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Abstract

Compilers are among the most fundamental programming
tools for building software. However, production compilers
remain buggy. Fuzz testing is often leveraged with newly-
generated, or mutated inputs in order to find new bugs or
security vulnerabilities. In this paper, we propose a grammar-
based fuzzing tool called DEEPFUZZ. Based on a generative
Sequence-to-Sequence model, DEEPFUZZ automatically and
continuously generates well-formed C programs. We use this
set of new C programs to fuzz off-the-shelf C compilers, e.g.,
GCC and Clang/LLVM. We present a detailed case study to
analyze the success rate and coverage improvement of the
generated C programs for fuzz testing. We analyze the perfor-
mance of DEEPFUZZ with three types of sampling methods
as well as three types of generation strategies. Consequently,
DEEPFUZZ improved the testing efficacy in regards to the line,
function, and branch coverage. In our preliminary study, we
found and reported 8 bugs of GCC, all of which are actively
being addressed by developers.

Introduction
Compilers are among the most important software of com-
puting systems and they are typically part of the trust com-
puting base, but they remain buggy. For example, GCC, a
long-lasting software released in 1987, is a standard compiler
for many Unix-like operating systems. Over 3,410 internal
bugs (Yang et al. 2011) have been caught since it is cre-
ated. Similarly, for Java, Python, and JavaScript, thousands
of bugs have been found in those widely-used compilers and
interpreters. These compiler bugs can result in unintended
program executions and lead to catastrophic consequences in
security-sensitive applications. It may also hamper developer
productivity in debugging a program when the root cause
cannot be decided in the applications or compilers. There-
fore, it is critical to improve the compiler correctness. But it
is not easy to validate compilers with the growing code base:
the code base of today’s GCC is around 15 million lines of
code (Sun et al. 2016), close to the entire Linux kernel, which
is around 19 million lines of code.

It is critical to make compilers dependable. In the past
decade, compiler verification has been an important and ac-
tive area for the verification grant challenge in computing
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research (Hoare 2003). Mainstream research focuses on for-
mal verification (Leroy and Grall 2009), translation valida-
tion (Necula 2000), and random testing (Lidbury et al. 2015;
Le, Afshari, and Su 2014; Le, Sun, and Su 2015). The first
two categories try to provide certified compilers. For example,
CompCert (Leroy et al. 2016) has made promising progress
in this area. But in practice, it is challenging to apply formal
techniques to fully verify a production compiler such as GCC,
especially when the proof is not constructed together with the
compiler. Therefore, testing remains the dominant approach
in compiler validation.

Our work focuses on compiler testing. By feeding in pro-
grams covering different features to different production com-
pilers turning on different levels of optimizations, internal
compiler errors (genuine bugs of the compiler) may be trig-
gered during the compilation with a detailed error message
indicating where and what the error is. However, it is chal-
lenging to generate “good” programs to make testing more
efficient and to build a continuous testing framework by au-
tomating this process. Each test, including man-crafted ones,
in the existing methods, covers some features and it is com-
mon today to see larger and larger test suites for modern
compilers. This improves the testing coverage but it takes
a lot of human effort to construct these tests. Nevertheless,
a practical way to reduce human labor for testing is fuzz
testing, or fuzzing.

Fuzzing (Bird and Munoz 1983) is a method to find bugs
or security vulnerabilities. A program is repeatedly executing
with automatically generated or modified inputs to detect
abnormal behaviors such as program crashes. Main tech-
niques for input fuzzing in use today are black box ran-
dom fuzzing (Zalewski 2015), white box constraint-based
fuzzing (Godefroid, Kiezun, and Levin 2008), and grammar-
based fuzzing (Dewey, Roesch, and Hardekopf 2014). Black
box and white box fuzzing are fully automatic, and have his-
torically been proven to be effective in finding security vulner-
abilities in binary-format file parsers. In contrast, grammar-
based fuzzing requires an input grammar specifying the input
format of the application under test, which is typically writ-
ten by hand. This process is laborious, time-consuming, and
error-prone. However, grammar-based fuzzing is the most
effective fuzzing technique known today for fuzzing applica-
tions with complexly structured input formats, e.g., compilers.
In the scenario of compiler testing, one way to deploy the
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grammar-based fuzzing is to encode the C grammar as rules
for test case generation. But in practice, C11 (of the Inter-
national Organization for Standardization (ISO) 2011), the
current standard of the C programming language, has 696
pages of detailed specifications, which brings the hurdle for
engineers to construct such a grammar-based engine.

In this paper, we consider the problem of automatically
generating syntactically valid inputs for grammar-based
fuzzing with a generative recurrent neural network. To be
more specific, we aim to train a generative neural network
to learn the “grammar”, or to be more precise, the language
patterns, of the input data. We propose to train a Sequence-
to-Sequence model (Sutskever, Vinyals, and Le 2014) in
a supervised learning strategy, leveraging the original test
suites provided with production compilers. Originally, the
Sequence-to-Sequence model is widely used for machine
translation (Klein et al. 2017) and text generation (Sutskever,
Martens, and Hinton 2011). Theoretically speaking, by train-
ing a model on the original paragraphs, we implicitly encode
the correct spelling of words, valid syntaxes of sentences,
detailed styles of writing behaviors into a generative model.
The same idea can be applied to program synthesis, where we
only need to train a model to generate different syntactically
valid programs on top of a seed data set. For the training data
set, we adopted the original GCC test suite where there are
over 10,000 short, or small, programs that cover most of the
features specified in the C11 standard. On the training stage,
we tune parameters to encode the language patterns for C
programs into the model, based on which, we continuously
generate new programs for compiler fuzzing.

Contributions. Our work is the first to use a generative re-
current neural network for grammar-based compiler fuzzing.
• First, the proposed framework is fully automatic. By train-

ing a Sequence-to-Sequence model which can be viewed
as an implicit representation of the language patterns for
the training data, C syntax in our context, our framework
DEEPFUZZ will continuously provide new syntactic cor-
rect C programs.

• Second, we build a practical tool for fuzzing off-the-shelf
C compilers. We conduct a detailed analysis of how key
factors will affect the accuracy of the generative model
and fuzzing performance.

• Third, we apply our DEEPFUZZ technique to test GCC and
Clang/LLVM. During our preliminary analysis, the testing
coverage (line, function, and branch) is increased and we
have found and reported 8 real-world bugs.

Overview
Sequence-to-Sequence Model
We build DEEPFUZZ on top of a Sequence-to-Sequence
model, which implements two recurrent neural networks
(RNNs) for character-level sequences prediction. An RNN
is a neural network that consists of hidden states h and an
optional output y. It operates on a variable-length sequence,
x = (x1, x2, ..., xT ). At each step t, the hidden state h⟨t⟩ of
the RNN is updated by

h⟨t⟩ = f(h⟨t−1⟩, xt) (1)

where f is a non-linear activation function. An RNN can learn
a probability distribution over a sequence of characters to pre-
dict the next symbol. Therefore, at each timestep t, the output
from the RNN is a conditional distribution p(xt|xt−1, ..., x1).
For instance, in our case, upon a multinomial distribution of
the next character, we use a softmax activation function for
the output

p(xt,j = 1|xt−1, ..., x1) =
exp(wjh⟨t⟩)∑K
j=1 exp(wjh⟨t⟩)

, (2)

for all possible symbols j = 1, ...,K, where wj are the rows
of a weight matrix W . By combining these probabilities, we
compute the probability of the sequence x using

p(x) =

T∏
t=1

p(xt|xt−1, ..., x1). (3)

With the learned distribution, it is straightforward to generate
a new sequence by iteratively sampling new characters at
each time step.

A Sequence-to-Sequence model consists of two RNNs,
an encoder and a decoder. The encoder learns to encode a
variable-length sequence into a fixed-length vector represen-
tation and the decoder will decode this fixed-length vector
representation into a variable-length sequence. It was origi-
nally proposed by Cho et al. (2014) for statistical machine
translation. The encoder RNN reads each character of an
input sequence x while the hidden states of the RNN changes.
After reading the end of this sequence, the hidden state of
the RNN is a summary c of the whole input sequence. Mean-
while, the decoder RNN is trained to generate the output
sequence by predicting the next character yt given the hidden
state h⟨t⟩. However, unlike a pure RNN, both yt and h⟨t⟩
are also conditioned on yt−1 and the summary c of the input
sequence. In this case, to compute the hidden states of the
decoder, we have

h⟨t⟩ = f(h⟨t−1⟩, yt−1, c), (4)

and similarly, the condition distribution of the next character
is

p(yt|yt−1, ...y1, c) = g(h⟨t⟩, yt−1, c), (5)
where f and g are activation functions. Overall, the two
RNNs Encoder-Decoder are jointly trained to generate a
target sequence given an input sequence.

All RNNs have feedback loops in the recurrent layer. This
design allows them to maintain information in “memory”
over time. However, it can be difficult to train standard RNNs
to learn long-term temporal dependencies, but which are
common in programs. This is because the gradient of the loss
function decays exponentially with time (Chung et al. 2014).
Therefore, in our design, we adopt a variant of RNN, long
short-term memory (LSTM), specifically in our encoder and
decoder. LSTM units include a “memory cell” that can keep
information in memory for long periods of time, in which
case long history information can be stored.

In previous studies, the Sequence-to-Sequence model has
been trained to generate syntactically correct PDF objects
to fuzz a PDF parser (Godefroid, Peleg, and Singh 2017).
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The core idea behind this work is that the source language
syntax can be learned as a by-product of training on string
pairs. Shi, Padhi, and Knight (2016) investigated with an
experiment that the Sequence-to-Sequence model can learn
both local and global syntactic information about source
sentences. This work lays a foundation for formal language
synthesis with RNN. In our paper, we apply a similar idea
for compiler fuzzing. During the training, we split the se-
quence into multiple training sequences of a fixed size d.
By cutting the sequences, we have the ith training sequence
xi = s[i∗d : (i+1)∗d], where s[k : l] is the subsequence of
s between indices k and l. The output sequence for each train-
ing sequence is the next character, i.e., yt = s[(i+1)∗d+1].
We configure this training process to learn a generative model
over the set of training sequences.

Workflow
In general, we propose DEEPFUZZ for two main objectives.
The first is to generate new programs that follow legitimate
grammars from a set of syntactically correct programs. The
major challenge comes from long sequence handling and
language grammar representing. The second objective is to
improve the compiler testing efficacy. We target at improving
the coverage and capturing more internal errors in production
compilers.1

Figure 1 shows the workflow of DEEPFUZZ. There are
two stages in the entire workflow, Program Generation and
Compiler Testing. We target on production compilers such
as GCC, the GNU Compiler Collection (2018) and LLVM/-
Clang (Clang: a C language family frontend for LLVM 2018).
On the first stage, we train a generative Sequence-to-Sequence
model with collected data from the original man-crafted com-
piler test suites. Before we feed the sequences into the train-
ing model, we preprocess them to avoid noise data. We detail
the preprocess step later in Preprocessing. The model we are
going to fit is a general Sequence-to-Sequence model that has
2 layers with 512 hidden units for each layer. We compare
our model configuration with the state-of-the-art sequence
generation studies in Experiment Setup. For program gener-
ation, we try different generation strategies. We detail the
generation strategies and their rationale in Generation Strat-
egy. Because our target is to fuzz production compilers, we
aim at generating programs that cover the most features of
the C language. Therefore, we also adopted some sampling
methods as detailed in Sampling Variants, to diversify the
generated programs.

On the second stage, we feed the generated C programs,
either syntactically correct or incorrect, to the compilers in
different optimization levels and log the compiling messages.
In addition to the compiling message, we log the execution
trace to provide the coverage information. In summary, for

1An internal compiler error, also abbreviated as ICE, is an error
during the compilation not due to the erroneous source code, but
rather results from bugs of the compiler itself (Cleve and Zeller
2005). Usually, it indicates inconsistencies being found by the com-
piler. Commonly, the compiler will output an error message like
the following: gcc: internal compiler error: Illegal instruction (pro-
gram). Please submit a full bug report, with preprocessed source if
appropriate.

this program generation task, we have three objectives: to
generate syntax valid programs, to improve code coverages,
and to detect new bugs. We perform studies on three related
metrics, pass rate, coverage, and bugs, for the three objectives
in Evaluation.

Design
We propose DEEPFUZZ to continuously generate syntacti-
cally correct C programs to fuzz production compilers. As
described in Overview, the complete workflow contains two
stages, Program Generation and Compiler Testing. In this
section, we present more details.

Preprocessing
Before we set up the training stage, we split the sequence
into multiple training sequences of a fixed size. The output
sequence for each training sequence is the next character
right next to an input sequence. We configure this training
process to learn a generative model over the set of all training
sequences. However, we notice that there is some noise in the
concatenated sequence which needs to be well-handled. In
preprocessing, we mainly take care of three issues: comment,
whitespace, and macro.

Comment. We first remove all the comments, including
line comments and block comments using patterns in regular
expression from the training data.

Whitespace. According to the POSIX standard, whitespace
characters include common space, horizontal tab, vertical tab,
carriage return, newline, and feed. To unify program style, we
replaced all the white space characters with a single space.

Macro. Macro is a common feature of the C programming
language. A macro is a fragment of code which has been
given a new name. In our implementation, whenever the
name is used, it is always replaced by the contents of the
macro.

Sampling Variants
We use the learnt Sequence-to-Sequence model to generate
new C programs. With a prefix sequence “int ”, for exam-
ple, it is highly possible for the learnt distribution to predict
“main” to follow up. However, our target is to diversify orig-
inal programs to have more generated statements like “int
foo = 1;” or “int foo = bar(1);”. Therefore, we propose to
adopt some sampling methods to sample the learnt distribu-
tion. We describe the three sampling methods that we employ
for generating new C programs here: NoSample, Sample and
SampleSpace.

NoSample. In this sampling method, we directly rely on the
learnt distribution to greedily predict the best next character
given a prefix.

Sample. To overcome the limitation of the NoSample
method, given a prefix sequence we propose to sample next
character instead of picking the top predicted one.

SampleSpace This sampling method is a combination of
Sample and NoSample. In this method, we only sample the
next character among all the predicted ones over the threshold
when the prefix sequence ends with a whitespace.
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Figure 1: Workflow of DEEPFUZZ

Generation Strategy
To continuously fuzz production compilers, we use the learnt
model to generate new sequences of the C programming
language. We treat programs in the original test suites as
seeds. Based on a sequence from the original program as the
prefix, we will generate new code. To make the most of the
generated sequences, we propose three generation strategies:
G1) we insert the newly generated code based on the same
prefix sequence at one place into the original well-formed
programs; G2) we generate new pieces of code, but they
will be generated with prefix sequences randomly picked
from different locations in the original program and, then
insert back respectively; G3 we chop out the same number
of lines2 after the prefix sequence from the original program
and insert the newly generated new lines into the position of
the sentences that have been chopped out. Moreover, more
generation strategies can be conveniently set up within our
framework but we perform a preliminary study with these
three kinds.

Evaluation
Experiment Setup
To evaluate DEEPFUZZ, we pipelined a prototyping workflow
which trained a Sequence-to-Sequence model based on a set
of syntactically correct C programs. Originally, the training
data set, which contains 10,000 well-formed C programs, was
collected and sampled from the GCC test suites. We trained
a Sequence-to-Sequence model with 2 layers and there are
512 LSTM units per layer. We set the dropout rate of 0.2. We
have released the source code3 for public dissemination.

In a previous study on text generation (Sutskever, Martens,
and Hinton 2011), researchers trained a one-layer RNN with
over 100 MB of training data, and there are 1,500 hidden
units in this one-layer model. For the closest related work,
Learn&Fuzz (Godefroid, Peleg, and Singh 2017), which
adopted a generative Sequence-to-Sequence model to gen-
erate new PDF objects for PDF parser fuzzing, researchers
trained a model with two layers and in each of these layers,
there are 128 hidden units. They trained this model over a
data set containing 534 well-formed PDF files. In our study,
we trained a model with two layers where there are 512
LSTM units in each layer of the DEEPFUZZ framework. The

2We use lines of code instead of C syntactic objects such as state-
ments since we treat C programs purely as sequences of characters.

3 https://github.com/s3team/DeepFuzz

training data set, which contains 10,000 syntactically correct
C programs sampled from production compiler test suites, is
larger than any previous studies.

We trained the Sequence-to-Sequence model in a super-
vised setting. In order to analyze the training performance,
we trained multiple models parameterized by the number of
passes, or epochs. An epoch is defined as an iteration of the
learning algorithm to go over the complete set of training data.
We trained the model for 50 epochs on a server machine with
2.90GHz Intel Xeon(R) E5-2690 CPU and 128GB memory.
We kept a snapshot of the model over five different number
of epochs: 10, 20, 30, 40, and 50. It took about 30 minutes to
train an epoch and 25 hours for the entire training period. For
new program generation, as described in Design, we used
different sampling methods and various generation strategies
to generate new C programs. The newly-generated programs
are still based on the original training data; in another word,
we used the original C programs as the seeds from which we
randomly picked prefix sequences. By inserting new lines or
replacing lines with new lines into a seed, we can get new
programs. Because the newly-generated part will introduce
new identifiers, new branches, new functions, etc., it will
make the control-flow of the newly generated program more
complicated and thus enhance the testing efficacy.

In our study, we use three metrics to measure the effective-
ness of DEEPFUZZ:

• Pass rate is the metric to measure the ratio of syntax valid
program among all of the newly generated C programs.
The Sequence-to-Sequence model will presumably encode
language patterns of C into the neural network. There-
fore, the pass rate will be a good indicator of how well
this network is trained over the input sequences. We use
the command line of gcc to parse a newly generated pro-
gram and if no error is reported, it indicates the syntactical
correctness of this program.

• Coverage is a specific measurement for testing. Intuitively,
the more code is covered by the tests, the more certainty we
assure the completeness of testing. There are three kinds of
coverage information we collect during our analysis: line
coverage, function coverage, and branch coverage. We use
gcov, a command line tool supported by gcc to collect the
coverage information.

• Bug detection is the goal of testing. For compiler testing,
by feeding more programs to the compilers in different op-
timization levels, it is expected to trigger bugs like crashes
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Figure 2: Pass rate for different sampling methods

or other code errors. As a self-protection mechanism, com-
pilers like GCC and Clang/LLVM have defined a special
kind of error called “internal compiler error”. This error
indicates the problem of the compiler itself during the com-
pilation process and the error message will help us to find
bugs in the compilers.

Pass rate
Pass rate is the ratio of generated syntax valid programs
over the complete set of newly generated programs. It is an
indicator of how well the C language patterns are encoded in
the proposed Sequence-to-Sequence model. In our evaluation,
specifically, we will analyze how the pass rate varies with the
number of epochs of training, different sampling methods,
and different generation strategies.

Epoch. An epoch is defined as an iteration of the learning
algorithm to go over the complete set of the training data.
We trained the model for a total of 50 epochs and we took a
snapshot of the model at different epochs: 10, 20, 30, 40, 50
and applied the models for new C program generation. We
tried the process for all the three sampling methods under the
generation strategy G1.

Result: Figure 2 shows the result.

• The pass rate increases with more training from 10 to 30
epochs. The drop of pass rate after 30 epochs may be a
result of overfitting.

• The best pass rate for all sampling methods is achieved at
30 epochs training. The highest pass rate is 82.63%.

Sampling. We have adopted different sampling methods
after training the model. As we proposed, a sampling method
decides how a new character is chosen based on the predicted
distribution and it can affect the pass rate. Therefore, we
recorded the pass rate of the newly generated 10,000 pro-
grams based on the seed programs under different sampling
methods: NoSample, Sample and SampleSpace.

Result: Figure 2 shows the result. Note, this experiment
is conducted under the generation strategy G1.

• For all the sampling methods, the pass rate increases within
30 epochs of training and after that, there is a small drop.

• Comparing the pass rate for all the three sampling meth-
ods, NoSample achieves a better pass rate for every snap-

shot model than the other two methods Sample and Sam-
pleSpace. The highest pass rate is 82.63%.

Generation Strategy. To generate new programs, we have
introduced three generation strategies: G1) insert two new
lines at one location, G2) insert two new lines at different
locations, and G3) replace two new lines. The newly gener-
ated lines are based on the prefix sequences selected in the
seed programs. To analyze how the pass rate changes with
different generation strategies, we recorded the result of per-
forming program generation using a trained model after 30
epochs. In addition, we used NoSample in this experiment.

Generation Pass
Strategy rate (%)

NoSample
G1 82.63
G2 79.86
G3 73.23

Table 1: Pass rate of 10,000 generated programs

Result: Table 1 shows the result.

• The pass rate for the three generation strategies are 82.63%,
79.86%, and 73.23%, respectively. Comparing pass rate
under these three different generation strategies, we con-
clude that G1 performs the best in terms of the pass rate
under NoSample.

• The result for G1 and G2 are similar in term of the pass
rate which is higher than the pass rate for G3. The reason is
probably that chopping out lines will introduce unbalanced
statements, such as unclosed parenthesis, brackets, or curly
brackets.

Coverage
In addition to the pass rate, as described at the beginning of
this section, because we are conducting testing, coverage
information is another important metric. In this part, we
analyzed how coverage improvements (line, function, branch)
are achieved with different sampling methods and generation
strategies.

Sampling. To compare the coverage improvements, we
recorded the coverage information, including how many lines,
functions, and branches are covered with the original seed
test suite (10,000) plus the newly generated test suite (10,000)
for both GCC-5 and Clang-3. In addition, to analyze how
sampling methods can influence the coverage improvements,
we recorded the coverage improvement percentages under
different sampling methods.

Result: The coverage improvement information is shown
in Table 2 with the augmented test suite of 10,000 newly
generated C programs from DEEPFUZZ on GCC-5 and to
compare the metrics, we also present it in Figure 3.

• Among the three different sampling methods, Sample
achieves the best performance in terms of line, function
and branch coverage improvements. For example, under
the generation strategy G2, the line coverage improvement
for NoSample, Sample and SampleSpace is 5.41%, 7.76%
and 7.14%, respectively.
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Figure 3: Coverage improvements for different sampling methods

Line Function Branch
Coverage Coverage Coverage

G1
NoSample 0.33% 0.08% 0.26%
Sample 0.38% 0.19% 0.86%
SampleSpace 0.36% 0.17% 0.82%

G2
NoSample 5.41% 1.22% 3.12%
Sample 7.76% 2.13% 3.11%
SampleSpace 7.14% 2.44% 3.21%

G3
NoSample 3.32% 0.87% 2.20%
Sample 6.87% 1.33% 2.68%
SampleSpace 6.23% 1.72% 2.97%

Table 2: Coverage improvements with 10,000 generated pro-
grams

• The coverage improvement patterns for different genera-
tion strategies are similar across different sampling meth-
ods. G2 is always the best and G1 is always the worst
among the three. In another word, the performance of
sampling methods is slightly correlated with generation
strategies.

Generation Strategy. In addition to the sampling methods,
we are also interested in how these three different coverages
are improved under different generation strategies.

Result: Figure 3 shows how coverage improves using G1,
G2, and G3.

• Comparing the coverage improvements under the three
different generation strategies, G2, which is to insert two
new lines at different locations, in most cases, achieves the
best performance in terms of the line, function and branch
coverage improvements.

• Comparing with sampling methods, the adoption of gener-
ation strategies is a more influential factor for coverage im-
provement. For instance, under SampleSpace, the function
coverage improvement percentages for the three genera-
tion strategies are 0.17%, 2.44% and 1.72%. The coverage
improvement increases 42 times after changing from G1
to G2.

• G2 and G3 perform similarly in term of coverage improve-
ment which is much higher than G1.

Overall. To demonstrate how our tool performs on com-
piler fuzzing, we compared DEEPFUZZ with a well-designed
practical tool for compiler testing. Csmith (Yang et al. 2011)

is a tool that can generate random C programs. To make a
fair comparison, we recorded the coverage improvements of
Csmith and DEEPFUZZ by both augmenting the GCC and
LLVM test suites with 10,000 generated programs in Table 3.

Note that we use Sample as our sampling method and G2
as our generation strategy when conducting this analysis. We
also documented coverage improvements during the process
of program generation in Figure 4. It demonstrates how the
line, function, and branch coverages are improved with the
increasing number of new tests.

Line Function Branch
Coverage Coverage Coverage

GCC

original 75.13% 82.23% 46.26%
Csmith 75.58% 82.41% 47.11%
% change +0.45% +0.18% +0.85%
DEEPFUZZ 82.27% 84.76% 49.47%
% change +7.14% +2.44% +3.21%
absolute change +23,514 +619 +16,884

Clang

original 74.54% 72.90% 59.22%
Csmith 74.69% 72.95% 59.48%
% change +0.15% +0.05% +0.24%
DEEPFUZZ 79.89% 74.56% 66.79%
% change +5.35% +1.66% +7.57%
absolute change +23,661 +2,456 +26,960

Table 3: Augmenting the GCC and LLVM test suites with
10,000 generated programs

Result:
• Csmith improved the coverage less than 1% for all the

cases while DEEPFUZZ improves the coverage of line,
function, and branch by 7.14%, 2.44%, and 3.21%, respec-
tively. DEEPFUZZ achieves better coverage improvement
than Csmith.

• The performance of the coverage improvement pattern for
DEEPFUZZ is similar over GCC-5 and Clang-3.

New bugs
Using different generation strategies and sampling methods,
based on the seed programs from the GCC test suite, we can
generate new programs. Because we aim at compiler fuzzing,
the number of bugs detected is an important indicator of the
efficacy of DEEPFUZZ. During our preliminary study, we
caught 8 newly confirmed GCC bugs and we will elaborate
on two bugs that we detect with more details.
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Figure 4: Coverage improvement with the new tests generated

GCC Bug 84290: This is a bug we reported. DEEPFUZZ
generate the two new lines (line 5 and line 6), which trig-
gered an internal compiler error of the built-in function

atomic load n. The error is triggered because that the first
argument of this function should be a pointer, but it points
to an incomplete type. This error is fixed and a new test
(atomic-pr81231.c) is added to the latest test suite in GCC.
This detected bug shows the importance of using the syn-
tactically well-formed but semantically nonsense tests for
compiler testing.

1 double f ( ) {
2 double r ;
3 asm ("mov %S1,%S0; mov %R1,%R0" : "=r" ( r ) : "i" ( 2 0 ) ) ;
4 asm ("mov %S1,%S0; mov %R1,%R0" : "+r" ( r ) : "i" ( 2 0 . ) ) ;
5 a t o m i c l o a d n ( (enum E ∗) 0 , 0 ) ;
6 ;
7 return r ;
8 }

GCC Bug 85443: This is a bug we reported. DEEPFUZZ
generates the two new lines (line 5 and line 6), which intro-
duced a new crash. The generated Atomic is a keyword for
defining atomic types and the assignment on line 6 triggers
the segmentation fault. This is a newly confirmed bug on
GCC-5 and has been fixed in the latest version. This detected
bug by DEEPFUZZ again shows the importance of using the
syntactically well-formed but semantically nonsense tests for
compiler testing.

1 char acDummy[0xf0] attribute (( BELOW100 ));
2 unsigned short B100 attribute (( BELOW100 ));
3 unsigned short ∗p = &B100;
4 unsigned short wData = 0x1234;
5 Atomic int i = 3;
6 int a1 = sizeof (i + 1);
7 void Do (void) {
8 B100 = wData;
9 }

10 int main (void) {
11 ∗p = 0x9876;
12 Do ();
13 return (∗p == 0x1234) ? 0 : 1;
14 }

Limitations
Observing the generated programs, we noticed that many
ill-formed generations are caused by expected expressions.
To be more specific, this error message denotes the errors
like unbalanced parenthesis, brackets, or curly brackets. We
conclude two main reasons that account for this problem:
lack of training and loss of global information.

For the first reason, the training data is abundant but it
still lacks enough repeated patterns in the current training
dataset for training a good generative model. In our future
work, we can create a larger training dataset by enumerating
all the structures in the original test suites with new variable
or function names. On the other hand, because the generation
is based on the prefix sequences, it will lose some global
information which is out of the scope of the prefix sequence.
To handle this problem, we either increase the length of
the training sequence to ensure that enough information is
captured, or we can use some heuristics to help with model
training. The former method may cause less diversity in the
generated program and the latter one requires the assistance
of static program analysis.

Additionally, our proposed method is based on a character-
level Sequence-to-Sequence model. We provide a sequence of
characters for the current model which requires a lot of effort
in dealing with the token-level syntax. It hurts the training
scalability and pass rate as well. In C, there are less than 32
keywords and over 100 build-in functions. Both the pass rate
and scalability will be increased if we perform token-level
sequence prediction over a Sequence-to-Sequence model.

Related Work
AI-based applications for software security and software anal-
ysis are widely discussed over the years (Zamir, Stern, and
Kalech 2014; Elmishali, Stern, and Kalech 2016; Nath and
Domingos 2016). Neural network based models dominant
a variety of applications and there has been a tremendous
growth in interest in using them for program analysis (Al-
lamanis and Sutton 2013; Nguyen et al. 2013) and synthe-
sis (Lin et al. 2017; Devlin et al. 2017). Recurrent neural net-
works especially Sequence-to-Sequence-based models have
been developed for learning language models of source code
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from a large code corpus and then using these models for
several applications, such as learning natural coding conven-
tions, code suggestions, and auto-completion and repairing
syntax errors (Bhatia and Singh 2016; Hindle et al. 2012).
It has been proven efficient, especially when a large amount
of data is provided, in improving the system efficacy as well
as saving human labor. Additionally, RNN-based models are
applied for grammar-based fuzzing (Godefroid, Peleg, and
Singh 2017; Cummins et al. 2018) which learns a generative
model to produce PDF files to fuzz the PDF parser.

Conclusion and Future Work
Compiler testing is critical for assuring the correctness of
computing systems. In this paper, we proposed an automatic
grammar-based fuzzing tool, called DEEPFUZZ, which learns
a generative recurrent neural network that continuously gener-
ates syntactically correct C programs to fuzz the off-the-shelf
production compilers. DEEPFUZZ generated 82.63% syntax
valid C programs and improved the testing efficacy in regards
to the line, function and branch coverage. We also found new
bugs which are actively being addressed by developers.
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