
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

A Memetic Approach for Sequential Security Games on a Plane with Moving
Targets

Jan Karwowski,1 Jacek Mańdziuk,1 Adam Żychowski,1 Filip Grajek,1 Bo An2

1 Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland
2 Nanyang Technlogical University School of Computer Science and Engineering, Singapore 639798

{j.karwowski, j.mandziuk, a.zychowski}@mini.pw.edu.pl, boan@ntu.edu.sg

Abstract

This paper introduces a new type of Security Games (SG)
played on a plane with targets moving along predefined
straight line trajectories and its respective Mixed Integer Lin-
ear Programming (MILP) formulation. Three approaches for
solving the game are proposed and experimentally evalu-
ated: application of an MILP solver to finding exact solu-
tions for small-size games, MILP-based extension of recently
published zero-sum SG approach to the case of general-
sum games for finding approximate solutions of medium-size
games, and the use of Memetic Algorithm (MA) for medium-
size and large-size game instances, which are beyond MILP’s
scalability. Utilization of MA is, to the best of our knowl-
edge, a new idea in the field of SG. The novelty of proposed
solution lies specifically in efficient chromosome-based game
encoding and dedicated local improvement heuristics. In vast
majority of test cases with known equilibrium profiles, the
method leads to optimal solutions with high stability and ap-
proximately linear time scalability. Another advantage is an
iteration-based construction of the system, which makes the
approach essentially an anytime method. This property is of
paramount importance in case of restrictive time limits, which
could hinder the possibility of calculating an exact solution.
On a general note, we believe that MA-based methods may
offer a viable alternative to MILP solvers for complex games
that require application of approximate solving methods.

1 Introduction
Security Games (SG) are a research area focusing on apply-
ing tools that originated in game theory to the task of build-
ing patrol strategies and schedules for security forces in cer-
tain real-life situations, modeled as games, specifically the
Stackelberg Game model (Leitmann 1978). SG research en-
compasses broad spectrum of game settings (e.g. (Xu et al.
2017; Guo et al. 2016; Gholami et al. 2016; Karwowski and
Mańdziuk 2016; Cermak et al. 2016; Gan, An, and Vorob-
eychik 2015)) and has been applied in various domains (An,
Tambe, and Sinha 2017).

While majority of SG papers address discrete game
spaces (Dickerson et al. 2010; Gutierrez, Juett, and Kiek-
intveld 2013), an important property of our model is con-
tinuous space of target and defender locations, which can
be used to model a class of real-life protection situations

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

involving passenger or cargo ships cruising according to a
fixed schedule. Two methods for solving the game are pro-
posed. The first one utilizes an MILP formulation and is
solved by professional solver. In order to make the game
tractable by the solver, a game discretization procedure,
which transforms a continuous strategy space game into its
discretized form, equivalent in terms of Stackelberg Equilib-
rium (SE) strategies, is proposed. This discretization proce-
dure together with specific looseless game compression are
applied prior to using the solver.

Due to limited scalability of the MILP approach, an alter-
native metaheuristic algorithm for solving larger game in-
stances is proposed. The method relies on a Memetic Algo-
rithm (MA) with specifically designed chromosome based
game representation and efficient local optimization heuris-
tic, and is applied directly to continuous strategy space
games, with no need for game discretization.
Related Work. While the mainstream SG research consid-
ers static target settings there are several recent papers ad-
dressing the moving target scenarios:

• MRMTsg and CASS approaches (Fang, Jiang, and Tambe
2013), which model continuous Defender’s strategy (sim-
ilar to our problem), but in 1-dimensional space. Their
solution considers only Markovian strategies for the De-
fender.

• Games played on a graph where targets and defenders
move in discrete space of graph nodes (Bosansky et al.
2011). That work also considers only Markovian policies
for the Defender.

• A model called Security Games on a Plane (Gan et al.
2017) is the closest to ours, with a major difference of be-
ing a single step game. Our approach directly extends the
game model proposed in (Gan et al. 2017) by considering
sequential game formulation.

• In (Wang et al. 2018) a game model similar to our dis-
cretized game version was considered and solved us-
ing compact game representation, game abstraction and
constraint-generation approach. The method requires the
game to be zero-sum and additionally simplifies calcula-
tion of independent events to a sum of probabilities in a
Linear Program (LP), what may lead to overoptimistic re-
sults if the probability of catching is high.

970

All the above approaches utilize model-specific properties
to make the search in exponential Defender’s decision space
feasible. A more general framework - column generation -
was proposed in (Jain et al. 2010). Its application requires an
efficient heuristic for selection of the Defender’s move se-
quences whose inclusion in mixed strategy would improve
the result. A reasonable heuristic would rely on reduced cost
values in LP that calculates the equilibrium strategy. Such
an approach, however, would work only for an LP formu-
lation that does not contain integer variables, what prevents
its effective application to our problem. In order to remove
integer variables from the program, application of branch-
ing is needed, which in our case would yield a tree with an
exponential number of nodes, thus making Jain et al. (2010)
approach ineffective, even with pricing-based pruning.
Our Contribution. While each of the above-mentioned pa-
pers have some commonalities with our game model, none
of them is close enough to allow application of the respective
solution method to find non-Markovian strategy for contin-
uous, sequential game studied in this paper. The main con-
tribution of this work is
• A new approach to Security Games that relies on Memetic

Algorithms. To the best of our knowledge this is the first
example of application of MA (or generally Evolutionary
Algorithms) in SG domain. The method scales approxi-
mately linearly within the tested ranges of game steps, tar-
gets and defenders and offers high stability of obtained so-
lutions. Encouraging results of its application to our game
model make us believe that, on a general note, MA-based
methods may offer a viable alternative to MILP solvers
in the case of complex games that require application of
approximate solving methods.

Furthermore,
• A new sequential game model for SG with moving tar-

gets, played on a plane is introduced as an extension
of (Fang, Jiang, and Tambe 2013) and (Gan et al. 2017).
A game abstraction procedure and corresponding MILP
formulation for calculation of exact results are proposed.

• A modification of the Wang et al. (2018) method that al-
lows its application to our game model (which is non-
zero-sum) is proposed and experimentally evaluated.

2 Game description
A moving targets scenario considered in this paper is moti-
vated by a real-life sea transportation situation of a tourist
harbor in the Mediterranean Sea in Southern Europe. In this
setting, there are a number of nf ferries (the targets) which
carry people and commodities, and some number nd of fast
patrolling boats (defenders) securing these transports. The
patrolling boats are governed by a Central Security Unit (the
Defender). A ferry can be potentially threatened by a fast-
speed pirate boat (the Attacker). Each ferry Fj cruises back
and forth between the assigned pair of terminals following a
predefined schedule Sj which is defined as a list of departure
times from each of these two terminals (alternately). Ferries
move with a constant speed and follow a straight line route.
At each moment a ferry is protected iff there is at least one
defending unit located within a protection radius r.

game parameter notation
number of game steps m
number of defenders nd

number of targets nf

number of terminals nb

time step length τ
game duration T = mτ
locations of terminals bi = (xi, yi), i = 1, . . . , nb

targets (with 4 payoffs and a
schedule)

Fj = (Ua+
j , Ua−

j , Ud+
j , Ud−

j , Sj),
j = 1, . . . , nf

defenders Dk, k = 1, . . . , nd

defender maximum speed vmax
d

target speed vf
protection radius r
attack length τA = λτ for some integer λ

Table 1: Game parameters with their respective notation.
Positions of targets and defenders at time t are denoted
by Fj(t), Dk(t) for j = 1, . . . , nf , k = 1, . . . , nd, t =
0, . . . , (m− 1)τ .

Game initial position and game steps. Each defender is
assigned a starting point in one of the terminals. Each target
starts from one of the two terminals which define both ends
of their repetitive two-way itinerary. The game is divided
into m time steps of equal length (τ) and the beginning of
each step marks a decision point, i.e. subsequent decision
points t1, . . . , tm occur at times 0, τ, 2τ, . . . , (m − 1)τ , for
the m-step game of length mτ .
Defender’s deterministic strategy. In each discrete time
point the Defender decides about moving their units to new
positions which must fulfill the feasibility constraints, i.e.
each Defender’s unit cannot move farther than τ · vmax

d ,
where vmax

d is a speed limit for defending units (same for
all of them).

The Attacker’s decision in each time point is either to
choose the target to be attacked or wait. In the former case
the attack lasts for a predefined time τA (same for all tar-
gets). The Attacker can decide to perform at most one attack
during the entire game.
Game scoring and results. Four payoffs are assigned to
each target Fj : Ud+

j is a reward for the Defender in case
of catching the Attacker, Ua−

j is a penalty for the Attacker
in case of being caught, Ud−

j is a penalty for the Defender in
case the successful attack takes place, and Ua+

j is a reward
for the Attacker for a successful attack realization. Table 1
presents all game parameters and their respective notation.
A game solution is not a single deterministic strategy (a se-
quence of moves of the defending units), but a mixed strat-
egy, i.e. a probability distribution of deterministic strategies.
Each deterministic strategy profile represents a certain game
scenario with particular outcomes assigned to each of the
players. The mixed strategy with the highest expected pay-
off for the Defender constitutes the game solution. We model
the game as a Stackelberg game where the Defender com-
mits to a mixed strategy and then, based on its analysis, the
Attacker chooses the best response strategy, breaking ties in
favor of the Defender.

An outcome of a given deterministic strategy profile (par-
ticular game playout) is calculated as follows. Suppose the

971

Algorithm 1: Compressed game calculation
Πc

d ← ∅, gridPositions← reasonableGridPositions();
allUnitPositions← gridPositionsnd ;
Function PossibleCompactMoves(currentPositions,
protectionSequence)

if length(protectionSequence) = m then
Πc

d ← Πc
d ∪ {protectionSequence}

else
forall (protectionVector, positions)←
equivalenceClasses(protectionVector,
possibleSuccessors(currentPositions,
allUnitsPositions)) do

PossibleCompactMoves(positions,
protectionSequence⊕protectionVector)

end
end

PossibleCompactMoves(startPosition, emptyList)

Attacker decides to attack target Fj at decision point p
(time pτ). The attack is successful iff target Fj is not pro-
tected during the entire attack timespan, i.e. the interval
[pτ, (p + λ)τ]. Please recall, that target Fj is protected at
a given time moment iff there exists a defending unit Dk for
which dist(Dk(t), Fj(t)) ≤ r, where dist(·, ·) is Euclidean
distance on a plane. Once the attack attempt is finished the
game ends and the expected payoffs are calculated depend-
ing on the choice of target Fj and the outcomes of the attack
(success or failure). If the Attacker refrains from attacking
any target during the entire game, both players’ payoffs are
equal to 0.

3 An exact MILP approach
Exact solutions for the game instances are derived using the
DOBSS method (Paruchuri et al. 2008) which calculates ex-
act Stackelberg Equilibrium strategy using MILP. To apply
the MILP method we need first to discretize the game to
make it feasible for the MILP solver, and then apply a pro-
cedure for significant reduction of game (state and move)
space, to reduce the number of variables and constraints.
Once the equilibrium strategy for this compact game is cal-
culated using MILP solver, it is converted back into equiva-
lent strategy for the original (non-compact) discrete game.

Discrete game transformation
MILP representation requires that the game has finite strat-
egy space for both players and therefore cannot be applied
directly to the original continuous game described in Sec-
tion 2. A method of transferring continuous game into its
equivalent discrete form relies on grid step parameter (d)
responsible for the smoothness of the discretization. It can
be easily seen that for values of d small enough the process
yields a game equivalent to the original continuous game
in terms of equilibrium strategies under the assumption that
coordinates of targets and defenders positions, in all game
steps, are rational.

Continuous space is divided into a discrete grid of points
G. The (0, 0) coordinate of G is located in the arbitrary cho-

Figure 1: A set of nodes (within a green polygon) which are
potentially interesting from the Defender’s viewpoint. Red
dots denote terminal locations.

sen terminal. A step size d is a function of the defender’s pro-
tection range r and the maximum distance l that a defender
can move during one time step (l = τvmax

d): This way, each
defending unit assures continued protection, in a sense that a
center of their protection area in the next time step remains
within the range of the previous protection area. Formula
d = min{r, l/2} yields a good balance between coarse gran-
ularity of space (and thus faster computation) and flexibility
of potential strategies. The component l/2 guarantees that a
move is technically possible to be executed even for large r.
The grid range is limited by positions of the farthest termi-
nals.

In the initial state, the defending units are placed in the
nodes closest to their respective starting terminals. Their
moves are restricted to the grid points. In each turn, a unit
can move to any of the nodes for which the Euclidean dis-
tance is ≤ l. The targets move according to their schedules
and their positions are calculated in continuous space.

Compact discrete game
While it would be possible to apply the exact MILP di-
rectly to the above discretized game, the Defender’s strat-
egy space of this game is extremely large ≈ (π(l/d)2)

ndm.
Therefore, the game is further transformed into alternative,
smaller decision space, which is equivalent in terms of equi-
librium strategies to a discretized game. In this compact
game representation, the Defender’s deterministic strategy
consists in a direct choice of the targets which are pro-
tected in each round. The main difficulty in this process
is deciding which protection sequences are possible under
physical game constraints (moving speed and range of de-
fenders and targets). Let’s denote by Πg

d – the set of De-
fender’s deterministic strategies in the original (grid based)
discrete game, by F – the set of all targets, by P := (2F)

m

– the finite set of all potential target protection sequences,
by cov : Πg

d → P – a function that provides a protection
sequence produced by a given Defender’s strategy, and by
Πc

d := {πc
d|(∃π

g
d ∈ Πg

d)cov(π
g
d) = πc

d} – the set of De-
fender’s deterministic strategies in the compact game. Def-
inition of Πc

d ensures that a strategy in the compact game
is possible iff there exists a corresponding Defender’s strat-
egy in the original discrete game space, so there is equilib-
rium equivalence between the compact game and the origi-
nal game. The Attacker strategy space remains unchanged.
A pseudocode of the Πc

d calculation method is presented in
Algorithm 1. A procedure reasonableGridPositions in Algo-
rithm 1 calculates the relevant subset of all grid nodes, re-
moving from Πg

d the nodes that are redundant for producing
protection vectors. First, a convex hull of all terminals is cal-

972

culated. Then, all points that are within the hull or in a dis-
tance less than r+1 from the hull compose the set of relevant
nodes. A simple example situation is presented in Figure 1,
where a subset of green nodes out of all grid (blue) nodes
is selected. Three red points denote terminal locations. The
process of conversion from the original discrete game to the
compact game representation is computationally expensive
(exponential in the number of defending units and targets
count) but in return allows the resulting MILP formulation
(for compact game) to fit in memory and consequently opti-
mal strategies for these games can be derived.

An MILP formulation
MILP game formulation is adapted from DOBSS (Paruchuri
et al. 2008) that was used for calculating optimal strategies.
The only difference is the lack of a dimension representing
different types of adversaries in our formulation (denoted
by index l in (Paruchuri et al. 2008)) as our game in not
Bayesian SSG and there is only one (type of) Attacker. The
resulting program has the following form:

maxq,z,a
∑

i∈X

∑
j∈Q Uijzij

s.t.
∑

i∈X

∑
j∈Q zij = 1

(∀i∈X)
∑

j∈Q zi,j ≤ 1
(∀j∈Q) qj ≤

∑
i∈X zij ≤ 1∑

j∈Q qj = 1
(∀j∈Q) 0≤(a−

∑
i∈X Cij(

∑
h∈Q zih))

(∀j∈Q) (a−
∑

i∈X Cij(
∑

h∈Q zih))≤(1−qj)M
zij ∈ [0, 1], qj ∈ {0, 1}, a ∈ R,

(1)

where X := Πc
d is a set of possible Defender’s target protec-

tion sequences, Q — a set of possible Attacker’s moves, Uij

— the Defender’s payoff when moves i and j are played,
Cij — the respective Attacker’s payoff. Variables zij de-
note probabilities that the Attacker and the Defender play
pure strategies j and i, resp. Note, that zij will be non-zero
only for one pure Attacker strategy j∗ being an optimal At-
tacker’s response strategy. qj and a are auxiliary variables
used to enforce optimal Attacker’s response.

4 A modification of SMOS approach for
general-sum games

In this section we propose a modification to LP solution
of Stackelberg Model of Oil Siphoning problem (SMOS)
presented in (Wang et al. 2018) that allows its application
to our general-sum game model. Moreover, since the At-
tacker’s strategy space in our model is relatively small (there
are 1 +mnf possible moves) the constraint-generation part
of the original solution is not utilized in our approach. The
third major aspect of the Wang et al. (2018) approach — a
grid abstraction — is applied without modifications.

The rest of this section presents our modification of
LP suitable for non-zero-sum games. We use notation
from (Wang et al. 2018) - which differs from the notation
used in the rest of our paper - for the sake of ease in tracing
the changes introduced to the original model. A modified
MILP is described by eqs. (2)–(16) and extends the Wang
et al. (2018) approach by having |F | times more real vari-
ables and O(|F |2) integer variables (not present in the base

formulation).
max

∑
f
Ud(f, f) (2)

0 ≤ a−
∑

g∈F
Ua(g, f) ≤ (1− qf) ·M ∀f ∈ F (3)∑

f∈F
qf = 1, (4)

c(i, tk, f) =
∑

j∈N(i)
fl((i,tk),(j,tk+1),f)

∀i ∈ Z, k ∈ 0, . . . τ − 1, f ∈ F
(5)

c(i, tk, f) =
∑

j∈N(i)
fl((j,tk−1),(i,tk),f)

∀i ∈ Z, k ∈ 1, . . . τ, f ∈ F
(6)

qf ·m =
∑

i∈Z
c(i, tk, f) k ∈ {0, τ}, f ∈ F (7)

qf ·DS(i) = c(i, 0, f) ∀i ∈ S, f ∈ F (8)
1−m1(g, f)M2 ≤ dpp(g, f) ≤ 1 ∀f, g ∈ F (9)∑

(i,t)∈R(f)
c(i, t, g)−m2(g, f)M2 ≤

dpp(g, f) ≤
∑

(i,t)∈R(f)
c(i, t, g) ∀f, g ∈ F

(10)

m1(g, f) +m2(g, f) = 1, ∀f, g ∈ F (11)

qg −m3(g, f)M2 ≤ dppneg(g, f) ≤ qg∀f, g ∈ F (12)

1− dpp(g, f)−m3(g, f)M2 ≤ dppneg(g, f)

≤ 1− dpp(g, f)∀f, g ∈ F
(13)

m3(g, f) +m4(g, f) = 1, ∀f, g ∈ F (14)
∀i, g, fmi(g, f) ∈ {0, 1} ∀fqf ∈ {0, 1} (15)

∀i, j, k, f, gfl((i,tk),(j,tk+1),f) ∈ R, dpp(g, f) ∈ R
∀i, k, fc(i, tk, f) ∈ R ∀g, fdppneg(g, f) ∈ R

(16)

where payoff calculation functions are:

Ua(g, f) =dppneg(g, f)U
a+(f)+dpp(g, f)Ua−(f) (17)

Ud(g, f) = dppneg(g, f)U
d−(f)+dpp(g, f)Ud+(f) (18)

In order to make the Wang et al. (2018) solution applica-
ble to non-zero-sum games, a dedicated set of variables de-
scribing defenders’ coverage flow for each Attacker’s strat-
egy was introduced. Index f in variables fl and c denotes
the Attacker’s sequence and plays analogous role to index
j in variables z in DOBBS (cf. eq. (1)). A set of variables
qf and eq. (4) ensure the existence of only one active At-
tacker’s strategy, and eq. (3) ensures that this active At-
tacker’s strategy is the best Attacker’s response. Eqs. (7)
and (8) guarantee that among flow variables c only those
with index f of currently active Attacker are non-zero. The
latter equation additionally ensures proper defenders’ start-
ing points. Eqs. (9)–(11) force the dpp values to be equal to
min{1,

∑
c(i, t, g)} for the respective sums of coverages.

Please note that, contrary to the original work, general-sum
formulation requires auxiliary integer variables m1,m2 to
ensure reaching the minimum, as variables dpp are utilized
not only in the objective function, but also in constraint (3).
The need of these variables is the reason that prevents appli-
cation of the column generation approach mentioned in sec-
tion 1. Due to eqs. (12)—(14), dppneg variables have value

973

of 1−dpp for the active strategy (g) and 0 for the remaining
Attacker’s strategies. Eq. (15) explicitly lists integer vari-
ables added to the program (original formulation does not
use integer variables). The remaining (not described) equa-
tions (2), (5), (6) and (16) are adapted directly from (Wang
et al. 2018). For the current defenders’ coverage, functions
Ua(g, f) and Ud(g, f) defined in (17) and (18) return pay-
offs of the respective players for an Attacker’s strategy f iff
g is the active Attacker’s strategy. Otherwise, they return 0.

5 Memetic approach
The approximate approach proposed in this paper employs
the MA solution scheme with problem dependent local in-
generation optimization heurstic. MA (Ong, Lim, and Chen
2010; Chen et al. 2011; Neri, Cotta, and Moscato 2012) en-
hances population-based Evolutionary Algorithm (EA) by
means of adding a distinctive local optimization phase. The
underlying idea of memetics is to use local optimization
techniques or domain knowledge to improve potential so-
lutions between consecutive EA generations. A synergetic
combination of a local improvement scheme with evolution-
ary operators leads to complex and powerful solving meth-
ods which are applicable to a wide range of problems (Neri
and Cotta 2012). In the remainder of this section, all compo-
nents of the proposed MA approach are discussed in more
detail. In particular, a novel problem encoding and efficient
local improvement heuristic.
Chromosomes. Each chromosome CHq, q = 1, . . . , p size
in a population encodes mixed Defender’s strat-
egy by defining positions of all their units in
all decision points of a game. A simple strat-
egy (SS) is encoded as a set of lists: SS =
{(D1(t1), . . . , D1(tm)), . . . , (Dnd

(t1), . . . , Dnd
(tm))}.

Chromosomes are of various lengths, i.e. may contain
different numbers of SSs. Each SS in a chromosome is
assigned a probability of occurrence. These probabilities
sum up to 1 within each chromosome. Thus, a chromosome
is a set of pairs:

CHq = {(SSq
1 , p

q
1), . . . , (SS

q
lq
, pqlq)},

∑lq

i=1
pqi = 1

(19)
where lq is length of the q-th chromosome CHq , pqi , i ∈
{1, . . . , lq} is probability of occurrence of strategy SSq

i .
Fitness function. A fitness of a chromosome is equal to the
expected Defender’s payoff obtained when playing a strat-
egy encoded by that chromosome. In SG, the Defender’s
payoff is calculated under the assumption of the optimal At-
tacker’s strategy, i.e. the optimal Attacker’s decision regard-
ing the possible attack (either optimal choice of the target
and attack time or resignation from attacking any target).
This decision relies on the probability distribution of defend-
ing units positions, which - by definition of SG - are known
to the Attacker. To this end, all possible attack scenarios are
calculated and the one with the highest Attacker’s expected
payoff (if positive) is chosen, or a decision to refrain from
attacking is assumed (with the Attacker’s payoff equal to 0).
Let’s denote by rank the respective Defender’s payoff, by
Ux(Fj , ti), x ∈ {d, a}, j ∈ {1, . . . , nf}, i ∈ {1, . . . ,m}

Figure 2: Changing position Di(tx) during local optimiza-
tion. New position is uniformly chosen from the gray area. It
depends on target position in step tx (Fj(tx)) and positions
of unit Di in the neighboring steps (Di(tx−1), Di(tx+1)).

the Defender’s (x = d) and the Attacker’s (x = a) pay-
offs, resp. in the case of attacking target Fj at step ti, and let
(F∗, t

∗) = argmaxFj ,ti U
a(Fj , ti). If Ua(F∗, t

∗) ≥ 0 then
rank := Ud(F∗, t

∗), otherwise rank := 0 (the Attacker
would not attempt).

Calculation of possible attack scenarios in each deci-
sion point additionally allows to break ties between chro-
mosomes with the same fitness in the selection process.
Namely, if two (or more) chromosomes have the same fit-
ness value, the sum of m Defender’s payoffs (one per each
decision point) is computed under the assumption that the
Attacker would decide to attack in that decision point, re-
gardless of his payoff. In other words, in this auxiliary fitness
(in-rank grade), it is assumed that in each decision point
the Attacker chooses the most rewarding (for them) target
to attack and the respective Defender’s payoffs are summed
up across all m steps: in-rank grade :=

∑m
i=0 U

d(F∗, ti),
where F∗ = argmaxFj

Ua(Fj , ti), j ∈ {1, . . . , nf}. If
Ua(F∗, ti) < 0 then Ud(F∗, ti) := 0. The greater the in-
rank grade the higher the preference for that chromosome
when tied with other chromosomes in the rank fitness mea-
sure. This auxiliary fitness measure is very effective in situa-
tions when the resulting strategy provides targets protection
in some decision points but not in all of them. In such cases,
a natural assumption that back-ups the reasonability of the
auxiliary fitness measure is that strategies with fewer deci-
sion points of low Defender’s payoffs are preferable.
Initial population. In each chromosome, initial positions
(D1(t1), D2(t1), . . . , Dnd

(t1)) of defending units are de-
fined in randomly selected terminals. In the next steps, given
a position in decision point tx−1, a position in point tx (for
x ∈ {2, . . . ,m}) is chosen uniformly among all positions
reachable by the defending unit (restricted by the speed limit
vdmax) in which it secures at least one target (a distance to
that target is ≤ r). If there are no such positions, any reach-
able position is randomly selected.
Mutation. Each chromosome is mutated with mutation rate
probability. A single mutation changes defending unit posi-
tion in uniformly chosen time point tx, x ∈ {2, . . . ,m− 1}.
New position must be feasible, i.e. is chosen uniformly from
the common parts of the circles with centers in Di(tx−1),
Di(tx+1) and radius equal to vmax

d τ . Mutation operation
is repeated mutation repeats times for each chromosome
which undergoes mutation.
Crossover. Crossover operation combines two chromo-

974

somes by merging their sets of simple strategies. A probabil-
ity of each SS in the resulting child chromosome is equal to
the half of the respective probability in the parent chromo-
some. The result of this operation on chromosomes CHq1
and CHq2 will be the new chromosome CHq12 :

CHq12 = {(SSq1
1 , pq11 /2, (SSq1

2 , pq12 /2), . . . , (SSq1
lq1

, pq1lq1
/2),

(SSq2
1 , pq21 /2), (SSq2

2 , pq22 /2), . . . , (SSq2
lq2

, pq2lq2
/2)}

To avoid creating mixed strategies with too many simple
strategies after crossover operation each SSq

i may be deleted
with probability 1− pqi . After this deletion process, the sum
of pqi of the removed strategies is distributed among all re-
maining SSs, proportionally to their probabilities. New chro-
mosome is added to the existing population.
Local optimization (LO). Memetic optimization takes
place after genetic operators (mutation and crossover), but
before selection. It attempts to improve solution by optimiz-
ing iteratively the defending units positions in all decision
points. The new position in step tx is restricted by the feasi-
bility of the overall encoded solution, i.e. depends on po-
sitions in steps tx−1 and tx+1 and the speed limit vdmax.
Among all feasible positions the algorithm first selects the
ones which secure the greatest number of targets, and then
chooses one of them at random. This memetic optimization
is iteratively repeated for each defender in each SS within
each chromosome. Figure 2 visualizes the area of all possi-
ble positions after performing local optimization in step tx,
assuming one target Fj .

LO was identified as a critical part of MA. Defender’s
scores obtained in 3000 preliminary tests performed with
standard Genetic Algorithm (GA) approach (i.e. MA with-
out LO phase) were lower by 0.38 in average, and in none
of the cases the score of GA excelled that of MA. Thanks
to the LO phase, Defender’s units are more concentrated on
the targets, i.e. without this phase their positions are more
scattered.
Selection. First, two best-fitted chromosomes (elite) are
copied to the next generation. Then, the following tourna-
ment selection takes place. Two chromosomes are randomly
chosen from the population. With probability equal to selec-
tion pressure the one with the higher fitness is added to the
next generation. Otherwise, the lower-fitted chromosome is
promoted. The above routine is repeated until the next gen-
eration contains population size chromosomes.
Parameter tuning. Tuning of parameters was constrained
to a priori selected arbitrary set of values for each of them.
Each parameter was separately tuned on 20 randomly de-
fined games, with all other parameters set to their default
values. The best value for each parameter was chosen based
on the obtained average Defender’s payoff. Table 2 presents
the sets of tested parameter values as well as their default
and finally chosen settings.

6 Results and discussion
The methods were tested on 6150 games generated with the
following values of the main parameters:

• m ∈ {2, 4, 6, 8, 10}

parameter value
population size 10, 20, 50, 100, 200, 500, 1000,2000
generations 10, 100, 200, 500, 1000,2000
mutation rate 0.0,0.2, 0.4, 0.6, 0.8, 1
mutation repeats 1, 5,10, 25, 50, 100, 200
crossover rate 0.0, 0.2, 0.4, 0.6, 0.8,0.9, 1
selection pressure 0.7, 0.8,0.9, 1.0
elite chromosomes 2

Table 2: Parameter setting of the memetic approach. Default
values used during tuning procedure are underlined. Best
values are bolded.

• nf ∈ {1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50}
• density ρ ∈ {0.2, 0.1, 0.05}, which determines the side

length a of (squared) game area, i.e. a :=
√
nf

ρ

• nd ∈ {max(1, nf − 2), . . . , nf + 1}
For each selected parameter set (m,nf , nd, ρ) 10 games
were uniformly generated with the following ranges of the
remaining parameters:

• nb - integer from interval [2√nf ; 3
√
nf]

• Ud+
j , Ua+

j ∈ [0, 1], Ud−
j , Ua−

j ∈ [−1, 0]
• τA = τ, vf = vmax

d = 1.0, r = 1.0

• terminals coordinates ∈ [0, a]2

In each game, for each target, a pair of associated termi-
nals was uniformly selected and the cruising schedule was
defined with uniformly selected waiting times in each termi-
nal ∈ [0, 3τ]. Starting positions of defending units were as-
signed to randomly selected terminals. MILP problems were
solved using Gurobi solver in version 8.0 (Gurobi Optimiza-
tion, Inc. 2018). Modification of (Wang et al. 2018) was cal-
culated using the same solver, with three different values of
game abstraction (grid aggregation) parameter s = 1, 2, 4.
In the case of MA 10 trails were run for each game.
Optimality. Only 605 games were tractable for DOBSS on
available hardware (Intel Xeon 4116 with 256GB RAM) due
to time and memory scaling problems. These 605 games
contained up to 4 steps, 3 targets and 2 defender’s units. Out
of these 605 games for which the optimal solution was com-
puted by DOBSS, MA yielded the same as DOBSS, optimal
Defender’s payoff in 599 cases, with the error margin set to
10−4. In the case of Wang et al. (2018) method, the number
of solved games depended on s and was highest for s = 4,
in which case 3146 instances were solved. Due to simpli-
fying assumption about summing up probabilities of depen-
dent events and utilization of grid abstraction, the method,
similarly to MA, yields approximate SE results. Figure 6
presents histograms of differences in results between SMOS
method for various s values and MA. Negative ranges de-
note the advantage of MA, which can be observed for all
values of s, most notably s = 4.
Repeatability. MA turned out to be a very stable method.
The average standard deviation of 6150 games (each run 10
times) was equal to 3 · 10−3 and in only 554 (9%) instances
had a value greater than 10−5.

975

10

100

1000

2 4 6 8 10

Game length [steps]

T
im

e
 [

s
]

DOBSS

MA

SMOS S1

SMOS S2

SMOS S4

(a) Time scalability w.r.t. the
number of game steps.

10

100

1000

10000

0 10 20 30 40 50

Targets

T
im

e
 [

s
]

DOBSS

MA

SMOS S1

SMOS S2

SMOS S4

(b) Time scalability w.r.t. the
number of targets.

10

100

1000

10000

0 10 20 30 40 50

Defenders

T
im

e
 [

s
]

DOBSS

MA

SMOS S1

SMOS S2

SMOS S4

(c) Time scalability w.r.t. the
number of defenders.

100

1000

0.05 0.10 0.15 0.20

Density

T
im

e
 [

s
]

DOBSS

MA

SMOS S1

SMOS S2

SMOS S4

(d) Time scalability w.r.t.
density parameter.

Figure 3: Scalability results.

2

4

6

8

10

0.05 0.10 0.15 0.20

Density

G
a

m
e

 s
te

p
s

Time[s]

1

10

100

1000

Method

DOBSS

MA

SMOS S1

SMOS S2

SMOS S4

Figure 4: Scalability results w.r.t. density and the number of
game steps.

Scalability. Figures 3 and 4 present computation time for
considered methods with respect to the main game parame-
ters. Increasing the number of targets and defenders (Fig-
ures 3b and 3c) causes exponential time growth for both
SMOS and DOBSS approaches. With respect to MA only
SMOS, s = 4 is faster, albeit only until nf = 7 and nd = 9,
and at the cost of significantly worse results (cf. Figure 6).

Analysis of the number of game steps (Fig. 3a) leads to a
conclusion that DOBSS runtime is significantly greater than
that of MA, but its growth with respect to increasing game
length is not as steep as in reference to the increasing num-
ber of targets (Fig. 3b) or Defender’s units (Fig. 3c). SMOS
solution for short games runs significantly faster, but does
not scale well for larger m values. For m ≥ 8 MA gradu-
ally outperforms SMOS, s = 1, 2 and for m = 10 becomes
time-comparable with SMOS, s = 4.

Results presented in Figures 3d and 4 show that MA,
which operates in continuous space, is insensitive to den-
sity parameter ρ, while significantly longer computational
times are obtained by solver based methods for smaller ρ
values. The reason for that is game discretization and com-
pressing method where the search space is limited by a con-
vex hull which, by definition, contains the number of grid
points inversely proportional to ρ2. Consequently, the re-
sulting games are more complex with targets located farther
apart from each other (in grid-based distance measure).
Additional experiments. In order to further assess scalabil-
ity of MA with respect to game length additional tests were
performed for this method with m ∈ {15, 20, 25, 30}. The
remaining approaches were capable of solving only small

0

2000

4000

6000

10 20 30

Game length [steps]

T
im

e
 [
s
]

Figure 5: Scalability of MA for m > 10.

subsets of games for these higher values of m, so their out-
comes are not presented. Good scalability of MA was con-
firmed also for larger games, as presented in Figure 5.

In summary, the MA method scales significantly better
than solver based approaches. The range of solvable games
(using moderate computational resources) is significantly
broader, with the ability to solve 30-step games with greater
numbers of targets and defending units. Certainly, these ex-
tended MA capabilities when compared to DOBSS come at
a price of lacking rigorous guarantee of solution optimal-
ity, however, a direct comparison with the outcomes within
the DOBSS feasible range of game parameters indicates that
MA solutions are of very high quality — optimal in vast ma-
jority of the cases.

7 Conclusions and future work
In this paper, an extension of the Security Games on a
Plane model introduced in (Gan et al. 2017), which relies
on adding time dimension, is proposed and solved. In the
resulting game model, targets are moving back and forth
along straight line trajectories according to fixed schedules
and the defending units are freely moving on the whole 2-
dimensional plane with certain speed limit. Each defender
covers all targets located within the circular area of prede-
fined radius around its current position. The proposed game
model fits a wide class of real-life situations of cruising tar-
gets protection, e.g. passenger ferries or cargo boats.

For solving the game, a suitable DOBSS-based formula-
tion is proposed. Due to exponential memory requirements
with respect to game length, games solvable by DOBSS are
relatively small – of 6 steps, at most. This inherent DOBSS
limitation prevents finding exact solutions beyond a certain
limit of game complexity.

Furthermore, an extension to non-zero-sum games of
the recently published method (Wang et al. 2018) is pro-
posed and experimentally evaluated as a viable alternative to

976

0 100 300 500

10.50−0.5−1−1.5

0 100 300 500

10.50−0.5−1 difference−1.5

0 100 300 500

10
8

6

4

2 10.50−0.5−1 difference−1.5

0 100 300 500

steps

10
8

6

4

2 10.50−0.5−1 difference−1.5

0 100 300 500 0 100 300 500

0.50−0.5−1

0 100 300 500

0.50−0.5−1 difference

0 100 300 500

10
8

6

4

2
0.50−0.5−1 difference

0 100 300 500

steps

10
8

6

4

2
0.50−0.5−1 difference

0 100 300 500 0 100 300 500

0.50−0.5−1−1.5

0 100 300 500

0.50−0.5−1 difference−1.5

0 100 300 500

10
8

6

4

2
0.50−0.5−1 difference−1.5

0 100 300 500

steps

10
8

6

4

2
0.50−0.5−1 difference−1.5

0 100 300 500

Figure 6: Differences between Defender’s utility values ob-
tained with MA and SMOS for various settings of s.

DOBSS formulation. While this modified version of Wang
et al.’s (2018) method allows to solve significantly larger
game instances, it still suffers from scalability issues, be-
yond certain limits.

For this reason, besides the solver-based solutions, an ap-
proximate solution method relying on the Memetic Algo-
rithm is designed. Even though the MA approach cannot
guarantee finding optimal Defender’s strategies (likewise
the Wang et al. (2018) method), experimental results indi-
cate that, in vast majority of the cases, it generates optimal
strategies - the same as those provided by the MILP solver.
Except for high accuracy of results the main asset of the MA
method is approximately linear time scalability and high sta-
bility of solutions for mid-size and large game instances.

It is also worth to underline that the MA method is flexi-
ble and can be easily adjusted to other SG models. Another
advantage is its iteration-based construction, which makes
the approach essentially an anytime method, what seems to
be a crucial property in case of restrictive time limits, which
could hinder the possibility of calculating the exact solution.

Considering the above properties of the proposed MA
method we believe that is presents a suitable approach for
solving SG with Moving Targets (and possibly other SG for-
mulations) for larger game instances whose complexity pre-
vents application of solver based methods.

Acknowledgments. This work was supported by the Na-
tional Science Centre, grant number 2017/25/B/ST6/02061.

References
An, B.; Tambe, M.; and Sinha, A. 2017. Stackelberg secu-
rity games (SSG): Basics and application overview. In Improving
Homeland Security Decisions. Cambridge University Press. 485–
507.
Bosansky, B.; Lisy, V.; Jakob, M.; and Pechoucek, M. 2011. Com-
puting time-dependent policies for patrolling games with mobile
targets. In The 10th International Conference on Autonomous
Agents and Multiagent Systems, 989–996.
Cermak, J.; Bosansky, B.; Durkota, K.; Lisy, V.; and Kiekintveld,
C. 2016. Using correlated strategies for computing Stackelberg
Equilibria in extensive-form games. In Thirtieth AAAI Conference
on Artificial Intelligence, 439–445.
Chen, X. S.; Ong, Y. S.; Lim, M. H.; and Tan, K. C. 2011. A
multi-facet survey on memetic computation. IEEE Transactions
on Evolutionary Computation 15(5):591–607.
Dickerson, J. P.; Simari, G. I.; Subrahmanian, V.; and Kraus, S.
2010. A graph-theoretic approach to protect static and moving tar-
gets from adversaries. In International Conference on Autonomous
Agents and Multiagent Systems, 299–306.

Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal patrol strategy
for protecting moving targets with multiple mobile resources. In
International Conference on Autonomous Agents and Multiagent
Systems, 957–964.
Gan, J.; An, B.; and Vorobeychik, Y. 2015. Security games with
protection externalities. In Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence, 914–920.
Gan, J.; An, B.; Vorobeychik, Y.; and Gauch, B. 2017. Security
games on a plane. In AAAI Conference on Artificial Intelligence,
530–536.
Gholami, S.; Wilder, B.; Brown, M.; Thomas, D.; Sintov, N.; and
Tambe, M. 2016. Divide to defend: Collusive security games. In
International Conference on Decision and Game Theory for Secu-
rity, 272–293. Springer.
Guo, Q.; An, B.; Vorobeychik, Y.; Tran-Thanh, L.; Gan, J.; and
Miao, C. 2016. Coalitional security games. In International Con-
ference on Autonomous Agents and Multiagent Systems, 159–167.
Gurobi Optimization, Inc. 2018. Gurobi optimizer reference man-
ual. http://www.gurobi.com/documentation/8.0/.
Gutierrez, E.; Juett, J.; and Kiekintveld, C. 2013. Generating ef-
fective patrol strategies to enhance U.S. border security. Journal of
Strategic Security 6(3):152–159.
Jain, M.; Kardes, E.; Kiekintveld, C.; Ordónez, F.; and Tambe, M.
2010. Security games with arbitrary schedules: A branch and price
approach. In AAAI Conference on Artificial Intelligence, 177–190.
Karwowski, J., and Mańdziuk, J. 2016. Mixed strategy extrac-
tion from UCT tree in security games. In European Conference on
Artificial Intelligence. IOS Press. 1746–1747.
Leitmann, G. 1978. On generalized Stackelberg strategies. Journal
of Optimization Theory and Applications 26(4):637–643.
Neri, F., and Cotta, C. 2012. Memetic algorithms and memetic
computing optimization: A literature review. Swarm and Evolu-
tionary Computation 2:1–14.
Neri, F.; Cotta, C.; and Moscato, P., eds. 2012. Handbook of
Memetic Algorithms, volume 379 of Studies in Computational In-
telligence. Springer.
Ong, Y. S.; Lim, M. H.; and Chen, X. S. 2010. Research frontier:
Memetic computation - past, present & future. IEEE Computa-
tional Intelligence Magazine 5(2):24–36.
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Ordonez, F.;
and Kraus, S. 2008. Playing games for security: An efficient ex-
act algorithm for solving Bayesian Stackelberg games. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
895–902.
Wang, X.; An, B.; Strobel, M.; and Kong, F. 2018. Catching Cap-
tain Jack: Efficient time and space dependent patrols to combat oil-
siphoning in international waters. In AAAI Conference on Artificial
Intelligence, 208–215.
Xu, H.; Ford, B.; Fang, F.; Dilkina, B.; Plumptre, A.; Tambe, M.;
Driciru, M.; Wanyama, F.; Rwetsiba, A.; Nsubaga, M.; et al. 2017.
Optimal patrol planning for green security games with black-box
attackers. In International Conference on Decision and Game The-
ory for Security, 458–477.

977

http://www.gurobi.com/documentation/8.0/

