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Abstract
Deep reinforcement learning (DRL) has achieved surpassing
human performance on Atari games, using raw pixels and
rewards to learn everything. However, first-person-shooter
(FPS) games in 3D environments contain higher levels of hu-
man concepts (enemy, weapon, spatial structure, etc.) and a
large action space. In this paper, we explore a novel method
which can plan on temporally-extended action sequences,
which we refer as Combo-Action to compress the action
space. We further train a deep recurrent Q-learning network
model as a high-level controller, called supervisory network,
to manage the Combo-Actions. Our method can be boosted
with auxiliary tasks (enemy detection and depth prediction),
which enable the agent to extract high-level concepts in the
FPS games. Extensive experiments show that our method is
efficient in training process and outperforms previous state-
of-the-art approaches by a large margin. Ablation study ex-
periments also indicate that our method can boost the perfor-
mance of the FPS agent in a reasonable way.

Introduction
Deep reinforcement learning (DRL) has shown great suc-
cess in many games, including the computer Go game (Sil-
ver et al. 2016), Atari games (Mnih et al. 2013), etc. Be-
sides the 2D games (e.g., Go and Atari), applying DRL to
first-person-shooter (FPS) games in an adversarial 3D envi-
ronment (Kempka et al. 2016; Lample and Chaplot 2016)
has attracted attention, in which a player fights against other
computer agents or human players. Compared with the 2D
games, FPS games show a multitude of challenges since
the additional spatial dimension not only introduces no-
tions of partial observability and occlusions, but also causes
complications due to viewpoint variance and more unpre-
dictable actions of the enemies. Moreover, this task also in-
volves a wide variety of actions and skills, such as navigat-
ing through a map, collecting items, fighting enemies, etc.
ViZDoom (Kempka et al. 2016) is a RL research platform
which allows researchers to develop agents to play the Doom
game with the screen buffer and game variables. Many ef-
forts have been paid on developing AI bots to learn a strat-
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Figure 1: An illustration of the Combo-Action in ViZ-
Doom. We define four Combo-Actions (Forward, Turn, Ro-
tate, Shoot) in this paper. Each Combo-Action is a tempo-
ral abstraction of the primitive actions. A depth prediction
model and an enemy detection model are used for corre-
sponding Combo-Actions. Instead of using the whole depth
map, we divide it into a 3× 6 grid and calculate the average
depth value for each cell. We further train a DRQN model,
called supervisory network, as a high level controller for the
Combo-Actions.

egy via data-driven methods since the release of ViZDoom,
e.g., Arnold (Lample and Chaplot 2016), F1 (Wu and Tian
2017) and IntelAct (Dosovitskiy and Koltun 2016).

Challenges
Even much work has been done recently, there still remain
many problems in building agents for the FPS game.
Large Action Space: In general, there are numerous prim-
itive actions in FPS games for an agent to interact with
the environment, which can be categorized into on-off ac-
tions and delta actions. On-off actions only contain bi-

954



nary states, while delta buttons have continuous values.
Moreover, the combinations of actions increase exponen-
tially with time steps. This makes the action space very
large, and results in the inefficient training process. Previ-
ous work (Lample and Chaplot 2016; Wu and Tian 2017;
Dosovitskiy and Koltun 2016) selectively abandons many
actions to compress the action space, which results in per-
formance loss, e.g., their agents can’t change visual angle
vertically, making the agent unable to shoot the enemy on a
different horizontal plane.
Lack of Prior Knowledge: Humans can learn throughout
their lives and can utilize prior knowledge to complete new
tasks quickly. However, reinforcement learning algorithms
often learn a new task from scratch, which makes them
requiring far more experience than humans during train-
ing. Although large amounts of research seeks to improve
the sample efficiency of reinforcement learning algorithms,
there are few studies in incorporating prior knowledge into
reinforcement learning. In FPS games, for example, it is vi-
tal to recognize some basic concepts(enemy, weapon, spatial
structure, etc.). But it is hard to extract such information in
a single end-to-end RL model.
Disharmonious Actions: Disharmonious actions often oc-
cur in previous trained agents, i.e., actions are not meaning-
ful between step to step. For example, sometimes the agent
will turn left and right repeatedly and remain where it is.
Previous work (Wu and Tian 2017) only tried to relieve this
problem by manually detecting this situation in test period
and could do nothing for the RL model.

Our Proposal
To address the aforementioned issues, we develop a novel
method that can plan on temporally-extended action se-
quences, which we refer as Combo-Action. We trained a
deep recurrentQ-learning network(DRQN) as a supervisory
network to manage the Combo-Action. Our method enables
the reinforcement learning algorithm to be boosted with aux-
iliary tasks and prior knowledge.
Combo-Action: We propose a kind of micro-action, called
Combo-Action, in this paper. The Combo-Action is built on
a series of primitive actions, which can complete a specific
sub-task. These action combinations are adopted to RL train-
ing, which compresses the action space sharply and allows
us to obtain the optimal value function within a practical
time and memory limitation. This method also guides the
agent for a better exploration during training.
Auxiliary Tasks: Previous methods prefer to use an end-to-
end neural network to play the FPS game. However, a single
model is hard to handle a complex task. Our method devel-
ops extra two sub-tasks simultaneously, i.e., enemy detec-
tion task and depth prediction task. This decoupling makes
the debugging process to be more intuitionistic. Moreover,
the auxiliary networks extract high-level concepts from the
observation, which provides useful information to the exe-
cuting of Combo-Action.

Our method can alleviate disharmonious-action problem
by defining reasonable Combo-Actions. The priori knowl-
edge in Combo-Actions can emit more reasonable primitive
actions. Interestingly, experiment shows that even the ran-

dom choosing of Combo-Actions can yield not-bad perfor-
mance.
Supervisory Network: To manage the switch between dif-
ferent Combo-Actions, a high-level controller should be
applied. In this paper, we use an LSTM (Hochreiter and
Schmidhuber 1997) based recurrent neural network for the
Q-learning model. Our supervisory network can work har-
monically with other auxiliary networks during test period.
Contributions: The contributions of our work are as fol-
lows: (1) Our method can compress the original action space
sharply, which improves the training efficiency and explo-
ration ability. (2) Our method can fuse priori knowledge and
basic concepts into the RL, which reduces the training dif-
ficulty and boosts the performance of the trained agent. (3)
Our method can alleviate disharmonious-action problem by
defining reasonable Combo-Actions for the FPS game.

Background
In this section, we briefly review the deep Q-learning and
deep recurrent Q-learning network. We also present some
work related to our method and the efforts made in the FPS
game AI research field.

Deep Q-learning
Deep Q-learning can learn a policy by interacting with the
environment. At each step, the agent obtains current state
st of the environment, gives out an action according to its
policy, and receives a reward rt. The goal of the Q-learning
algorithm is to maximize the expected sum of discounted
rewards Rt =

∑T
t′=t γ

t′−trt′ , where T is the terminating
time, and γ ∈ [0, 1] is a discount factor. The action value
function, called Q-function, takes two inputs: state s and ac-
tion a, and returns the expected future reward: Qπ(s, a) =
E[Rt|st = s, at = a]. In Deep Q-learning(Sutton, Barto,
and others 1998), a neural network parameterized by θ is
used as an estimate of the optimal Q-function. To optimize
the Q-function, the temporal difference error is taken as the
loss function:

L(θ) = Es,a,r,s′ [(Qtarget −Qθ(s, a))2], (1)

where Qtarget = r +maxa′ Qθ(s
′, a′).

Deep Recurrent Q-learning Network(DRQN): Typi-
cally, the task for reinforcement learning should be Marko-
vian. However, the observation(e.g. partial field of vision in
3D FPS game) for the agent is not Markovian, and this is
considered as a partially observable Markov decision pro-
cess(POMDP). To allay this problem, a memory module
is often required, which can be used to store the history
information. (Hausknecht and Stone 2015) introduced the
Deep Recurrent Q-Networks(DRQN). DRQN applies a re-
current neural network into DRL, and LSTM (Hochreiter
and Schmidhuber 1997) is often used on the top of the nor-
mal DQN model. In our project, we use DQRN as our ba-
sic reinforcement learning model. We present some related
work in following sub-sections.
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Reinforcement Learning with Temporal
Abstractions
Temporally extended actions have proven very useful in
speeding up learning process, ensuring robustness and fus-
ing prior knowledge into AI systems (Sutton, Precup, and
Singh 1999; Precup 2000; He, Brunskill, and Roy 2010;
Tessler et al. 2017). (Precup 2000) proposed the options
framework, which involves abstractions over the space of ac-
tions and extends traditional MDP setting to a semi-Markov
decision process (SMDP). (He, Brunskill, and Roy 2010)
defined the Macro-Actions to partially observable Markov
decision process(POMDP). (Bacon, Harb, and Precup 2017)
proposed a method that can learn options autonomously
from data. (Arulkumaran et al. 2016) trained a supervisory
network to manager the ”option heads” on the policy net-
work. (Frans et al. 2017) used the ”mete-learning” concept
to construct an end-t-end hierarchical RL algorithm. Our
Combo-Action is inspired by these ideas of temporal ab-
stractions and we further incorporate the supervised signals
into the building of Combo-Actions.

Reinforcement Learning with Auxiliary Tasks
Although reinforcement learning algorithms are trained with
reward signals from the environment, it’s interesting to study
how to use the supervised signals to help the training pro-
cess. (Mirowski et al. 2016) used two auxiliary tasks, i.e.,
depth prediction and loop closure classification to help the
navigation task. They illustrated that the performance was
dramatically improved via these additional auxiliary tasks.
(Bhatti et al. 2016) used SLAM and Faster-RCNN (Ren et
al. 2015) to boost the inputs of the observation for rein-
forcement learning algorithm. (Lample and Chaplot 2016)
augmented the deep Q-learning model via training RL and
object prediction simultaneously. Instead of using auxiliary
tasks for inputs or outputs of the RL algorithms, our aux-
iliary tasks(detection and depth prediction) cooperatively
work with Combo-Action.

Reinforcement Learning for FPS Game
Early attempts of building FPS AI players focused on
the manually-designed rule-based approaches (van Waveren
2001), which is not robust and time-consuming to tune the
rules in many complicated situations. Recently, researchers
have deployed deep reinforcement learning into 3D first-
person shooter (FPS) games, e.g., the Doom game (Kempka
et al. 2016). Arnold (Lample and Chaplot 2016) used game
frames and trained an action network using Deep Recurrent
Q-learning and a navigation network with DQN, it outper-
formed the built-in AI of the Doom game. IntelAct (Doso-
vitskiy and Koltun 2016) modeled the Doom AI bot train-
ing in a supervised manner by predicting the future values
of game variables (e.g., health, amount of ammo, etc) and
acting accordingly. F1 (Wu and Tian 2017) combined the
Asynchronous Advantage Actor-Critic (A3C) model with
curriculum learning to train the bot step by step. However,
most of these works implement the algorithm with primi-
tive actions, without the ability to extract a variety of seman-
tic concepts and abstractions (enemy position, environment

space, etc.). It makes the decision space large and sparse,
yielding the learning process with low efficiency. Our pro-
posed method can extract meaningful concepts with auxil-
iary networks from the environment and yield more power-
ful performance.

Methodology
In this section, we first introduce our method in a general
form, and then illustrate how we design Combo-Actions for
the FPS game and how we train each part in this framework.

Framework Overview

Figure 2: The overall architecture of our method. The frame-
work contains three main parts, i.e., a supervisory net-
work, auxiliary networks and the action mapping function.
The supervisory network is a high-level controller for the
Combo-Action, and auxiliary networks deal with the envi-
ronment information. The action mapping function can map
the Combo-Action and auxiliary network’s outputs into a se-
ries of primitive actions.

Figure 2 shows the architecture of our method. ViZDoom
provides an interactive environment for an agent to get in-
formation from the environment and post actions to control
its behavior. Our goal is to improve the performance of the
agent with auxiliary tasks.

Let the Combo-Action space be C and the original ac-
tion space be A. Let the output of supervisory network be
Ct = fθ(st), where Ct ∈ C is a Combo-Action that the su-
pervisory network fθ(·) chooses under state st at time step
t, and θ is the parameters of the network. The θ is learned
from scratch using reinforcement learning algorithm. There
is a mapping function which can map the Combo-Action
C to a series of primitive actions. We define the mapping
as {ai}t = h(Ct; g1(st), g2(st), · · · ), i = 1, 2, 3..., where
gj(·) is an auxiliary network. gj(·) is a supervised trained
neural network which can provide useful information for
h(·). The output gj(·) can be formalized as a vector xj , and
xj can be considered as the parameters of the mapping func-
tion h(·). The posted actions {ai} will be temporally sched-
uled by h(·) and sent to the environment for more sophisti-
cated control.
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Combo-Actions Design for FPS Game
In this section, we introduce the Combo-Actions for ViZ-
Doom . A Combo-Action C ∈ C is a kind of macro ac-
tions built on a set of primitive actions and it is the output
of the supervisory network. We first define three Combo-
Actions: Forward(F), Turn(T) and Rotate(R). We also de-
fine a Shoot(S) Combo-Action, which is applied to every
time step. We also design two auxiliary networks: detection
network and depth prediction network. ViZDoom provides
APIs to generate the ground truths for both tasks, which en-
ables training networks with supervised manner. Figure 1
shows the example of Combo-Actions in ViZDoom.

Detection The recognition of enemies is quite important
for FPS games. We design a convolutional neural network
to detect the enemy in the game. The network takes RGB
images as input and outputs predicted bounding boxes of en-
emies. Our detection algorithm, named as RPNmini enables
end-to-end training and satisfies the real-time requirement
while maintaining high average precision.

Depth Prediction There are kinds of maps in the ViZ-
Doom and the textures can be various in a scene. The struc-
tures or textures make little sense for the movement of the
game player. The depth map can offer enough spatial infor-
mation for the navigation. We design a small convolutional
neural network to predict the depth of current visual input.
This network takes RGB images as input and outputs pre-
dicted depth map. To simplify this task, the depth map is
separated into 18 parts equably with 3 rows and 6 columns,
and Figure 1 shows the example of the partition.

Forward This Combo-Action means the agent need keep
moving forward. The depth values at middle two columns
are used to calculate the number of steps the agent should
execute for the ’move forward’ action. The bigger the depth
values are, the longer steps will be applied.

Turn This Combo-Action means the agent need turn a cer-
tain degree to change its direction. The depth map is used to
calculate how many degrees the agent should turn. The agent
will always turn to the most commodious area. In the imple-
mentation, the agent will execute four ’turn-90-degree’ ac-
tions to capture the full vision of the environment, and then
choose out the direction with maximal depth value.

Rotate Although Forward and Turn are enough for agent’s
movement, FPS games are partially observed for the agent
and sometimes the agent gets injured without finding any en-
emy in its direction. The Rotate Combo-Action is designed
to help the agent to find the enemy out of its current vi-
sual field. This Combo-Action lets the agent turn 360 degree
to scout the environment with executing four fixed ’turn-
90-degree’ actions. Once the agent finds enemies, it will
switch to Shoot Combo-Action. Experiment shows that this
Combo-Action can improve the performance of the agent to
a certain extent.

Shoot Shoot is the most important Combo-Action in FPS
game playing, because it directly decides how many scores
the agent can get. The detection model is used for this

Combo-Action. Once there is an enemy, other Combo-
Actions will be stopped, and the agent will target to the en-
emy based on the bounding box and it will fire the gun when
the cross-hair within in the bounding box. When there is no
enemy detected, this Combo-Action will do nothing.

Aiming fast-moving enemy ahead is a common skill in
FPS game playing. To add this skill to the Shoot Combo-
Action, we record the action history of the agent, and when
we detect out that it turns to one direction repeatedly, we
double the turning degree for ahead aiming. Experiment
shows that aiming ahead can provide a performance boost.

Supervisory Network A supervisory network is trained
to manage the Combo-Actions. There are three Combo-
Actions which can be chosen by the supervisory network,
i.e., Forward, Turn and Rotate, and the Shoot Combo-Action
is applied to the every step. We use a recurrent neural net-
work to construct the deep Q-learning algorithm. At each
step, the supervisory network takes an image and two game
variables(healthy value and ammo number) as inputs and
outputs a hidden state and the Q-value for each Combo-
Action. The hidden state is then fed to next step and the
Combo-Action with maximal Q-value will be executed.

Training Detection Network
Detection Dataset: Training a high performance detection
model requires a large dataset. We collect a set of labeled
images for training and testing from the ViZDoom environ-
ment. We also flip the images for data augmentation. In to-
tal, we generate 30, 000 RGB images together with object
labels. There is only one class of game object in the dataset–
enemy. The resolution of the image is 576×1024 pixels. We
then split our dataset into 3 partitions: Train: Validate :Test,
with ratios 70%:20%:10%.

RPNmini: Similar to FasterRCNN (Ren et al. 2015), our
detection model, named RPNmini, divides the input image
into an M × N grid and assigns k anchors for each cell.
During training, we match the default anchors to the ground
truths with the best jaccard overlap (Erhan et al. 2014). Each
grid cell predicts k bounding boxes (each bounding box has
4 values to indicate its location) and each bounding box pre-
dicts C + 1 classes, where C is the number of object types,
and the extra one class is for background. The predictions
for bounding boxes can be encoded as an M × N × k × 4
tensor and the predictions for classes can be encoded as an
M × N × (C + 1) tensor. Our experiments show that RP-
Nmini can have 30 times speed-up during inference with-
out degradation in performance compared with other base-
lines (Ren et al. 2015; Huang and Ramanan 2017).

Training Loss: Our model is learned from scratch with-
out any pre-trained weights for initialization. The overall ob-
jective loss function is a weighted sum of the localization
loss and the classification loss:

Lobj =
1

N
(Lclass + λlocLloc), (2)

where N is the batch size, Lloc is the sum-squared error in
bounding box prediction and Lclass is the softmax loss in
classification. We also add a hyper-parameter λloc = 0.5 to
adjust the localization error.
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Layer # 1 2 3 4 5 6 7 8
C3×3×32s1 MP2×2s2 C3×3×16s1 MP2×2s2 C3×3×8s1 MP2×2s2 FC4608×128 FC128×18

Table 1: The architecture of depth prediction model. C3×3×32s1 = convolutional layer with 3× 3 kernel, stride 1 and number
of output planes 32. MP2×2s2 = MaxPooling layer with 2×2 kernel, stride 2. FC4608×128 = fully connected layer with input
size 4068, output size 128. Each convolutional and fully connected layer is followed by a ReLU, except for the last output layer.
Dropout (Srivastava et al. 2014) with ratio 0.5 is used during training.

Fast Inference: In practical application, we only use the
bounding boxes whose confidence is over 0.998. To acceler-
ate this inference time, we first filter out the bounding boxes
whose confidence is below 0.998 and whose range is out of
the size of the image. This step can remove most of the un-
correlated bounding boxes and improve precision.

Training Depth Prediction Network
The depth prediction network is a tiny convolutional neural
network with two fully connected layer on the top. It takes
a RGB image as input. The size of the image is 144 × 256
pixels. For each depth map, we first normalize it between
[0, 1], then divide it into a 3×6 grid and calculate the average
depth value for each cell. As a result, 18 values are used as
the ground truths for training the depth prediction network.
The depth prediction task can be formalized as a regression
problem, and the objective loss is the Mean Squared Error
(MSE) in depth prediction:

Ldepth =
1

N

N∑
i

18∑
j

(yji − fdepth(si)
j)2, (3)

whereN is the batch size, yi is the ground truth for image
si, j is the index of the j-th depth value and fdepth(·) is the
depth prediction function. Table 1 shows the architecture of
the depth prediction model. Dropout (Srivastava et al. 2014)
with ratio 0.5 is used during training. In this paper, we col-
lected 10,000 images for training and use extra 2000 images
as validation dataset.

Training Supervisory Network
We train a deep recurrent Q-learning Network(DRQN)
as our supervisory network. The DRQN model gets one
image(60 × 108 pixels) and two game variables(healthy
value and ammo number) as inputs at each step and out-
puts the selection of Combo-Action. We use experience re-
play (Lin 1993) to offline training the model. The agent tra-
jectories are stored in a replay memory, and the Q-learning
updates are done on randomly sampled batches of experi-
ences from the replay memory. Specifically, we use a history
length of 5 to update the LSTM module. ε-greedy strategy is
used during training: with a probability ε the next action is
selected randomly, and with probability 1 − ε according to
the network’s choice. We set ε starting from 1 and then pro-
gressively decaying to 0.1. The ground truths of bounding
boxes and depth map can be directly used during training,
so the auxiliary networks are only used during test. We fol-
low the DRQN architecture setting in Arnold (Lample and
Chaplot 2016).

Reward Shaping: Reward shaping (Ng, Harada, and
Russell 1999) has to been shown to be an effective trick
for RL training in a complicated environment. We found it
helpful to give the agent a positive reward proportional to
the displacement the agent makes, which pushes it to ex-
plore the environment. We also give positive reward to agent
when picking up useful items(health, weapons and ammo).
We give negative reward when it looses health and positive
reward when it finds enemies. These two rewards encourage
it to encounter more enemies. The rewards will be summed
up during the executing period of the Combo-Action and the
overall rewards will be given to the Combo-Action when the
Combo-Action is finished or stopped. We summarize the re-
wards used in this paper as bellow:

• positive reward for finding new enemies.

• positive reward for object pickup (health, weapons and
ammo)

• negative reward for loosing health

• positive reward proportional to the displacement it makes.

Experiments
In the experiments, we investigated how the Combo-Action
influences the RL training process and how each part of our
method influences the performance. We hold a league match
for different algorithms to display the effectiveness of our
method. We also compare our detection model with other
baselines to exhibit our designed model is more precise and
faster. In the following experiments, all the agents are eval-
uated under death-match scenario:

Death-match scenario: In the death-match scenario, all
agents are put into the same environment to combat against
each other. The score for the agent is called Frags, which is
defined as the total number of killings minus the number of
suicides.

Combo-Action Training
The ViZDoom provides build-in agents, which can make
reasonable movements in the environment. All the agents
are trained and tested with build-in agents.

Combo-Action Version: We trained the Combo-Action
version agent on 10 different maps with 7 build-in Doom
agents. Our agent plays 10 minutes per epoch to collect
training data, and the supervisory network is optimized with
RMSProp algorithm and with batch size of 32.

No-Rotate Version: We trained a no-Rotate version agent
under the same setting, which the only difference is we drop
the Rotate Combo-Action from the original Combo-Action
version agent.
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Frags
∣∣Deaths Map01 Map02 Map03 Map04 Map05 Map06 Map07 Map08 Map09 Map10 Mean

Marvin 2.3 11.0 0.5 17.6 -0.9 5.3 -2.6 22.9 0.3 8.8 2.9 19.1 2.5 14.4 -10.2 23.8 1.1 11.2 0.8 21.4 -0.33 15.55
IntelAct 7.6 11.9 2.0 20.5 5.1 3.8 3.4 21.0 4.6 14.0 5.2 21.5 4.5 13.1 2.8 14.6 4.5 13.1 0.3 24.3 4.0 15.78
YanShi 5.9 13.8 13.3 17.9 3.8 4.3 14.8 16.3 8.1 14.5 10.7 17.2 7.8 16.4 11.5 13.8 9.4 16.7 13.0 19.3 9.83 15.02
Arnold 8.8 9.4 7.7 21.4 2.2 4.6 1.4 22.4 9.9 15.4 9.9 16.0 6.8 15.1 4.0 16.9 12.3 19.7 6.6 24.0 6.96 16.49
Ours 20.5 9.8 28.6 14.3 2.3 3.0 36.1 16.2 23.3 5.5 40.8 11.1 30.5 8.9 14.8 11.0 37.1 9.5 44.6 11.9 27.86 10.12

Table 2: Our method vs previous methods in death-matches. All agents are put into the same unknown environment, and they
are evaluated 10 rounds per map, 10 minutes per round. The average Frags and Deaths for each map are reported. Results show
that our proposed method outperforms other methods by a large margin.

Normal Version: We also trained a normal version agent,
which doesn’t use Combo-Action. In the normal version, we
follow the setting of the Arnold (Lample and Chaplot 2016),
which only uses primitive actions.

Evaluation: We saved the agents at every 40 training
epochs and evaluated them on two set of maps, and each set
contains 10 maps. The first set of maps are used for training,
which means the agent has seen the maps. The second set of
maps are unknown to the agents. The agent will play on each
map with 7 build-in agents for 10 minutes and the average
Frags will be computed over each map set.

(a) (b)

Figure 3: The evaluation results along with training process.
(a) The agents are test on 10 known maps with build-in
Doom agents. (b) The agents are test on 10 unknown maps
with build-in Doom agents. Compared with normal DRQN
method, Combo-Action methods show an enormous lever-
age in performance and convergence speed.

Figure 3 shows the evaluation results along with train-
ing process. The agent trained with Combo-Action(Combo-
Action version and No-Rotate version) achieves better per-
formance and faster convergence speed. Interestingly, the
randomly initialized agent in Combo-Action setting yields a
good start line. This is because our Combo-Actions and aux-
iliary tasks give it some basic skills to play the FPS game.
Compared with the no-Rotate version, we can tell that Ro-
tate Combo-Action can improve the performance, and we
further prove this point in Section 4.4.

Combo-Action Evaluation
Our Method vs Previous Methods: We let our trained
agent combat with other state-of-the-art methods under

death-match scenario. We choose 10 maps and put all agents
into the same environment to play against each other. To
our knowledge, we are the first in experiment to exhibit the
performances of different methods under the same environ-
ment, and previous work only evaluated their agents with
build-in Doom agents. To evaluate the agents, we chose 10
different maps, evaluated 10 rounds for each map and 10
minutes per round.

Baselines: (1) Arnold (Lample and Chaplot 2016): The
agent was trained with DRQN and it took the first place
in Track2 of ViZDoom AI Competition 2017. (2) In-
telAct (Dosovitskiy and Koltun 2016): The agent was
trained with future prediction and it took the first place in
Track2 of ViZDoom AI Competition 2016. (3) YanShi (mi-
hahauke ): The agent used a two-stages structure, which con-
tains perception module and planning module. It took the
second place in Track2 of ViZDoom AI Competition 2017.
(4) Marvin (mihahauke ): The agent is trained with super-
vised replay of human play plus reinforcement learning. It
took the forth place in Track2 of ViZDoom AI Competition
2017.

Table 2 shows the average Frags and Deaths on each map.
Results show that our method gets the highest Frags and
lowest Deaths on most of the maps. Compared with other
end-to-end RL algorithms, our proposed method gets better
performance and generalization on unknown maps.

ViZDoom AI Competition: We participated in the ViZ-
Doom AI Competition 2018 to evaluate our agent. In the
competition, all the participants need to submit their own
agents and fight against each other on unknown maps. In this
competition, our simplified agent achieved the first place in
public-rank round and second place in private-rank round.

Detection Evaluation
Hyperparameters: We trained RPNmini for about 200, 000
steps with a batch size of 256, a momentum of 0.9 and a
decay of 0.0005. Our learning rate schedule is as follows:
For the first 195, 000 steps we start at a high learning rate
10−3. Then we continue training with 10−4 for 3, 000 steps,
and finally 10−5 for 2, 000 steps.

To evaluate the detection model, we follow the evalua-
tion protocol of the Caltech pedestrian dataset (Dollar et al.
2012), which use ROC curves for 2D bounding box detec-
tion at overlap of 50% and 70%.
Baselines: We compare our approach with the following
baselines: (1) Faster-RCNN: A deep neural network detec-
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tor (Ren et al. 2015) using region proposals and classifica-
tion pipeline, which is based on Resnet-101 (He et al. 2016).
(2) RPN+: A deep neural network detector (Huang and Ra-
manan 2017) based on VGG16. All the detectors are trained
and evaluated on the same dataset.

Detector 50% overlap 70% overlap time
RPN+ 47.59% 90.53% 0.63s

FasterRCNN 22.71% 48.85% 0.61s
RPNmini(ours) 19.6% 36.98% 0.02s

Table 3: Average miss rate of different detectors and the last
column is the inference time of different methods. RPNmini
not only achieves the best performance, but also use the least
reference time.

Table 3 shows the average miss rate and time consuming
of different detectors. We can see that our RPNmini detector
achieves the best detection performance with minimal time
cost. RPNmini can complete detection mission at 50 fps,
which meets the real-time requirement in FPS game play-
ing.

Ablation Investigation
In the ablation investigation, we want to answer following
three questions: (1) How the Rotate Combo-Action influ-
ences the performance. (2) How the aiming ahead strategy
influences the performance. (3) What if Combo-Actions are
randomly chosen.

Scenario Construction: There are three questions men-
tioned above, so there are two options for each question and
totally eight combinations. Accordingly, we construct eight
different agents based on the combinations. We put all the
eight agents into the same environment, which follows the
death-match setting. We evaluated the agents on 10 maps
with 10 round per map and 10 minutes per round. The av-
erage Frags and Hits over 100 matches are calculated. The
Hits is defined as the number of effective hits the agent deals
to its enemies.

no Rotate with Rotate
Frags Hits Frags Hits

random no ahead 14.87 171.98 16.50 186.65
with ahead 13.44 153.03 17.62 189.17

normal no ahead 19.58 205.96 20.09 214.44
with ahead 18.74 198.83 26.35 269.59

Table 4: Average Frags and Average Hits under eight dif-
ferent scenarios for ablation investigation. All the agents are
put into the same environment. All the agents are evaluated
on 10 maps with 10 rounds per maps, 10 minutes per round.

Table 4 shows results of different scenarios. We can draw
the following conclusions from the results:

(1) The Rotate Combo-Action can improve the agent’s
performance. The Rotate helps the agent to scout the envi-
ronment and gives it more opportunities to find enemies.

(2) Aiming ahead is useful when the agent acts in rea-
sonable manner. In some unreasonable setting, the history

of the actions will mislead the aiming ahead strategy, which
can result in performance degradation.

(3) Even the Combo-Actions are randomly chosen, the
agent can still yield not-bad performance. This indicates that
the priori knowledge in the Combo-Action gives the basic
FPS playing skills to the agent. Our previous experiments
also prove priori knowledge can alleviate the training diffi-
culty for the FPS game.

Conclusion
We have explored the method which applied Combo-Action
in a famous FPS game. Our method can utilize priori knowl-
edge and extra supervised signal to boost the ability of the
agent. And the reduced action space makes the training
process more efficient and let the agent behave in a more
harmonious manner. Experiments show that our trained
agent gains a significant performance improvement com-
pared with previous approaches. Up to present, all the agents
for ViZDoom are trained with build-in agents and recent re-
searches (Conitzer and Sandholm 2007; Silver et al. 2017;
Bansal et al. 2017) show that self-play will result in more
powerful agents and reduce human biases. In the future
work, we’d like to form the death-match task as a multi-
agent problem and try to train the agent in a self-play sce-
nario.

Acknowledgments
This work was supported by the National Key Research and
Development Program of China (No.2017YFA0700904),
NSFC projects (Nos. 61620106010, 61621136008,
61332007), the MIIT Grant of Int. Man. Comp. Stan
(No. 2016ZXFB00001), Tsinghua Tiangong Institute for
Intelligent Computing, the NVIDIA NVAIL Program and
a Project from Siemens. We thank Dong Yan, Jia Xu and
Peng Sun for inspiring discussions.

References
Arulkumaran, K.; Dilokthanakul, N.; Shanahan, M.; and
Bharath, A. A. 2016. Classifying options for deep rein-
forcement learning. arXiv preprint arXiv:1604.08153.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-
critic architecture. In AAAI, 1726–1734.
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent complexity via multi-agent com-
petition. arXiv preprint arXiv:1710.03748.
Bhatti, S.; Desmaison, A.; Miksik, O.; Nardelli, N.; Sid-
dharth, N.; and Torr, P. H. 2016. Playing doom with slam-
augmented deep reinforcement learning. arXiv preprint
arXiv:1612.00380.
Conitzer, V., and Sandholm, T. 2007. Awesome: A gen-
eral multiagent learning algorithm that converges in self-
play and learns a best response against stationary opponents.
Machine Learning 67(1-2):23–43.
Dollar, P.; Wojek, C.; Schiele, B.; and Perona, P. 2012.
Pedestrian detection: An evaluation of the state of the art.
IEEE transactions on pattern analysis and machine intelli-
gence 34(4):743–761.

960



Dosovitskiy, A., and Koltun, V. 2016. Learning to act by
predicting the future. arXiv preprint arXiv:1611.01779.
Erhan, D.; Szegedy, C.; Toshev, A.; and Anguelov, D. 2014.
Scalable object detection using deep neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2147–2154.
Frans, K.; Ho, J.; Chen, X.; Abbeel, P.; and Schulman, J.
2017. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767.
Hausknecht, M., and Stone, P. 2015. Deep recur-
rent q-learning for partially observable mdps. CoRR,
abs/1507.06527 7(1).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, 770–778.
He, R.; Brunskill, E.; and Roy, N. 2010. Puma: Planning
under uncertainty with macro-actions. In AAAI.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Huang, S., and Ramanan, D. 2017. Expecting the unex-
pected: Training detectors for unusual pedestrians with ad-
versarial imposters. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; and
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