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Abstract
Taking speed reports from vehicles is a proven, inexpensive
way to infer traffic conditions. However, due to concerns
about privacy and bandwidth, not every vehicle occupant may
want to transmit data about their location and speed in real
time. We show how to drastically reduce the number of trans-
missions in two ways, both based on a Markov random field
for modeling traffic speed and flow. First, we show that a only
a small number of vehicles need to report from each location.
We give a simple, probabilistic method that lets a group of ve-
hicles decide on which subset will transmit a report, preserv-
ing privacy by coordinating without any communication. The
second approach computes the potential value of any loca-
tion’s speed report, emphasizing those reports that will most
affect the overall speed inferences, and omitting those that
contribute little value. Both methods significantly reduce the
amount of communication necessary for accurate speed infer-
ences on a road network.

1 Introduction
Accurate traffic speed information is vital for computing ef-
ficient routes for vehicles on roads. Dedicated road sensors,
such as embedded induction loops, are expensive to install
and maintain. An obvious alternative is to use the mobile
phones of vehicle occupants to sense and report speeds to a
central server. As of early 2018, 95% of Americans owned a
cellphone of some kind, and 77% owned a smartphone (Cen-
ter 2018). Both fractions are rising. As an example, Waze
gathers GPS data from its users at a rate of one reading per
second to compute road speeds to use for routing (Parmy Ol-
son 2014). This location data not only uses bandwidth, but
it is vulnerable to privacy attacks. In fact, researchers were
able to create fake Waze accounts that allowed them to track
Waze users (Wang et al. 2018), a vulnerability that was
patched by Waze (Waze 2016). Even coordinating among
vehicles with vehicle-to-vehicle communication has nega-
tive privacy implications (Williams 2017).

Problems with bandwidth and privacy can be fixed with
advanced compression (Lelewer and Hirschberg 1987) and
location privacy techniques (Krumm 2009), respectively.
However, another solution is to transmit less data. This paper
introduces two techniques to reduce the number of revealing
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Figure 1: The white circles show 109 traffic measurement
stations around central Los Angeles, California, USA. The
black lines show which stations were connected in the
Markov random field.

transmissions required to maintain accurate inferences about
traffic speeds. Both approaches are based on a Markov ran-
dom field (MRF) that models varying quantities of vehicle
speed report data as well as the observed correlations be-
tween traffic conditions on different parts of the road net-
work. Using this model, we show that a small number of
speed reports can be combined to infer traffic conditions on
all the roads in the network.

Our first approach to reduce privacy-compromising trans-
missions from vehicles is to show that only a relatively small
number of vehicles needs to report from any road segment,
and that we can choose the subset of vehicles to report with-
out any communication. Normally this coordination might
be accomplished with each vehicle communicating to a cen-
tral server or with with vehicle-to-vehicle communication.
Instead, we develop a probabilistic technique where each ve-
hicle makes an independent decision to transmit, while still
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maintaining approximately the desired number of vehicle re-
ports.

Our second technique is sensitive to the fact that not all
road segments need a speed measurement. In fact, if traffic
is moving normally, no reports are necessary. We formal-
ize this with a value-of-information analysis. Each vehicle
runs a local version of the MRF to assess approximately how
much its own speed report would affect traffic inferences on
the whole road network. Reports that would have a larger
effect on the network are prioritized over those that would
have little or no effect.

Next we describe the traffic data and MRF model that we
used for our experiments.

2 Traffic Data
Our experimental data consists of freeway speeds and flows
from the state of California in the USA. Traffic on roads
is often characterized by its speed and flow, where flow in-
dicates the number of vehicles passing a certain point in
a given amount of time. Such data is available free via
the California Performance Measurement System (PeMS),
which provides a wide variety of real-time and historical
data for freeways in California (California Department of
Transportation (Caltrans) 2018). PeMS includes traffic data
collected from over 35,000 traffic detectors that report every
30 seconds. The main type of detector is inductive loops, but
there are also side-fire radars and magnetometers. PeMS ag-
gregates this data into reports from discretely located mea-
surement stations, each of which covers all freeway lanes
in the same direction. For instance, one station may pertain
to all northbound lanes at a particular location on Interstate
5. PeMS reports the data at five-minute intervals, giving the
mean speed and count of vehicles per five minutes (flow) at
each station. We maintain this five-minute time discretiza-
tion throughout our analysis.

For our experiments, we chose data from 109 different
freeway measurement stations inside in a 3.1 mile (5 kilo-
meter) radius around the center of Los Angeles, California,
USA, shown in Figure 1. Figure 2 shows the speed and flow
averaged over all 109 stations for one day. In the subsequent
sections of this paper, we refer to these measurement stations
as simply ”stations”. We used data from the first six months
of 2017 for training and the last three months for testing. We
used months 7-9 for value-of-information training described
in Section 7.

Next we describe a method to infer speeds at all the sta-
tions based on noisy speed reports from only a subset of the
stations.

3 Markov Random Field for Traffic
We develop a Markov random field (MRF) for statistical
modeling of macroscopic traffic speeds and flows. This
model is particularly well-suited to our task of reducing the
number of of traffic speed reports, because it propagates
measurements from a subset of the stations to make infer-
ences for all the stations

3.1 Previous Work
Previous traffic models have included the vector autore-
gressive (VAR) model of Liu et al., which models speeds
on a particular road segment as a weighted, linear sum of
speeds on other road segments (Liu et al. 2016). Hongzi
Zhu et al. use a multi-channel singular spectrum analysis
(MSSA) model to infer traffic speeds despite noise and miss-
ing values (Zhu et al. 2009). In the work by Yanmin Zhu et
al., the authors find correlations between traffic on differ-
ent roads through principal component analysis (PCA) (Zhu
et al. 2013). JamBayes uses a Bayesian network to in-
fer and predict traffic based on several features like cur-
rent traffic, road incidents, weather, holidays, and planned
events (Horvitz et al. 2012). Zhang et al. demonstrate a deep,
residual network to predict crowd flows, including inputs
such as weather (Zhang, Zheng, and Qi 2017). There are
also microscopic traffic flow models, often based on physics
(e.g. (Nagatani 2002)), but our interest here is in a more data-
driven model that can be used to understand and exploit the
value of small amounts of traffic data for making network-
wide inferences.

An MRF model has been applied to traffic before, e.g. for
modeling images of vehicles at intersections (Kamijo et al.
2000) and for using Twitter to sense traffic (Chen, Chen, and
Qian 2014). The most relevant previous MRF work is that of
Kataoka et al. (Kataoka et al. 2014). Their MRF helps fill in
missing traffic data based on sensed data at other locations.
The distributions in their MRF are parametric, while we use
nonparametric probability distributions learned from histor-
ical data. Our nonparametric formulation has the advantage
of representing arbitrary relationships between traffic con-
ditions on different roads. This more flexible representation
allows us to model both the speed and flow, rather than just
density. Furthermore, we use multiple MRFs targeted at dif-
ferent days of the week and times of day, while Kataoka
et al’s approach uses a single MRF for all time. Hu et al.
also use an MRF for traffic estimation, specifically looking
for certain ”seed roads” which are most indicative of traffic
conditions on other roads (Hu et al. 2016). Their model pro-
duces a binary indicator that shows if the traffic is moving
faster or slower than average.

The main innovation of our MRF model, however, is how
we use it. The VAR, MSSA, PCA, and MRF models ref-
erenced above are mostly aimed at filling in missing traffic
values by exploiting correlations discovered in historic traf-
fic data. In contrast, our work aims at using a small number
of traffic reports, including possibly zero, while still main-
taining accuracy.

3.2 Markov Random Field
Our MRF model represents each traffic variable (i.e. speed
and flow) in a road network as a connected node in a graph-
ical model. For each of the N measurement stations, the
scalar variables si and fi, i = 1 . . . N , represent the mean
speed and flow, respectively. We measure speed in mph and
flow as the number of vehicles passing a point in five min-
utes. We consider these variables as unknown, but they can
be inferred from noisy speed measurements made by pass-
ing vehicles. We represent such a measurement as ŝi, where
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Figure 2: This shows the mean speed and flow over all 109 measurement stations around downtown Los Angeles, California,
USA on 19 April 2017.

the hat indicates this is a noisy measurement that likely de-
viates from the actual value. It would be difficult for a single
probe vehicle to measure flow, so we assume a vehicle can
only report speed.

The MRF depends on so-called compatibility functions
between variables. These are often expressed as pairwise
joint probability functions between pairs of variables. We
have the following discrete, joint PDFs to represent relation-
ships among the actual speeds, actuals flows, and measured
speeds:

• Psi,sj (si, sj) is the relationship between speeds at mea-
surement stations i and j. The most useful of these is
when i ̸= j, which represents the joint PDF of speeds
at two different stations.

• Psi,fi(si, fi) is the relationship between speed and flow
at station i. Although there are approximations of this re-
lationship (e.g. (Akcelik 1996)), we learn the relationship
from the data.

• Psi,ŝi(si, ŝi) is the relationship between the actual and
measured speeds at station i. These are different due to
measurement noise of the vehicle. Since ŝi is a given
measurement, we abbreviate this PDF with the simpler
Psi(si) and call it a measurement distribution.

Graphically, we can think of the MRF as an undirected
graph with a node for each variable and an edge for each
joint PDF, as in Figure 3. Seeing it this way gives rise to
ideas for other topologies, such as introducing joint PDFs
between the roads’ flow variables or between one road’s
speed an another road’s flow. While the MRF offers this flex-
ibility, we found the given topology to be adequate for our
purposes.

Adopting the development in (Yedidia, Freeman, and
Weiss 2003), the overall joint probability of the speeds,

Figure 3: This is a graphical representation of the variables
for a road network with three measurement stations. The
measured variables are associated with the filled-in circles,
and the unknowns are in the white circles. Each edge is rep-
resented by a joint PDF.

flows, and measured speeds of the measurement stations is

P (
{
s
}
,
{
f
}
,
{
ŝ
}
) =

∏
(ij)

Psi,sj (si, sj)×∏
i

Psi,fi(si, fi)×∏
i

Psi,ŝi(si, ŝi)

(1)

Here
{
s
}

is the set of all speeds, and similarly for
{
f
}

. The
term

{
ŝ
}

is the set of measured speeds. The notation (ij)
indicates all possible distinct, unordered pairs of i and j.

Intuitively, for a given set of measurements
{
ŝ
}

, we want

988



to find values of s and f that maximize the joint probability
in Equation (1). This gives the inferred speeds and flows that
we want.

3.3 Loopy Belief Propagation
The joint distribution in Equation 1 is difficult to optimize
in a straightforward way, given that we have over 100 mea-
surement stations, each with its own speed si, flow fi, and
a potential measurement ŝi. To make this easier, we begin
with a slight reformulation of Equation 1 which does not
include the inviolate speed measurements ŝi, because they
do not change. This means the joint PDFs for measurements
become simply one-dimensional PDFs over the speed val-
ues. That is, Psi,ŝi(si, ŝi) becomes simply Psi(si), which
gives the distribution of speeds based on a tangible speed
measurement at station i. The joint probability with only the
unknown variables is

P (
{
s
}
,
{
f
}
) =

∏
(ij)

Psi,sj (si, sj)
∏
i

Psi,fi(si, fi)Psi(si)

(2)
Belief propagation (BP) is an algorithm that can find the a

posteriori distributions, or beliefs, of all the unknown vari-
ables in a joint PDF like Equation 2 (Yedidia, Freeman,
and Weiss 2003). That it finds the distributions, rather than
simply the maximum a posteriori, is advantageous, because
the distributions represent the uncertainty of the inferences.
BP proceeds by passing messages along the edges of the
joint PDF graph. The details of the messages are available
in many tutorials, including (Yedidia, Freeman, and Weiss
2003). Each node receives messages from all its connected
nodes. A received message is a distribution over the recipi-
ent’s domain of possible values that gives the sender’s belief
of what the recipient’s state should be. The recipient com-
bines the messages to form its a posteriori distribution. In a
graph without loops, these messages need to be passed only
once to provably converge to the exact a posteriori distribu-
tions.

In our problem, the graph has loops, as shown in the ex-
ample graph in Figure 3. Fortunately, repeatedly sending up-
dated messages, i.e. loopy BP, often works in these cases,
with the a posteriori distributions converging after enough
rounds of message-passing. We stopped our program’s mes-
sage passing after the mean absolute difference in each mes-
sage over time dropped below 0.1 or if the number of mes-
saging iterations exceeded 100. For our experiments, loopy
BP always converged. The result of loopy BP is a PDF of the
inferred values of speed and flow at each station. We used
the mode of the PDFs to extract inferred scalars to compare
to ground truth. In Section 7 we need individual vehicles to
run loopy BP. On a conventional desktop PC, our custom
BP code converged in an average of 20 milliseconds, so it is
feasible to run in a vehicle.

3.4 Joint Probabilities for Road Speed and Flow
The joint probabilities Psi,sj (si, sj) and Psi,fi(si, fi) de-
scribe how speeds and flows on the road network vary with
each other, and they come from temporally co-occurring

pairs of speed and flow in our six months of freeway train-
ing data. We computed these joint probabilities in the classic
way by normalizing frequency counts of discretized pairs of
measurements. For all our MRF inferences, we discretized
speeds into 5 mph bins, and we discretized flows into 25
vehicles/5 minutes bins. For the speed-flow probabilities
Psi,fi(si, fi), we computed a joint PDF for each measure-
ment station. The speed-speed PDFs, Psi,sj (si, sj), relate
speeds between pairs of measurement stations. To limit the
complexity of our MRF, we only computed a speed-speed
PDF between station i and j if station j was one of station
i’s ten nearest neighbors or vice-versa, using the great circle
distance. This is based on an assumption that traffic effects
are mostly local, which was justified by the overall accuracy
of our model. For pairs of measurement stations not in each
other’s set of nearest neighbors, there was no edge between
them in the MRF. The black lines in Figures 1 and 3 show
which pairs of stations were connected by a joint PDF.

To account for possibly different relationships between
traffic on different days of the week and at different times of
day, we split a canonical week into five-minute intervals and
computed a separate set of joint PDFs, and thus a separate
MRF, for each five-minute interval. For example, we had one
MRF for Mondays from 8:00 a.m. - 8:05 a.m. and a different
MRF for Saturdays from 10:45 p.m. - 10:50 p.m., giving a
total of 2016 MRFs to cover one representative week.

3.5 Probabilities for Measured Speed
Practically, representing the uncertainty in speed measure-
ments is important in that it allows the MRF to settle on
speed inferences that are a compromise between the speed
measurements and the joint PDFs. The joint PDFs serve as
a sort of prior on speeds, flows, and their relationships. If
measured speeds were injected into the MRF with no uncer-
tainty, loopy belief propagation would simply converge to
the measured speeds, ignoring the joint PDFs.

One important representational advantage of the MRF be-
comes apparent with the measured speed distributions. In
our algorithm for selecting which vehicles should report
their speeds, some measurement stations have no associated
speed report. We represent this Psi(si) as simply a uniform
speed distribution over the range zero to the maximum speed
observed at the station during training. This lets the asso-
ciated node float based solely on messages passed in from
its connected nodes. One extreme we explore in our experi-
ments is to set all speed reports to uniform and let the entire
MRF float to a set of inferences which are essentially inde-
pendent of any measurements.

4 Probabilistic Speed Reports from GPS
In our scenario, a subset of vehicles on the road report their
speeds to a central server, which in turn makes network-
wide speed and flow estimates using an MRF. This section
describes how we model the inherent noise in these speed
reports, due to both the natural variation in speed among a
group of vehicles and due to measurement noise.

Our freeway traffic data gives mean speeds every five min-
utes at each measurement station. However in our testing,
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we need to model speed reports from individual vehicles.
Here we seek to derive a probability distribution that de-
scribes these invidual reports. We model the variation from
two sources: the natural differences between vehicle speeds
traveling on a road and the noise due to GPS measurement
error.

The first source of speed variation is the natural differ-
ences of speeds among vehicles traversing the same road
segment. This variation has been studied for its effects on
crashes (Kockelman and Ma 2010) and audible noise (Ian-
none, Guarnaccia, and Quartieri 2013). While our traffic
data gives mean speeds, we want to assess the effect of
speed reports from different vehicles passing the same mea-
surement point on the road, whose speeds will inevitably
be different. In (Iannone, Guarnaccia, and Quartieri 2013),
Iannone et al. review work on speed variation, noting that
the dominant model is a simple Gaussian probability dis-
tribution, which works best for free-flowing traffic. (Ian-
none, Guarnaccia, and Quartieri 2013) says that the stan-
dard deviation σsnatural

normally varies between 3.1 and
12.5 mph. Using PeMS data sampled at 30 seconds and ag-
gregated over 5-minute periods, we found a mean σsnatural

of 5.3 mph. Using regression, we also found that the road’s
mean speed and flow were poor predictors of σsnatural

, so
we chose to use this constant value throughout our analy-
sis instead of trying to infer it based on road parameters or
traffic measurements.

The second source of speed variation is measurement
noise. We assume that vehicles measure their speed using
pairs of location measurements from their onboard GPS sen-
sors 1. Using the common Gaussian noise assumption for
GPS (Diggelen 2007), a location measurement vector is dis-
tributed as xi ∼ N

(
[xi, yi]

T , σ2
gI

)
. We approximate the

standard deviation of GPS as σg = 3 meters. Taking the vec-
tor difference of two measurements gives the velocity vec-
tor:

vi =
µi − µi−1

∆ti

where ∆ti = ti − ti−1, µi = [xi, yi]
T , and µi−1 =

[xi−1, yi−1]
T . For our simulation, we take ∆ti = 2 seconds.

If the two location measurements are independent, their
variances will add, and the two-dimensional distribution of
the velocity vector will be:

vi ∼ N
(
µi − µi−1

∆ti
, 2

(
σl

∆ti

)2

I

)
where I is the 2x2 identity matrix.

We now have a distribution for the velocity vector, but we
are ultimately interested in the distribution for scalar speed,
which is the magnitude of velocity. For the case of a bivariate
normal with a diagonal covariance matrix, the distribution of
the magnitude follows a Rician distribution (Rice 1945):

1We could also use a speed measurement from the vehicle’s
speedometer. However, we are assuming that a cell phone in the
vehicle is used for both communication and speed measurements,
eliminating the need for the phone to interface with the vehicle’s
speedometer.

||vi|| ∼ Rice
(
||µi − µi−1||

∆ti
,

√
2σl

∆ti

)
.

Two example Rician speed distributions are shown in Fig-
ure 4. When the Rician’s mean is sufficiently larger than
its standard deviation, the Rician can be approximated by
a Gaussian with the same mean and standard deviation.
Thus, we model the measurement noise as a Gaussian with
standard deviation σsmeasurement

=
√
2σl

∆ti
= 2.12 m/s =

4.74 mph.

Figure 4: These are two Rician speed distributions Psi(si),
assuming GPS precision of σg = 3 meters and a GPS sam-
pling interval of ∆ti = 2 seconds.

With two additive sources of Gaussian noise, the vari-
ances add to give a speed report distribution of S ∼
N(µs, σ

2
s), where µs is the mean speed from our 5-minute

traffic data, and

σ2
s = σ2

snatural
+ σ2

smeasurement
. (3)

We use this value of σ2
s for our experimental simulations

and for assigning uncertainty to speed measurements for our
MRF.

5 Markov Random Field Baseline
In this section we give a baseline scenario to explore how
decreasing the number of speed reports affects the accuracy
of our traffic inferences. We call this a baseline, because we
modify this scenario in subsequent sections for more effi-
ciency and privacy.

5.1 Reporting Structure
We use loopy belief propagation on the MRF for estimat-
ing traffic speeds from vehicle speed reports. We test the ac-
curacy of our inferences by simulating noisy speed reports
from vehicles at a subset of all 109 measurement stations.
We vary two parameters for these tests: the number of re-
porting stations in the subset of all measurement stations
and the number of vehicles reporting from each measure-
ment station.
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We assume the central server will receive the vehicle
speed reports. For those reports coming from the same
station, the server will compute the mean of the reported
speeds. The distribution of the mean of n reports, where each
report is distributed as N(µs, σ

2
s), is N(µs, σ

2
s/n), meaning

the precision is increased. Note that σs represents the speed
uncertainty from Equation 3, due to both measurement noise
and the natural variation in speeds among a group of vehi-
cles on the same road.

5.2 Experiments
As mentioned above, we used PeMS data from the first six
months of 2017 to compute the joint PDFs necessary for the
MRF. This is the training phase. We used data from the last
three months of 2017 for testing. Our results show the in-
ference error over 10,000 independent tests. Each test con-
sists of first choosing a random 5-minute reporting interval
in our test data. Inside each test, we randomly shuffle the list
of measurement stations and then increment from 0 to all
109 stations, gradually including speed reports from more
stations. For each tested subset of stations, we compute the
root mean square (RMS) speed error between the ground
truth and the mode of the inferred speed PDF at each station.
We also computed a demand-weighted RMS error based on
the actual vehicle flow at each station. Specifically, if the
speed error at a station is ∆si, then the demand-weighted
error is ∆sifi, where fi is the flow in number of vehicles
per five minutes. The total demand-weighted RMS error,√

1
N

∑
N ∆s2i f

2
i , accounts for the actual number of vehicles

that would experience the speed error, placing less empha-
sis on lightly-traveled roads and more on heavily-traveled
roads.

The accuracy results are shown in Figure 7. The horizon-
tal axis represents an increasing number of randomly shuf-
fled reporting stations. The solid lines in both plots show
how the median RMS speed error and median RMS demand-
weighted speed error both fall with more stations reporting,
as expected. Here the medians are taken over the 10,000
random tests. It is also apparent that increasing the num-
ber of vehicles reporting from each station reduces error.
The topmost solid curve in both plots shows the error with
only one vehicle reporting from each station, and the other
curves show how the error decreases with n = 5, 10, and
20 vehicles reporting. This decrease in error is because the
precision of the speed reports changes as σ2

s/n. We note
that demand-weighted RMS error has the awkward units
of (mph)*(vehicles/(5 minutes)). For the remainder of the
paper, we will abbreviate (vehicles/(5 minutes)) as simply
”flow”, meaning that demand-weighted RMS error has units
mph*flow.

Looking more closely at error vs. the number of vehi-
cles reporting, Figure 5 shows how speed error and demand-
weighted speed error both drop with more vehicles reporting
if a random subset of 54 stations (about half) report. Beyond
reports from about 20 vehicles, there is not much to gain in
terms of error reduction. Because of this, for the remainder
of this paper, we give results for n = 1, 5, 10, and 20 vehi-
cles reporting.

We can quantify the reduction in speed reports. The mean
traffic flow over our 3-month test period was 240.4 vehi-
cles/5 minutes at each measurement station. If all vehicles
reported their speeds every 5 minutes at all 109 stations, the
total number of reports would be 109 × 240.4 = 26, 204
reports every 5 minutes. If only M stations report (M ≤
N = 109) with only n vehicles per station, then the total
number of reports would be Mn every five minutes. The
plots in Figure 7 show that inference error drops steadily
with increasing number of stations reporting, so we will have
M = 109 to represent all stations reporting. However, the
plots show that, say, n = 20 vehicles reporting from each
station appears to be approaching the minimum error value.
With these settings of M and n, the number of reports is re-
duced by a factor of (109×20)/(109×240.4) = 0.083. Thus
the overall accuracy of the system is maintained with only
about 8% of all the vehicles reporting, representing an order
of magnitude reduction in privacy-compromising communi-
cation and bandwidth.

This baseline depends on some sort of vehicle-to-vehicle
coordination such that only a predefined number of vehicles
report their speed from every station. The next section ex-
plores a method to eliminate the necessity of communicating
to coordinate.

Figure 5: As more vehicles report their speeds, there are di-
minishing returns beyond about 20 vehicles. This plot shows
computed errors for reports from random subsets of 54 sta-
tions out of all 109.

6 Coordinating Multiple Vehicle Reports
Without Communication

In our scenario, vehicles each make independent decisions
about whether or not to report their speed, and these deci-
sions are renewed every five minutes. One way to reduce the
number of reports is to send them only when the measured
speed is unusually above or below expectations. We detail
this idea in Section 7. Another way to reduce the number
of reports is to have only a few vehicles on each road seg-
ment report their speed, as described in the previous section.
Here we look at how to select a subset of vehicles to report
without any communication from them.

6.1 Probabilistic Coordination
It is unnecessary to have all vehicles reporting. One key
challenge of this scheme is how to decide which vehicles on
a road segment should make a report. While vehicles could
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coordinate via wireless, this represents a potential privacy
leak, and such coordination has yet to be standardized. In-
stead, we demonstrate an example of ”coordination without
communication” (Fenster, Kraus, and Rosenschein 1995). If
a vehicle decides that a report would be useful, we have it re-
port with a probability pr, regardless of what other vehicles
might be doing.

In a five-minute period, there are f vehicles passing a
point on a road, where f indicates flow/5 minutes.2 With
f vehicles each making a report with probability pr, the
expected number of reports is prf , and the distribution of
the number of vehicle reports is binomial. In particular, the
probability of getting at least one report is pone = 1− (1−
pr)

f , shown in Figure 6. A system operator could set pr such
that pone always maintains some minimum value.

Figure 6: This is the probability of a group of vehicles send-
ing at least one report for different group sizes and reporting
probabilities.

A suitable scheme for probabilistic coordination would
have a system-wide minimum threshold on the expected
number of vehicle reports, E[n], from every station. With
E[n] = prf , each vehicle could compute its own probabil-
ity of reporting as pr = E[n]/f . Each vehicle would gen-
erate a uniformly distributed random number u ∈ [0, 1] and
transmit its speed to the central server if u ≤ pr.

The probability pr depends on the flow f , which is not
easily measurable from a moving vehicle. However, for
each station i, the vehicle can estimate the flow distribution
from the joint PDF Psifi(si, fi). With the vehicle measur-
ing its own speed of ŝi, the flow distribution is Pfi(fi) =
Psifi(ŝi, fi), and the scalar flow estimate is taken as the
mean or mode of this distribution. We used the mode in our
experiments.

6.2 Experiments
Our experiments for this scenario are designed to investi-
gate the effect of multiple vehicle reports from each station

2We could model a smaller pool of potential vehicle reports by
reducing the number of potential participants to αf , with 0 < α ≤
1, but we will assume full participation with α = 1 for our analysis.

and to understand the efficacy of coordinating reports prob-
abilistically without communication among vehicles. Our
baseline is the MRF model from Section 5, where we ex-
amined the effect of incrementally increasing the number of
stations reporting and where each station has speed reports
from n = 1, 5, 10, and 20 vehicles. This baseline is shown
as the solid curves in Figure 7.

Figure 7: The solid lines show how the speed error (top plot)
and demand-weighted speed error (bottom plot) change with
the number of stations reporting and the number of vehicles
reporting from each station. The corresponding dashed lines
show the same errors when all the vehicles coordinate prob-
abilistically without any communication from them.

Using the probabilistic reporting technique from above,
Figure 7 shows that it works almost as well as its determin-
istic counterpart. In this figure, the dashed lines represent the
probabilistic technique, and their colors colors correspond to
the deterministic technique with the same target number of
vehicles reporting.

Summarizing, Section 5 shows that only a relatively small
subset of vehicles need to report from each station, and this
section shows that the subset can be self-selected with no
need for communication, enhancing privacy and reducing
bandwidth. Next we describe a technique to prioritize which
stations should report, which can further decrease the num-
ber of speed reports while still maintaining accuracy.

7 Prioritizing Reports with Value of
Information

Not all information is equally valuable for inference tasks. In
our case, some station reports are more important than oth-
ers for inferring accurate, network-wide traffic conditions.
Intuitively, if traffic is moving as expected, then there is lit-
tle need to tell anyone. We aim to have each vehicle assess
the potential value of reporting its own speed. Each vehi-
cle would do this locally, without any transmissions. Then,
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in cooperation with the central server, vehicles would either
transmit their speed reports or not, based on their local self-
assessments. When some vehicles choose not to report, this
further reduces the communication necessary for maintain-
ing accurate traffic inferences.

7.1 Defining Value of Information
We define the value of information (V OI) of a vehicle speed
report as the RMS of the reduction in demand-weighted
speed error over the road network. To define this precisely,
we begin by introducing a function s′i(S) which represents
the MRF’s estimate of the speed at station i based on a set
of speed reports S from a subset of stations in the network.
The expression s′i(∅) is the MRF estimate of of si based on
no speed reports.

Ideally we would compute a quantity like Equation 4,
which reflects the RMS error between the nominally ex-
pected speeds, s′j(∅), and the actual speeds sj , weighted by
the actual flows fj :

V OI =

√ 1

N

N∑
j=1

f2
j (s

′
j(∅)− sj)2 (4)

This quantity gives the error between the ground truth
speeds and the nominally expected speeds from the MRF if
there were no speed reports, assuming ground truth speeds
and flows are available. However, an independently operat-
ing vehicle does not have access to the actual speeds and
flows, so it must estimate V OI based on what it can mea-
sure.

7.2 Estimating Value of Information
Our algorithm depends on each vehicle being able to assess
the V OI of its own speed report. Because the V OI from
Equation 4 depends on ground truth values of speed and
flow (sj and fj) over the whole network, individual vehi-
cles could not compute V OI independently. However, they
can estimate V OI by inferring the speeds and flows over the
network using an MRF. Specifically, a vehicle at station i can
use its own measured speed ŝi to compute an estimate of any
speed and flow in the network with s′j({ŝi}) and f ′

j({ŝi}),
respectively. Using these self-estimated values of speed and
flow, the vehicle can then estimate the network-wide V OI
of its own speed report as

V OI ′(ŝi) =

√ 1

N

N∑
j=1

(f ′
j({ŝi})2(s′j(∅)− s′j({ŝi})2 (5)

V OI ′(ŝi) can be considered as an estimate of the amount of
surprise that would be caused by transmitting speed report
ŝi to the central server. If the estimated V OI is high, then
the system would be be surprised by the report compared to
its nominal traffic conditions.

The system-wide V OI estimate in Equation 5 is perched
tenuously on a single speed measurement. In order to boost
accuracy, we introduce a machine-learned regression model
that uses two numerical features to make a revised estimate

of V OI , called V OI ′′. The first of these features is the orig-
inal estimated V OI ′(ŝi). The second feature is the elapsed
time from the start of the most recent Monday, called ∆tM .
This helps contextualize the original V OI estimate in time,
accounting for the possibility that traffic surprises may be
more or less important at certain times of the week. Thus we
have a final V OI estimate as V OI ′′(ŝi,∆tM ). We imple-
mented this regression as a forest of boosted decision trees,
and we learned one model for each of the 109 measurement
stations using months 7-9 of our PeMS data for training. The
median absolute V OI prediction error over all 109 stations
was 0.058 mph*flow, based on an 80/20 train/test split of
the PeMS data from months 7-9. Figure 8 shows a plot of
the ground truth and estimated VOI from our models.

Figure 8: These are the actual and estimated VOI values
from our learned regression model. The median absolute er-
ror was 0.058 mph*flow.

7.3 Experiments
One way to use the V OI estimates is to eliminate speed
reports that fall below a preset V OI threshold. We com-
puted the accuracy rate for the inferred V OI values
V OI ′′(ŝi,∆tM ). An accurate inference is when the inferred
V OI says an instance is below a given V OI threshold and
the V OI actually is below the threshold. Figure 9 shows
this test accuracy rate using the same 80/20 train/test split as
above. The rate is consistently above 0.965. This plot also
shows that over 90% of the actual V OI values are below
1.0 mph*flow. This means that a large majority of speed re-
ports have little value and that our V OI inference procedure
can accurately identify these useless reports.

We also tested our V OI approach with speed reports us-
ing months 10-12 of our traffic data, which is the same test
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Figure 9: The V OI inference is accurate at finding speed re-
ports that are below a given VOI threshold (red curve). Also,
a large majority of potential speed reports have a very low
V OI (blue curve). The V OI inferences can accurately iden-
tify these useless reports. Note that the vertical axis starts at
0.90.

data we used for testing in Section 6. For each randomly cho-
sen date and time in the test set, we first incremented through
a randomly shuffled list of stations. This baseline shows how
the RMS speed error and demand-weighted speed error de-
crease as more stations report. To test the V OI approach, we
used V OI ′′(ŝi,∆tM ) to estimate the V OI of a report from
each station. The stations then reported in descending order
of estimated V OI , which was designed to test the effect of
processing the most important reports earlier. In a real sys-
tem, we would implement this greedy approach in a way that
does not require vehicles to transmit anything until their re-
port was needed. For instance, the central server might send
out a decreasing sequence of V OI thresholds, and vehicles
would respond with a report when their estimated V OI ex-
ceeded the broadcast threshold.

The results of these tests are shown in Figure 10. The
V OI approach gives consistently lower RMS errors than
the random approach, validating the effectiveness of this
method. Although the improvement seems small in Fig-
ure 10, looking at the results another way shows a relatively
dramatic improvement. In Figure 11, the horizontal axis is
the number of station reports from the V OI method. The
vertical axis shows how many more reports the random ap-
proach would need to equal the RMS error of the V OI ap-
proach. The number of station reports saved by the V OI
approach reaches as high as 23 and has an average value of
about 17.4 when there is one vehicle reporting from the sta-
tions.

8 Conclusion
Naively soliciting speed reports from all eligible vehicles on
the road reduces privacy and increases bandwidth require-
ments. This paper shows how to reduce the number of speed
reports while still maintaining accurate traffic inferences.
We developed and tested a Markov random field to model
traffic in terms of speed and flow. The MRF has the flexibil-

Figure 10: The solid lines show how the speed error (top
plot) and demand-weighted speed error (bottom plot) change
with the number of randomly-ordered stations reporting and
the number of vehicles reporting from each station. The
corresponding dashed lines show the corresponding errors
when the stations report in descending order of estimated
V OI . The dashed lines always show lower error than their
solid counterparts, meaning the V OI method gives consis-
tently lower error.

Figure 11: To match the same error as the V OI approach,
this plot shows how many extra randomly chosen measure-
ment stations would be necessary.

ity to process speed reports from an arbitrary subset of mea-
surement stations, with each measurement having arbitrary
uncertainty. Using this model, we showed that a relatively
small number of vehicles need to report from each measure-
ment station, with about 20 vehicles per station nearing the
point of diminishing returns. We also showed how to coor-
dinate which subset of vehicles transmit a report without re-
quiring any explicit coordination or communication among
them, leading to only a slight decrease in inference accuracy
and a boost in privacy. Another method to decrease the num-
ber of reports is to estimate the value of information of each
report before transmitting. Our V OI estimation algorithm
can run using only a single vehicle’s own speed measure-
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ment, using the MRF to infer how the report will affect the
traffic inference over the whole road network. Predicting a
report’s value with a machine-learned regression model, we
can prioritize speed reports and gain an accuracy advantage
over choosing reports at random. As part of our investigation
into V OI , we found that about 90% of potential speed re-
ports in our test set were useless and that our VOI inference
method can correctly detect these useless reports with high
accuracy. Using V OI to prioritize reports, we can reduce the
number of required reports to achieve the same error level as
a randomly chosen subset of reports.

Future work along these directions could include methods
for constructing an MRF using a subset of edges that bal-
ances inference accuracy (more edges) and inference speed
(fewer edges). While our MRF covers only a part of the en-
tire road network, a more general version of this method may
cover a larger set of roads, possibly with overlapping MRFs.
Finally, it would be instructional to investigate specific traf-
fic anomalies, such as vehicle emergencies, to understand
how a system like ours could respond dynamically to sud-
den changes in information needs and surprise.
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