning: CAMSE

encoded with a one-layer feed-forward network. The soft-
max is performed along the first dimension to ensure the at-
tention of words in a semantic sub-space sums to 1.

Ai = softmax(M i,2W i
s2) (4)

W i
s2 ∈ R2u2×r, r is the number of semantic sub-spaces.

Ai ∈ Rn×r is the attention matrix.Ai = (ai1, a
i
2, a

i
3, ..., a

i
n),

where i = 1, 2, 3, ..., k, each element aij ∈ Rr×1(j =
1, 2, 3, .., n) is an attention vector.

Sentence embedding tensor The attention matrix Ai is
used as summation weights to summarize representations in
a sentence. (see the upper part of Fig.3 (a))

T i = (Ai)THi (5)

T i = (ti1, t
i
2, ..., t

i
r), where tij ∈ R1×2u1 is an embedding

vector, and r is the number of semantic sub-spaces.
T = (T 1, T 2, ..., T k) is the sentence embedding tensor

generated by CAMSE(Contextual self-attention Multi-scale
Sentence Embedding). The tensor T ∈ Rk×r×2u1 automati-
cally aligns information from the sentence in k scales and r
aspects.

Scoring module
Given a pair of sentences (Q, D), we first apply CAMSE
to attain sentence embedding tensors T s1, T s2 respectively
for question and document.(see Fig.4 (a)). Then a scoring
function takes the tensor pair (T s1, T s2) as input, computing
a scalar score S as supporting degree of the document.

We propose two approaches of scoring, the Semantic
Matching Scoring(SMS) and Semantic Association Scor-
ing(SAS).(see Fig. 4 (a)). These two methods can be utilized

together to boost the performance. A question-dependent
gated matrix Gs1,i ∈ Rr×r together with masks Msms ∈
Rr×r and Msas ∈ Rr×r control the information flow of
two methods. As shown in Fig.4 (a). The scores of two ap-
proaches from all k scales are aggregated with a 1-layer
MLP to predict a scalar score S, where ws ∈ R2k.

S = wT
s [O

1
sms, . . . , O

k
sms, O

1
sas, . . . , O

k
sas] (6)

Here, the scalars Oi
sms and Oi

sas are the outputs of Se-
mantic Matching Scoring and Semantic Association Scoring
of the ith scale.

SMS: Semantic Matching Scoring The uth column of
two embedding tensors T s1,i

u and T s2,i
u , are aligned to the

same semantic sub-spaces. We compute a cosine similarity
for each pair of semantic sub-space embedding columns.(see
Fig.4 (b))

Si
sms(u, u) =

T s1,i
u · T s2,i

u

∥T s1,i
u ∥∥T s2,i

u ∥
(7)

SAS: Semantic Association Scoring As for different
columns of two embedding tensors, we cannot simply com-
pute their cosine similarities because different semantic sub-
spaces are not aligned. However, we can utilize the inter-
semantic relationship to exploit associations between differ-
ent semantic sub-spaces. We concatenate two embeddings
and send them into a 1-layer MLP to measure the cor-
relation between these two semantics.(see Fig.4 (c)). The
MLP outputs a scalar value for each semantic pair (u, v).
Different semantic pairs hold different sets of parameters
wuv ∈ R4u1 .
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Si
sas(u, v) = sigmoid(wT

uv[T
s1,i
u , T s2,i

v ]) (8)

The intuition is based on the fact that though words in
different semantics are not aligned, they may frequently co-
occur in the data. The fully-connected layer takes advan-
tage of the co-occurrence, as a complement to the SMS ap-
proach. Take the clinical data for an example, descriptions
for a disease contains several aspects. Some focus on par-
ticular symptoms while others narrate what triggers the dis-
ease. The cause of disease catch a cold has an association
with symptom cough. The inter-semantics scoring success-
fully represents the association between different semantic
sub-spaces(symptom and pathogeny in this case).

Gated matrix
We use a matrix gate to determine which semantic pairs play
pivotal roles in answer predicting, and the semantic pairs
containing irrelevant information should be discarded.

T s1,i
flat = flatten(T s1,i) (9)

Gflat = sigmoid(Wg2tanh(Wg1T
s1,i
flat)) (10)

G = reshape(Gflat, [r, r]) (11)

The mask matrices Msms and Msas respectively get di-
agonal and non-diagonal part of the matrix.

Oi
sms = sum(Si

sms ⊙Msms ⊙Gs1,i) (12)

Oi
sas = sum(Si

sas ⊙Msas ⊙Gs1,i) (13)

Experiments
Evaluation protocol
All the models should generate a score S for a
(Statement,Document) pair. We sum scores of all doc-
uments belong to a candidate answer as its reliability and
select the one with the highest reliability as the correct an-
swer.

Si =

ne∑
e=1

Sie (14)

c∗ = argmax
i

Si (i = 1, 2, . . . , nc) (15)

For those sentence embedding models, we use them to
generate a sentence embedding vector separately for ques-
tion(statement) and the documents, which can be considered
as a siamese network. We compute cosine similarity as the
score for each pair. The machine comprehension models,
such as R-Net, are intended for datasets like SQuAD(Ra-
jpurkar et al. 2016) that requires an answer span in a para-
graph. We modify these models by replacing the output layer
with MLP layer that outputs a scalar score as the supportive
degree of the document to the statement.

We report question answering accuracy on the test set.
The answer predicted by model and the true answer are de-
noted as ci∗ and citrue for the ith question. The indicator func-
tion I(x) is 1 when x is True, and 0 otherwise.

Accuracy =

∑N
i=1 I(ci∗ = citrue)

N
(16)

Pre-trained word embeddings
Word embeddings in the input layer are trained on their cor-
responding medical text corpus using skip-gram (Mikolov et
al. 2013a). In MedicalQA#1, Word embeddings are trained
on all collected medical textbooks and examination ques-
tions in train set; In MedicalQA#2, Word embeddings are
trained on all collected EMRs data. The embedding’s di-
mension is set to 200 for MedicalQA#1 and 100 for Medi-
calQA#2. Unseen words during testing are mapped to a zero
vector.

Model settings
To save training time on the GPU, we truncate all evidence
documents and questions to no more than 100 words for
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MedicalQA#1 and 70 words for MedicalQA#2. For each
candidate choice, only top 10 evidence documents are used
to calculate the supportive score. The Bi-directional LSTM
in the context layer has a dimension of 128. The size of at-
tention encoding hidden state da (see Fig.3(b)) is 100. The
number of semantics, r, is 15. Without any specification, in
the multi-scale context layer of CAMSE framework, the size
of convolution is 1,2,and 3.

Training
We put a softmax layer on top of candidate scores and use
cross-entropy as loss function. Our model is implemented
with Tensorflow (Abadi et al. 2016). We use Adam optimizer
with exponential decay of learning rate and a dropout rate of
0.2 to reduce overfit, and the batch size is 10.

Results and analysis
We conduct a comparison of our model CAMSE with
competitive baseline approaches, including sentence em-
bedding models such as LSTM+DSSM(Palangi et al.
2015), LSTMN(Cheng, Dong, and Lapata 2016), and Self-
Attention (Lin et al. 2017); and including some famous
reading comprehension models, such as R-Net(Wang et
al. 2017), Iterative Attention(Sordoni et al. 2016), Neural
Reasoner(Peng et al. 2015), and SeaReader(Zhang et al.
2018). The comparison results over the two kinds of Medi-
calQA tasks are presented in Table 1. From the results, we
can see that our presented model achieve remarkable gains
than other sentence embedding models (LSTM+DSSM,
LSTMN, Self-Attention) and is also superior to the com-
petitive reading comprehension models (SeaReader, R-Net,
Iterative Attention, and Neural Reasoner).

The performances of sentence-level models
(LSTM+DSSM, LSTMN, Self-Attention) are gener-
ally poorer than word-level machine comprehension
models(SeaReader, R-Net, Iterative Attention, and Neural
Reasoner), indicating the difficulty of solving question
answering problems with sentence embeddings. Our
sentence-level approach, however, achieves even better
performance compared with machine comprehension
models.

Table 1: Experimental results comparison of our CAMSE
model with other baseline approaches.

Models MedicalQA#1 MedicalQA#2
LSTM-DSSM 44.1 81.5

LSTMN 45.0 81.6
Self-Attention 65.2 78.5

CAMSE 73.6 84.3
Neural Reasoner 52.5 81.1

Iterative Attention 58.7 82.1
R-Net 63.7 82.4

SeaReader 71.8 82.4

Contextual self-attention
Fig.5 shows an example of how the contextual
self-attention works. The first attention attends to

information related with ”neck mass”; the sec-
ond attention promotes to represent question type
”the most meaningful inspect for diagnosis”; while the
third mainly focuses on ”fine-needle aspiration cytology”,
an inspect method of thyroid. We also noticed that the
sequential words in terminologies or phrases are equally
assigned with high attention value, indicating that they are
encoded as a whole unit via the contextual self-attention
mechanism.

Attention 1
Male, 45 years old, have neck mass for 3 months, no discomfort, no 
history of tuberculosis. The mass is on the middle left outside the 
neck, with a size of 2.5 centimeter, active, no tenderness. Thyroid 
does not reach tubercle. The most meaningful inspect for diagnosis 
for this patient is fine-needle aspiration cytology.

Attention 2
Male, 45 years old, have neck mass for 3 months, no discomfort, no 
history of tuberculosis. The mass is on the middle left outside the 
neck, with a size of 2.5 centimeter, active, no tenderness. Thyroid 
does not reach tubercle. The most meaningful inspect for diagnosis 
for this patient is fine-needle aspiration cytology.

Attention 3
Male, 45 years old, have neck mass for 3 months, no discomfort, no 
history of tuberculosis. The mass is on the middle left outside the 
neck, with a size of 2.5 centimeter, active, no tenderness. Thyroid 
does not reach tubercle. The most meaningful inspect for diagnosis 
for this patient is fine-needle aspiration cytology.

Figure 5: An example of contextual self-attention over Med-
icalQA#2 dataset. Red color indicates more attention value.

Table 2: Comparison with different self-attention strategies.
MASE is the framework of Multi-scale self-Attention Sen-
tence Embedding, which lacks context unit in the contextual
self-attention layer.

Attention Strategy MedicalQA#1 MedicalQA#2
MASE 69.7 83.2

CAMSE 73.6 84.3

Table 3: Comparison with different scales in the framework
CAMSE.

Multi-scale MedicalQA#1 MedicalQA#2
Conv 1 72.1 83.9

Conv 1+2 73.1 84.1
Conv 1+2+3 73.6 84.3

Multi-scale layer
The multi-scale layer aims at discovering entities, which is
medical terminologies in our case. By binding sequential
words, the multi-scale mechanism is capable of generating a
representation for the entity and filter out noisy single words
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Statement (Question+Candidate)
In primary nephrotic syndrome, the characteristics of minimal change 
nephropathy include that immunofluorescence test is negative.

Positive  document
The common pathological types and clinical characteristics of nephrotic 
syndrome: minimal change nephropathy: under light microscope, 
glomerulus is normal; under Electron microscope, the glomerular visceral 
epithelial cells are widely fused. No electron dense. Immunofluorescence 
is negative.

Negative  document
Primary mesangioproliferative glomerulonephritis is divided into two 
types by ultrastructure and immunofluorescence. Diffusive 
mesangioproliferative glomerulonephritis is the main cause of nephrotic 
syndrome. The immunofluorescence test of type I shows c3 granular 
deposition and early complement components such as igg/c1q/c4. The 
immunofluorescence test of type II shows c3 deposition but no igg/c1q/c4.

M
ulti-scale

W
ord-level

Figure 6: An example of multi-scale layer over Medi-
calQA#2 dataset.

that also appear in the entity. Table 3 shows the improvement
of multi-scale mechanism. We observe that the improvement
is greater on MedicalQA#1. The texts in MedicalQA#1 are
obtained from official examination and use lots of formal
terminologies, which can be well captured by multi-scale
layer, while the MedicalQA#2 is subject to the diverse writ-
ing style of the doctors and harder to solve.

Fig.6 demonstrates how multi-scale mechanism outper-
forms the word-level models. The longer the strip is, the
more support the statement receives from the document.
Both the statement and positive document is about minimal
change nephropathy, a disease of kidney, while the negative
document is about mesangioproliferative glomerulonephri-
tis, another disease of kidney. The colored keywords in state-
ment, including primary nephrotic syndrome, immunofluo-
rescence, are presented in both documents. And nephropa-
thy has a similar word embedding with glomerulonephri-
tis. Therefore, the word-level model would encounter dif-
ficulty when trying to distinguish these sentences with sim-
ilar words. The noisy words in the negative document, such
as immunofluorescence and glomerulonephritis, confuse the
word-level model. However, the multi-scale model is able to
recognize minimal change nephropathy and mesangioprolif-
erative glomerulonephritis as integral units and easily dis-
cover that they are different diseases. The embeddings of
them are distant enough so that the model can filter out irrel-
evant information from negative documents.

Table 4: Comparison with using different scoring strategies.
Scoring Method MedicalQA#1 MedicalQA#2

CAMSE(SAS + SMS) 73.6 84.3
CAMSE(SAS only) 70.8 83.6
CAMSE(SMS only) 71.3 82.8

SMS and SAS The SMS measures the similarity between
sentences in aligned semantic sub-space, while the SAS
strategy catches association across sub-space semantics. An
example from CD-EMR illustrates how they function. The

number of semantic sub-space is 5. We label the keywords
of each sub-space, that is to say, words with highest attention
intensity in each semantic. In parentheses are the number of
sub-space the words contained in the brackets belong to.

Question : [Rhinorrhea and expectoration](5) for 4
days. [Catch a cold](2) 4 days ago and then cough, produce
expectoration, have [headache](4), [sore throat](1) and [rhi-
norrhea](3).

Document : [Nasal obstruction, cough and expectora-
tion](5) for 3 days. [After catching a cold](2) 4 days ago, the
patient began to cough, produce expectoration and [rhinor-
rhea](3), with suffering from headache and [sore throat](1).
The patient has [dry stool](4).

Fig.7 shows the matrix of SMS(diagonal) and SAS(non-
diagonal). The SMS approach directly compare similarities,
thus semantic pairs (Q1, D1), (Q2, D2) and (Q3, D3) have
higher scores, while (Q4, D4) and (Q5, D5) are relatively
lower. The SAS approach, in this case, manages to seize
the association between (sore throat, rhinorrhea), (catch
a cold, rhinorrhea), (catch a cold, headache), (rhinorrhea,
nasal obstruction) respectively in semantic pairs(Q1, D3),
(Q2, D3), (Q4, D2) and (Q3, D5). From a large scale of
data, the model discovers symptom-symptom and cause-
symptom association and using it to build up connections
between different aspects of the description for a disease.
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Figure 7: An example of SMS and SAS.

Conclusion
In this paper, we introduce a kind of MedicalQA task and
exploit sentence embedding for this problem. A supervised
learning module CAMSE is introduced to encode a sen-
tence into an embedding tensor, and then two complemen-
tary scoring strategies Semantic Matching Scoring (SMS),
and Semantic Association Scoring (SAS) are presented to
exploit semantic similarity and association between a given
question and the corresponding evidence document. A se-
ries of experiments are conducted on two kinds of Medi-
calQA datasets to illustrate that our framework can achieve
significantly better performance than competitive baseline
approaches. Additionally, the proposed model can maintain
better model interpretation with the contextual self-attention
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strategy to capture different semantic aspects at the sentence
level.
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