
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Adversarial Learning for Weakly-Supervised Social Network Alignment

Chaozhuo Li,1 Senzhang Wang,2 Yukun Wang,3 Philip Yu,4,5 Yanbo Liang,6 Yun Liu,1 Zhoujun Li1∗
1State Key Lab of Software Development Environment, Beihang University; 2 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics; 3Department of Electrical Computer Engineering, National University
of Singapore; 4Tsinghua University; 5Computer Science Department, University of Illinois at Chicago; 6Hortonworks,USA
{lichaozhuo,gz liuyun,lizj}@buaa.edu.cn, szwang@nuaa.edu.cn, wykun06@gmail.com, psyu@uic.edu, yliang@apache.org

Abstract

Nowadays, it is common for one natural person to join mul-
tiple social networks to enjoy different kinds of services.
Linking identical users across multiple social networks, also
known as social network alignment, is an important prob-
lem of great research challenges. Existing methods usually
link social identities on the pairwise sample level, which may
lead to undesirable performance when the number of avail-
able annotations is limited. Motivated by the isomorphism
information, in this paper we consider all the identities in a
social network as a whole and perform social network align-
ment from the distribution level. The insight is that we aim
to learn a projection function to not only minimize the dis-
tance between the distributions of user identities in two so-
cial networks, but also incorporate the available annotations
as the learning guidance. We propose three models SNNAu,
SNNAb and SNNAo to learn the projection function under the
weakly-supervised adversarial learning framework. Empiri-
cally, we evaluate the proposed models over multiple datasets,
and the results demonstrate the superiority of our proposals.

Introduction
Recently social networks are becoming increasingly pop-
ular, and users can register in multiple platforms simulta-
neously to enjoy different types of services. In each social
platform, a user can create an identity to represent his/her
unique personal figure. Aligning identities of the same natu-
ral person across multiple social platforms, which is refereed
to Social Network Alignment, has attracted increasing atten-
tion considering its tremendous practical value. The success-
ful network alignment benefits many applications, such as
friend recommendation (Shu et al. 2017), information dif-
fusing prediction (Zafarani and Liu 2014; Wang et al. 2014;
Zhan et al. 2015) and network dynamics analysis (Wang et
al. 2015; Zafarani and Liu 2016).

Most existing methods are supervised, which need a large
number of manually labeled samples to train a classifier to
separate matched identity pairs from the non-matched ones
(Motoyama and Varghese 2009; Vosecky, Hong, and Shen
2009; Iofciu et al. 2011; Perito et al. 2011; Peled et al. 2013;
Zhang et al. 2014; Mu et al. 2016; Man et al. 2016; Nie et al.
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Figure 1: Original feature spaces of Twitter and Facebook.

2016). Considering the high cost of obtaining the labeled in-
stances, several semi-supervised approaches are proposed to
incorporate the unlabeled instances to provide complemen-
tary information (Tan et al. 2014; Korula and Lattanzi 2014;
Zafarani, Tang, and Liu 2015; Zhang et al. 2015; Liu et al.
2016; Zhong et al. 2018). Semi-supervised methods can uti-
lize the unlabeled data to help capture the shape of the under-
lying data distribution, which are more promising to perform
social network alignment in practice.

Existing semi-supervised methods usually perform net-
work alignment on the pairwise sample level. They first em-
bed identities from different social networks into a common
latent space, in which the similar identities from the same
network should be closely distributed while the annotated
identity pairs across social networks also should be grouped
together. Then the distance between identities is viewed as
the indicator of network alignment. A major limitation of
such methods is that they still need plenty of annotations
to ensure the performance. As shown in Figure 1, Celine
Dion and Adele are popular singers and Stephen Curry is a
NBA player. Celine Dion and Adele are closer in both plat-
forms (Twitter and Facebook) considering their shared inter-
ests. Assume Celine Dion is selected as the annotated iden-
tity pair. Traditional sample level semi-supervised methods
will generate the latent space as shown in Figure 2a. The
identities of Celine Dion distributed closely while the latent
space preserves the original identity similarities inside the
single network. However, for Stephen Curry in Twitter, his
nearest Facebook neighbor is Adele rather than his identity
in Facebook, leading to a mistake match.
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(a) Sample-level latent space.
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(b) Distribution-level space.

Figure 2: The illustration of traditional sample-level space
and the distribution-level space.

Different of previous semi-supervised works, we view all
the identities in a social network as a whole and perform
identity alignment in the distribution level. As shown in Fig-
ure 1, the distributions of identities in the two original fea-
ture spaces present similar shape due to the shared interests,
which is refereed to the isomorphism across social networks
(McKay and others 1981; Li et al. 2018). As shown in Fig-
ure 2b, if we can convert the identity distribution in Twitter
space by a set of operations Φ (e.g., transposing) to minimize
the distance between it and the identity distribution in Face-
book, the identities of same natural person will be grouped
close to each other. Inspired by the isomorphism, we trans-
form the social network alignment problem to the learning
of the operation Φ to minimize the distance between two
distributions. Following the previous work (Mu et al. 2016),
we refer the operation Φ to the projection function. By in-
troducing the isomorphism from the global perspective, the
requirement of sample level supervisions is further reduced.

The motivation requires a metric of distribution distance,
for which we introduce the wasserstein distance (WD).
Compared with other metrics such as KL divergence, WD
is symmetric and able to measure the distance between two
distributions even if they have no overlap (Arjovsky, Chin-
tala, and Bottou 2017). We view each identity distribution as
a set of weighted points, and the WD measures the minimum
cost of transporting one set of points into the other. How-
ever, the WD minimization is performed on the distribution
level in the unsupervised manner, while the labeled identity
pairs preserve the guidance information in the sample level.
Considering the totally different purposes and scenarios, it is
challenging to utilize the available annotations as indicators
to guide the distribution minimization problem.

In this paper, we introduce an adversarial learning frame-
work named SNNA to solve the weakly-supervised iden-
tity alignment problem. The discriminator is designed to
estimate the WD between the projected source distribution
and the target distribution, while the projection function is
viewed as the generator to minimize the approximated WD.
Through the competition between the generator and the dis-
criminator, the approximated WD can be minimized while

the projection function can be learned to find a neighbor-
hood of a good optimum. We also design another objective
function to incorporate available annotations, which guides
the projected point of a source identity close to its corre-
sponding target identity. The two objective functions will be
jointly trained under a unified framework. Specifically, we
propose three variants of SNNA model including a unidi-
rectional model SNNAu, a bidirectional model SNNAb and
a model SNNAo to introduce more stricter orthogonal re-
striction. The experimental results demonstrate our propos-
als significantly outperform the baseline methods.

We summarize our main contributions as follows.
• We study the novel problem of weakly-supervised social

network alignment from a new perspective. The distribu-
tion closeness is introduced to provide the complementary
information.

• We design three adversarial learning based models to min-
imize the distribution distance and incorporate the avail-
able annotations simultaneously.

• Extensively, we evaluate the proposals on five groups of
datasets. Experimental results show the superior perfor-
mance of the proposed models.

Preliminaries and Problem Definition
Wasserstein Distance
WD measures the closeness between two distributions by es-
timating the minimum amount of works to change one distri-
bution into the other. WD can be formally defined as follows
(Arjovsky, Chintala, and Bottou 2017; Zhang et al. 2017b):

W(PI ,PJ) = inf
γ∈Γ(PI ,PJ )

E(x,y)∼γ [d(x, y)]. (1)

In this task PI and PJ are two discrete probability distri-
butions in the form of P =

∑
i piδxi

, in which xi is a
sample in the distribution P, pi is its corresponding prob-
ability and δxi is the Dirac delta function (Chakraborty
2008). Γ(PI ,PJ) represents the joint probability distribu-
tion γ(x, y) with marginals PI and PJ . Function d measures
the ground distance (e.g., Euclidean distance) between two
samples. WD aims to find the desirable joint distribution Γ
to reach the expectation infimum.

Problem Definition
We denote a social network as N = {V,W,P}, where
V = {v1, v2, · · · , vn} is the user set containing n users.
Each user vi is represented by a d-dimensional feature vector
wi, which forms the feature matrix W ∈ Rd×n. P ∈ R1×n

contains the topology influence of the social users, such as
the count of the in-degrees or out-degrees. We formally de-
fine the studied problem as follows:
Definition 1 Weakly-supervised Social Network Align-
ment. Given two partially aligned social networks O =
{VO,WO, PO}, E = {VE ,WE , PE} and a few available
matched identity pairs M = {(vo, ve)|vo ∈ VO, ve ∈ VE},
we aim to find all the other matched identity pairs Y =
{(vo, ve)|vo ∈ VO, ve ∈ VE , (vo, ve) /∈ M}, in which vo
and ve belong to the same natural person.
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We assume the dimension of feature vectors in both net-
works is d, which can be easily satisfied by the popular net-
work embedding models (Li et al. 2017a; Li et al. 2017b;
Yang et al. 2017). Here we aim to learn a desirable projec-
tion function to match identities. Thus the studied problem
can be further clarified as follows:
Definition 2 Projection Function Learning for Social
Alignment. Given the source distribution PO, the target dis-
tribution PE and the annotation set M = {(vo, ve)|vo ∈
VO, ve ∈ VE}, we aim to learn a projection function Φ
which satisfies: 1) Φ should minimize the wasserstein dis-
tance between the projected source distribution PΦ(O) and
the target distribution PE ; and 2) for a matched identity pair
(vo, ve) in M , Φ should minimize the distance between the
projected source point Φ(vo) and the target point ve.
After the training process, given a source identity vo, his/her
matched candidates can be selected according to the ground
distance d(Φ(vo), ve) with the identity ve in target social
network. A smaller ground distance means the two identi-
ties has a larger chance to be the same natural person.

Adversarial Learning Framework
Following previous works (Mu et al. 2016; Man et al. 2016;
Li et al. 2018), we choose the linear transformation as the
projection function Φ. Given a source node vo with its fea-
ture vector wo, its projected point is defined as: Φ(wo) =
G×wo, where G ∈ Rd×d is the transformation matrix. The
studied problem can be understood as the learning of the
matrix G. We also tried non-linear projection functions us-
ing neural networks but they do not work well. This may be
because the non-linear projection seriously alters the input
distribution and further destroys the isomorphism. Zhang et
al. (Zhang et al. 2017a; Zhang et al. 2017b) introduce GAN
model to perform bilingual lexicon induction task. Inspired
by this work, we design the following SNNA models, which
can not only minimize the WD but also incorporate the an-
notations.
Unidirectional Projection Model SNNAu Firstly we in-
troduce the unidirectional projection model SNNAu, which
only projects the source distribution to the target social space
in one-way. Figure 3 shows the framework of SNNAu. The
generator G can be considered as the projection function Φ
while the discriminator D is designed to estimate the WD
between the projected source distribution PG(O) and the tar-
get distribution PE . The objective of SNNAu can be for-
mally defined as follows:
min
G

W(PE ,PG(O))= inf
γ∈Γ(PE ,PG(O))

E(we,Gwo)∼γ [d(we, Gwo)]

where wo is the feature vector of the source identity vo sam-
pled from the source distribution PO according to its topol-
ogy influence po. we is sampled from the target distribution
in a similar way. It is intractable to traverse all the possi-
ble joint distributions to compute the expectation infimum
infγ∈Γ(PE ,PG(O)) (Zhang et al. 2017b). Vallani et al. (Villani
2008) proposed a simple version of the WD minimization
objective based on the Kantorovich-Rubinstein duality when
the ground distance d is defined as the Euclidean distance:

W=
1

K
sup

∥f∥L≤K

Ewe∼PEf(we)− EGwo∼PG(O)f(Gwo)

PO PG(O)

PE

G D

A

Figure 3: An illustration of the unidirectional projection
model SNNAu.

Function f is required to be K-Lipschitz continuous, which
means |f(x1) − f(x2)| 6 K|x1 − x2| for all x1, x2 ∈ R
and K > 0 is the Lipschitz constant. This objective aims to
locate the supremum over all the possible K-Lipschitz func-
tions. Feed forward neural networks own powerful approxi-
mation capabilities (Hornik 1991). Hence we select a multi-
layer feed forward network to find a desirable function f ,
which is defined as the discriminator D in Figure 3. The ob-
jective function of the discriminator is to learn a desirable
function f to estimate the WD between PE and PG(O):

max
θ:∥fθ∥L≤K

LD = Ewe∼PE [fθ(we)]−EGwo∼PG(O) [fθ(Gwo)]

(2)
in which θ is the parameter set in the multi-layer neural net-
work used in the discriminator. We introduce the clipping
trick (Arjovsky, Chintala, and Bottou 2017) to satisfy the K-
Lipschitz restriction, which clamps the weights θ to a small
window [−c, c] after every gradient updating.

The generator G is designed to minimize the estimated
WD. In Formula (2), G only exists in the second term and
thus we aim to learn a desirable generator by minimizing the
following objective:

min
G∈Rd×d

LG = −EGwo∼PG(O) [fθ(Gwo)] (3)

With the decreasing of the generator loss, the WD estimated
by the discriminator will be gradually reduced, leading to
the identities belonging to the same person grouped together
in the target space.

Meanwhile, we also incorporate a few annotations to
guide the learning process of the projection function, which
is shown as the component A in Figure 3. Assuming in a
training batch, we have a set of source identities and their
matched target identities denoted as Mt ⊂ M . For the
matched identity pair (vo, ve) in the labeled set Mt, we aim
to minimize the distance between the projected source node
G(vo) and the target node ve:

min
G∈Rd×d

LC =
λc

|Mt|
∑

(vo,ve)∈Mt

d(Gwo, we) (4)

where w is the feature vector of the corresponding identity.
This objective incorporates the available annotations to fa-
cilitate the learning of the projection function. λc is a hyper-
parameter to control the weight of loss LC .

Here we briefly introduce the training steps of SNNAu

in Algorithm 1. Line 2 to 12 represents a training iteration.
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Algorithm 1 Training process of SNNAu

Require: the learning rate α, the clipping weight c, the minimal
training batch size m, the number of discriminator training in
each loop nd and the annotation guided weight λc.

Require: the initial generator parameters G0, the initial discrimi-
nator parameters θ0.

1: while G has not converged do
2: for i = 0→ nd do
3: Sample a batch from source distribution: {w(i)

o }mi=1

4: Sample a batch from target distribution: {w(i)
e }mi=1

5: gθ ← ∇θ[
1
m

∑m
i=1 fθ(w

(i)
e )− 1

m

∑m
i=1 fθ(Gw

(i)
o )]

6: θ ← θ + α· RMSProp(θ, gθ)
7: θ ← clip(θ,−c, c)
8: end for
9: Sample a batch from source distribution: {w(i)

o }mi=1 ∼ PO

10: gG ← ∇G(
1
m

∑m
i=1(−fθ(Gw

(i)
o ))

11: g′G ← ∇Gλc · 1
|Mt|

∑
(vo,ve)∈Mt

d(Gwo, we)

12: G← G− α· RMSProp(G, gG + g′G)
13: end while

Firstly, we train the discriminator nd times from line 2 to
8, which is designed to avoid the collapsed GAN risk (Ar-
jovsky, Chintala, and Bottou 2017). Then the generator is
updated by minimizing the weighted combination of objec-
tives (3) and (4) as shown from line 9 to 13, which means
the learned generator not only minimizes the estimated WD
but also fits the available annotations.
Bidirectional Projection Model SNNAb The unidirectional
model SNNAu has no constraint on the projection matrix G.
Mu et al. (Mu et al. 2016) has proven the orthogonal projec-
tion contributes to better aligning user identities. An orthog-
onal projection is theoretically appealing for its numerical
stability (Smith et al. 2017; Li et al. 2018). With the orthog-
onal projection, the projected distribution is the reflection of
the original distribution in a plane by rotating and scaling,
which will preserve the interior characteristics of the origi-
nal distribution. Hence we add the orthogonal constraint on
the learning of projection matrix.

Introducing the traditional orthogonal constraint into ad-
versarial learning is cumbersome as their optimizations are
intractable (Smith et al. 2017; Zhang et al. 2017a). We fur-
ther design a bidirectional projection model SNNAb to la-
tently introduce the orthogonal constraint. As shown in Fig-
ure 4, SNNAb performs the projection in both directions. If
the projection function G minimizes the WD between dis-
tributions PG(O) and PE , its transpose version Gᵀ should
be able to minimize the WD between distributions PG(E)

and PO. Considering the input networks are partially aligned
while distributions PE and PO are different, the learned
projection matrix can only be self-consistent, which can be
close to the orthogonal matrix but not exactly orthogonal.

SNNAb model can be easily implemented by two SNNAu

models with a shared projection matrix G. The first SNNAu

model utilizes the projection function G as the generator and
the discriminator De to estimate the WD between the distri-
butions PG(O) and PE . The second SNNAu model utilizes
the generator Gᵀ as the projection and the discriminator Do

PO PG(O)

DeDo G

G⊺

PEPG⊺(E)

Ao Ae

Figure 4: An illustration of the bidirectional projection
model SNNAb.

to estimate the WD between the distributions PGᵀ(E) and
PO. The optimization of the two SNNAu models are pro-
cessed iteratively. After the training finished, we still use the
learned projection function G to select target candidates for
the source identities in network O.
Orthogonal Projection Model SNNAo Different from the
self-consistent assumption used in SNNAb, we further in-
troduce a stricter orthogonal constraint. If G is an orthog-
onal matrix, the source distribution should be easily recov-
ered from its projected version with the transpose matrix:
GTGwo = wo, which ensures the social identities and the
natural people can be transformed in bi-direction. As the re-
constructed distribution has potential to be same to the orig-
inal one, the learned projection matrix is more closer to the
orthogonal matrix than the SNNAb mode. Hence, we design
a reconstruction component to integrate the stricter orthogo-
nal constraint into the adversarial training model.

As shown in Figure 5, we aim to reconstruct the origi-
nal source distribution RO from the projected distribution
RG(O) with the transpose matrix Gᵀ. The reconstructed
source distribution is defined as RO′

, and we introduce the
following objective function to minimize the difference be-
tween the original distribution and the reconstructed one:

min
G∈Rd×d

LR = λrEwo∼PO [d(wo, G
ᵀGwo)] (5)

where λr is a hyper-parameter to control the weight of re-
construction errors. With the minimization of the loss LR,
the learned matrix G will be more orthogonal. The training
process of SNNAo can be easily expanded from SNNAu by
adding the new defined reconstruction loss into line 12 of
the Algorithm 1. The projection matrix will be learned to be
orthogonal, fitting the available annotations and minimizing
the WD between the projected source distribution and the
target distribution. The loss function of generator in SNNAo

is the weighted sum of the distance minimization loss LG,
annotation guided loss LC and the reconstruction loss LR.

Experiments
Datasets We use two pairs of social network datasets and
three pairs of academic co-author datasets for evaluation.
The datasets are crawled and formatted by our corporation
coauthor. Table 1 shows the detailed statistics.
• Twitter-Flickr: Twitter and Flickr are two popular social

networks, and it is difficult to obtain the matched identi-
ties across these two platforms. Fortunately, social users
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D

A

Figure 5: An illustration of the orthogonal projection model
SNNAo.

can link and present their identities of different social plat-
forms in the about.me website. Based on the matched
pairs collected from about.me, we can crawl the social
data of the same natural person from Twitter and Flickr.
After removing users with scarce attributes, we finally ob-
tain 3259 Twitter identities and 4308 Flickr identities, in
which 2773 pairs are matched as the ground truth.

• Weibo-Douban: Sina Weibo is one of the most influen-
tial social platforms in China, and Douban is a social
networking service website allowing registered users to
record information and create content related to films,
books and musics. Douban users can present their Weibo
accounts in the homepage, and hence we can collect the
matched identities as the ground truth based on this in-
formation. Besides we also randomly select a set of un-
matched social identities from both platforms to form the
partially aligned dataset. Finally we obtain 4119 Weibo
identities and 4554 Douban identities, in which 3235 pairs
are matched as the ground truth.

• DBLP: DBLP (http://dblp.uni-trier.de/ ) is a computer
science bibliography website, and its dataset is publicly
available1. We select the published papers along with the
authors in three years (2015, 2016 and 2017) to form three
co-author networks. For each year, we select Yoshua Ben-
gio as the center node, and then construct a coauthor sub-
network by locating the coauthors who can be reached
within three steps from the center node. The published pa-
pers of one author in this year are considered as his/her at-
tributes. We aim to match two nodes in the different coau-
thor networks, and the author identities from the DBLP
dataset are considered as the ground truth.

Data Preprocessing For the Twitter users, their feature
space is constructed based on the published tweets and the
friend following relations. For the tweet text, we first pro-
cess the crawled tweets using NTLK2 stemmer and remov-
ing stop or rare words. After that, the tweets published by a
single user are collected as a whole and then represented by a
tf -idf feature vector. We further utilize an attribute preserv-
ing network embedding model TADW (Yang et al. 2015) to
encapsulate the network topology information and the text
attributes into the low-dimensional latent space. The feature

1http://dblp.uni-trier.de/xml/
2https://www.nltk.org/

Table 1: Statistics of the datasets. The numbers in the brack-
ets are the counts of nodes. #M is the number of matched
identity pairs across networks.

Dataset Source Network Target Network #M

Twi.-Fli. Twitter (3,259) Flickr (4,308) 2,773
Wei.-Dou. Weibo (4,119) Douban (4,554) 3,235

DBLP15-16 DBLP15 (3,881) DBLP16 (5,989) 1,852
DBLP16-17 DBLP16 (5,989) DBLP17 (7,073) 2,570
DBLP15-17 DBLP15 (3,881) DBLP17 (7,073) 1,492

spaces of other datasets are also constructed using TADW,
but differ in the user attributes (the published picture tags
and joined groups for Flickr users, the microblog text and
the hashtags for Sina Weibo users, and the interest tags and
joined groups for Douban users). For the social networks,
the normalized count of the followers is viewed as the topol-
ogy weight pi of the user vi, which will be utilized to sample
the training samples from the identity distributions.

For the DBLP datset, we first construct three co-author
subnetworks according to the publications in 2015, 2016 and
2017. For each node (author) in the co-author subnetworks,
we collect the published papers of this author in the corre-
sponding years, and view the titles and abstracts of the pub-
lished papers as the node attributes. The text attributes are
formatted into the tf -idf vectors, and then are embedded
into the latent feature vectors with the co-author relation-
ships by TADW. For the co-author networks, we utilize the
degree count of a node as its sampling weight. Note that,
the feature spaces of different networks are learned indepen-
dently, which ensures the generality of our proposals.
Baseline Methods We compare our models with the follow-
ing state-of-the-art baseline methods, including both semi-
supervised and supervised models.

• MAH (Tan et al. 2014) is a semi-supervised model that
utilizes social structures to improve the linkage perfor-
mance by a subspace learning algorithm.

• COSNET (Zhang et al. 2015) is an energy-based model
considering both local and global consistency among mul-
tiple networks. An efficient subgradient algorithm is de-
veloped to train the model.

• IONE (Liu et al. 2016) is a unified optimization frame-
work to jointly train the the network embedding objective
for capturing the identity similarities, and the user align-
ment objective for linking identities across the networks.

• CoLink (Zhong et al. 2018) is a weakly-supervised model
which employs a co-training algorithm to manipulate two
independent components: the attribute-based model and
the relationship-based model.

• ULink (Mu et al. 2016) is a supervised model to link iden-
tities by latent user space modeling.

Parameter Setup For our proposals, the dimension d of the
latent feature space is set to 100. The discriminator D in all
SNNA models is a multi-layer perceptron network with only
one hidden layer, as a too powerful discriminator may lead
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Table 2: Comparison with the baseline methods (Hit-Precision score).

Twitter-Flickr Weibo-Douban DBLP15-16 DBLP16-17 DBLP15-17

k k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10 k=3 k=5 k=10

MAH 0.132 0.153 0.192 0.125 0.142 0.191 0.277 0.309 0.354 0.275 0.305 0.356 0.267 0.311 0.363
COSNET 0.144 0.187 0.236 0.132 0.161 0.194 0.292 0.330 0.373 0.288 0.332 0.386 0.289 0.338 0.375

IONE 0.161 0.196 0.242 0.150 0.189 0.232 0.302 0.347 0.397 0.308 0.345 0.396 0.310 0.352 0.377
CoLink 0.193 0.225 0.267 0.171 0.193 0.244 0.322 0.379 0.414 0.310 0.345 0.400 0.317 0.366 0.395
ULink 0.141 0.162 0.199 0.113 0.142 0.198 0.283 0.318 0.359 0.304 0.317 0.375 0.278 0.325 0.366

SNNAu 0.228 0.244 0.295 0.215 0.246 0.282 0.342 0.388 0.437 0.323 0.353 0.427 0.331 0.376 0.423
SNNAb 0.235 0.252 0.304 0.237 0.252 0.298 0.353 0.394 0.441 0.332 0.379 0.439 0.344 0.382 0.437
SNNAo 0.263 0.283 0.321 0.251 0.282 0.311 0.383 0.420 0.461 0.350 0.399 0.457 0.373 0.417 0.469

to the corruption of the GAN training and make the gen-
erator lose the adversarial ability (Arjovsky, Chintala, and
Bottou 2017). For the generator G, its projection matrix is
randomly initialized as an orthogonal matrix. The size of
minimal training batch is 256, and the learning rate α is set
to 0.0001. As mentioned in Algorithm 1, the discriminator
will be trained nd times in each training iteration and nd is
set to 5. The clipping weight c is 0.01, the annotation weight
λc is set to 0.2 and the reconstruction weight λr is set to
0.3. The baselines are implemented according to the origi-
nal papers. For the CoLink model, we utilize SVM classifier
as the attribute-based model. The ULink model is trained by
the constrained concave convex procedure optimization.
Evaluation Metric. Following the previous work (Mu et al.
2016), we select Hit-Precision as the evaluation metric:

h(x) =
k − (hit(x)− 1)

k
(6)

where hit(x) is the rank position of the matched target user
in the returned top-k candidate target identities. The top can-
didates are selected according to the ground distances be-
tween the projected source identity and the target identi-
ties. The Hit-Precision is calculated by the average on the
scores of the matched identity pairs:

∑i=m
i=0 h(xi)

m , in which m
is the number of source identities in the the matched pairs.
Experimental Results For each dataset, we randomly select
Ttr portion of matched identity pairs as the training data,
and Nte matched identity pairs are randomly selected as the
test set. Here we fix the training ration Ttr as 10%, and the
size of test set Nte is set to 500. We compare the proposed
models with the baselines, and report the Hit-Precision
scores with different settings of k. We repeat this process
three times and report the average scores.

Table 2 shows the experimental results. One can see that
all the methods perform better on the DBLP datasets than on
the social networks. This is probably because the co-author
networks are more denser and the user attributes are format-
ted and clean. COSNET outperforms MAH method as it in-
troduces both the global and local topology similarities. As
a supervised model, ULink achieves an undesirable perfor-
mance in the weakly-supervised learning setting as it needs a
large portion of annotations (e.g., 80% for the original work)
to achieve a desirable performance. CoLink achieves the
best performance among the baselines, because it carefully
designs an objective function to incorporate the attributes,

while the attributed-based model and the relationship based
model can facilitate each other.

One can also see that out proposals all outperform the
baseline methods on both datasets with different settings.
This is because the distribution closeness information is in-
troduced as the complementary. The unidirectional model
SNNAu beats the best baseline (CoLink) by around 3%. By
introducing the self-consistent constraint, the performance
of SNNAb is further improved, which proves a orthogonal
projection matrix contributes to better aligning identities.
SNNAo achieves the best performance among all the meth-
ods, which beats the best baseline (CoLink) by 7%. With the
stricter orthogonal constraint, SNNAo further improves the
performance by 3% compared with SNNAb.
Learning Behavior of the SNNAo The adversarial learning
is also famous for its instable training behavior. Hence we
present the training trajectory of SNNAo model on DBLP15-
16 dataset with k=5. After each 1,0000 training batches, we
will save a check point model, and finally we can obtain
100 check points models. For each checkpoint model, we
record the output value from its discriminator as the approx-
imated WD value, and its Hit-Precision score on the so-
cial network alignment task. Note that we rescale the ap-
proximated Wasserstein distance to the range of 0 to 10.
As shown in Figure 6, one can see that with the increas-
ing of training batches, the WD decreases while the Hit-
Precision score increases. The results demonstrate that: 1)
the proposed model can effectively reduce the WD in the
dynamic distribution scenario; and 2) a smaller WD leading
to a better network alignment performance. Therefore, we
can save the check point model with the lowest estimated
Wasserstein distance as the final model.

Parameter Sensitivity Study. Finally we analyze the pa-
rameter sensitivity of the proposed SNNAo model. We first
analyze the effect of the training ratio Ttr on the model
performance over the Twitter-Flickr dataset. We fix k=5
and show the performance of SNNAo with different set-
tings of Ttr. The best baseline CoLink is also used for
comparison. From Figure 7a, one can see that with the in-
crease of Ttr, the performance of both methods increases.
SNNAo consistently outperforms the CoLink, while the per-
formance gap between them tends to be smaller. This is be-
cause annotations can remedy the limitation of CoLink ig-
noring the distribution closeness information. Next we study
the effect of the reconstruction weight λr on the model
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Figure 6: Training trajectory of SNNAo.

performance. When we increase the value of λr, the Hit-
Precision score first increases and then decreases, which
demonstrates that incorporating appropriate orthogonal con-
straint contributes to improving the performance. A larger
λr will make the training process focus more on the recon-
struction task, which may interrupt the optimization to reach
the minimal wasserstein distance.

Related Work
Existing social network alignment methods can be roughly
categorized into supervised, semi-supervised and unsuper-
vised methods. Most existing related works are supervised,
which aim to train a binary classifier to separate the matched
user identity pairs from the unmatched ones (Vosecky, Hong,
and Shen 2009; Motoyama and Varghese 2009; Iofciu et al.
2011; Perito et al. 2011; Peled et al. 2013; Zhang et al. 2014;
Mu et al. 2016; Man et al. 2016; Nie et al. 2016). Man
et al. (Man et al. 2016) proposed a supervised social net-
work alignment model by linking identities in the latent low
dimensional space. The user identities from both networks
are mapped into a latent space, and a projection function is
learned to link identities belonging to the same natural per-
son. ULink (Mu et al. 2016) is also an embedding base su-
pervised approach. ULink first mapped the user identities in
multiple networks into a latent space, and then minimized
the distance between the user identities of the same person
and maximize the distance between user identities belong-
ing to different people. Considering it is non-trivial and time
consuming to achieve enough annotations to fully train a su-
pervised mode, some unsupervised methods are proposed,
which mainly rely on the strong discriminative features to
link user identities (Labitzke, Taranu, and Hartenstein 2011;
Liu et al. 2013; Lacoste-Julien et al. 2013; Riederer et al.
2016). UUIL (Li et al. 2018) is the basis of this work,
but UUIL focus on the unsupervised learning, while SNNA
aims to incorporate few annotations to improve the align-
ment performance. Recently several semi-supervised meth-
ods are proposed to incorporate the unlabeled data to capture
the inner data distribution (Zafarani, Tang, and Liu 2015;
Korula and Lattanzi 2014; Zhang et al. 2015; Tan et al. 2014;
Liu et al. 2016; Zhang, Saha, and Al Hasan ). Korula et al.
(Korula and Lattanzi 2014) introduced the label propaga-
tion, a popular semi-supervised model, to perform UIL task

(a) Sensitivity to Tr . (b) Sensitivity to λr .

Figure 7: Core parameter sensitivity analysis.

according to neighborhood-based network features. CosNet
(Zhang et al. 2015) was an energy-based model to link user
identities by considering both local and global consistency.
Existing semi-supervised methods usually link user identi-
ties from the pairwise sample level, which cannot achieve
desirable performance with very limited annotations. Hence
in this paper, we aim to perform social network alignment
from the distribution level. The studied problem is converted
to the learning of a distribution projection function, which
can be solved under an adversarial training framework.

Conclusion
In this paper, we studied the novel problem of weakly-
supervised social network alignment. The insight is that we
perform the social network alignment from the identity dis-
tribution level, which contributes to reduce the number of
needed annotations. The studied problem is converted into
the learning of a desirable projection function, which can not
only minimize the wasserstein distance between the identity
distributions from two social networks, but also group the
available matched identities together in the projected space.
Furthermore, we proposed three models SNNAu, SNNAb

and SNNAo with different levels of orthogonal constraints.
We evaluated our proposals on multiple datasets ,and the ex-
perimental results proven the superiority of SNNA models.
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