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Abstract

In barter exchanges, participants directly trade their endowed
goods in a constrained economic setting without money. Trans-
actions in barter exchanges are often facilitated via a central
clearinghouse that must match participants even in the face
of uncertainty—over participants, existence and quality of
potential trades, and so on. Leveraging robust combinatorial
optimization techniques, we address uncertainty in kidney
exchange, a real-world barter market where patients swap
(in)compatible paired donors. We provide two scalable ro-
bust methods to handle two distinct types of uncertainty in
kidney exchange—over the quality and the existence of a po-
tential match. The latter case directly addresses a weakness
in all stochastic-optimization-based methods to the kidney
exchange clearing problem, which all necessarily require ex-
plicit estimates of the probability of a transaction existing—a
still-unsolved problem in this nascent market. We also propose
a novel, scalable kidney exchange formulation that eliminates
the need for an exponential-time constraint generation process
in competing formulations, maintains provable optimality, and
serves as a subsolver for our robust approach. For each type
of uncertainty we demonstrate the benefits of robustness on
real data from a large, fielded kidney exchange in the United
States. We conclude by drawing parallels between robustness
and notions of fairness in the kidney exchange setting.

1 Introduction
Real-world optimization problems face various types of un-
certainty that impact both the quality and feasibility of can-
didate solutions. Uncertainty in combinatorial optimization
is especially troublesome: if the existence of certain con-
straints or variables is uncertain, identifying a good—or even
feasible—solution can be extremely difficult. Stochastic op-
timization approaches endeavor to maximize the expected
objective value, under uncertainty. While sometimes suc-
cessful, stochastic optimization relies heavily on a correct
characterization of uncertainty; furthermore, stochastic ap-
proaches are often intractable—especially in combinatorial
domains (Bertsimas, Brown, and Caramanis 2011). A com-
plementary approach is robust optimization, which protects
against worst-case outcomes. Robust approaches can be less
sensitive to the exact characterization of uncertainty, and are
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often far more tractable than stochastic approaches (Ben-Tal,
El Ghaoui, and Nemirovski 2009).

This paper addresses uncertainty in kidney exchange, a
real-world barter market where patients with end-stage renal
disease enter and trade their willing paired kidney donors (Ra-
paport 1986; Roth, Sönmez, and Ünver 2004). Kidney ex-
change is a relatively new paradigm for organ allocation, but
already accounts for over 10% of living kidney donations
in the United States, and is growing in popularity world-
wide (Biró et al. 2017). Modern exchanges also include non-
directed donors (NDDs), who enter the market without a
paired patient and donate their kidney without receiving one
in return. Computationally, kidney exchange is a packing
problem: solutions (matchings) consist of cyclic organ swaps
and NDD-initiated donation chains in a directed compatibility
graph, representing all participants and potential transactions.
Each potential transplant is given a numerical weight by
policymakers; the objective is to select cycles and chains
that maximize overall matching weight. In general, this
problem is NP-hard (Abraham, Blum, and Sandholm 2007;
Biró, Manlove, and Rizzi 2009); however, many efficient
deterministic formulations exist that are fielded now and
clear real exchanges (Abraham, Blum, and Sandholm 2007;
Manlove and O’Malley 2015; Anderson et al. 2015; Dicker-
son et al. 2016; Dickerson, Procaccia, and Sandholm 2018).
Uncertainty in kidney exchange. Presently-fielded kidney
exchange algorithms largely do not address uncertainty. Here,
we consider two types of uncertainty in kidney exchange:
over the quality of the transplant (weight uncertainty) and
over the existence of potential transplants (existence uncer-
tainty). Policymakers assign weights to potential transplants,
which are (imperfect) estimates of transplant quality; weight
uncertainty stems from both measurement uncertainty (e.g.,
medical compatibility and kidney quality) and uncertainty
in the prioritization of some patients over others. Transplant
existence is always uncertain: matched transplants “fail” be-
fore executing for a variety of reasons, severely impacting
a planned kidney exchange. To address both cases, we pro-
pose uncertainty sets containing different realizations of the
uncertain parameters. We then develop a scalable robust opti-
mization approach, and demonstrate its success on data from
a large fielded kidney exchange.

Robust optimization is a popular approach to optimization
under uncertainty, with applications in reinforcement learn-
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ing (Petrik and Subramanian 2014), regression (Xu, Cara-
manis, and Mannor 2009), classification (Chen et al. 2017),
and network optimization (Mevissen, Ragnoli, and Yu 2013).
Motivated by real-world constraints, we apply robust opti-
mization to kidney exchange—a graph-based market clearing
or resource allocation problem.
Our Contributions. To our knowledge, weight uncertainty
has not been addressed in the kidney exchange literature.
Our approach is similar to that of Bertsimas and Sim (2004)
and Poss (2014), and uses some of their results. Several
approaches have been proposed for existence uncertainty,
primarily based on stochastic optimization (Dickerson et
al. 2016; Anderson et al. 2015; Dickerson, Procaccia, and
Sandholm 2018) or hierarchical optimization (Manlove
and O’Malley 2015). The primary disadvantage of these
approaches—in addition to tractability—is their reliance on,
and sensitivity to, the explicit estimation of the probability
of each particular potential transplant. This probability is
extremely difficult to determine (Dickerson, Procaccia, and
Sandholm 2018; Glorie 2012), and prevents the translation
of those methods into practice. Our approach uses a simpler
notion of edge existence uncertainty—an upper-bound on the
number of non-existent edges—which is easier to interpret
and estimate. Glorie (2014) proposed a related robust formu-
lation that is exponentially larger than ours, and is intractable
for realistically-sized exchanges.

In addition, we introduce a new scalable formulation for
kidney exchange that combines concepts from two state-
of-the-art formulations (Anderson et al. 2015; Dickerson et
al. 2016), handles long or uncapped NDD-initiated chains
without requiring expensive constraint generation, and ties
into a developed literature on fairness in kidney exchange—
thus addressing use cases that are becoming more common
in fielded exchanges (Anderson et al. 2015).

2 Preliminaries
Model for kidney exchange. A kidney exchange can be rep-
resented formally by a directed compatibility graph G =
(V,E). Here, vertices v ∈ V represent participants in the
exchange, and are partitioned as V = P ∪N into P , the set
of all patient-donor pairs, and N , the set of all NDDs (Roth,
Sönmez, and Ünver 2004; Roth, Sönmez, and Ünver 2005;
Abraham, Blum, and Sandholm 2007). Each potential trans-
plant from a donor at vertex u to a patient at vertex v is
represented by a directed edge e = (u, v) ∈ E, which has
an associated weight we ∈ w; weights are set by policy-
makers, and reflect both the medical utility of the transplant,
as well as ethical considerations (e.g., prioritizing patients
by waiting time, age, and so on). Cycles in G correspond
to cyclic trades between multiple patient-donor pairs in P ;
chains, correspond to donations that begin with an NDD in
N and continue through multiple patient-donor pairs in P .
The kidney exchange clearing problem is to select a feasible
set of transplants (edges in E) that maximize overall weight.
Let M be the set of all feasible matchings (i.e., solutions)
to a kidney exchange problem; the general formulation of
this problem is maxx∈M x ·w, where binary decision vari-
ables x represent edges, or cycles and chains. This problem

is NP- and APX-hard (Abraham, Blum, and Sandholm 2007;
Biró, Manlove, and Rizzi 2009).
Robust optimization. Robust optimization is a common ap-
proach to optimization under uncertainty, which is often more
tractable and requires less accurate uncertainty information
than other approaches (Bertsimas, Brown, and Caramanis
2011). This approach begins by defining an uncertainty set
U for the uncertain optimization parameter; U contains dif-
ferent realizations of this parameter. Consider the example
of edge weight uncertainty: we might design an edge weight
uncertainty set Uw that contains the realized (i.e. “true”) edge
weights ŵ with high probability, P (ŵ ∈ Uw) ≥ 1 − ϵ, for
0 < ϵ ≪ 1. The parameter ϵ is referred to as the protection
level, and is often used to control the number of realizations
in U .

After designing U , the robust approach finds the best so-
lution, assuming the worst-case realization within U . For
kidney exchange (a maximization problem), this corresponds
to a minimization over U ; for example, Problem (1) is the
robust formulation with uncertain edge weights.

max
x∈M

min
ŵ∈U

x · ŵ (1)

The robustness of this approach depends on the proportion
of possible realizations contained in U . If U contains all
possible realizations, the approach may be too conservative;
if U only contains one possible realization of ŵ, the solution
may be too myopic. The number of realizations in U is often
controlled by a parameter: either an uncertainty budget Γ,
or the protection level ϵ. Next we introduce the first type of
uncertainty considered in this paper: edge weight uncertainty.

3 Optimization in the Presence of Edge
Weight Uncertainty

Edge weights in kidney exchange represent the medical and
social utility gained by a single kidney transplant. Weights
are determined by policymakers, and are subject to sev-
eral types of uncertainty.1 Part of this uncertainty is due
to insufficient knowledge of the future: a patient or donor’s
health may change, raising or lowering the “true” weight
of their transplant edges. Another type of uncertainty stems
from disagreement between policymakers regarding the so-
cial utility of a transplant. For example, some policymakers
might prioritize young patients over older patients; other
policymakers might prioritize the sickest patients above all
healthier patients. Policymakers aggregate these value judg-
ments to assign a single weight to each transplant edge,
but this aggregation is a contentious and imperfect process
(although recent work from the AI community has begun
to address this using techniques from computational so-
cial choice and machine learning (Freedman et al. 2018;
Noothigattu et al. 2018)). Still, there is no way to measure
the “true” social utility of a transplant, and therefore this
uncertainty is not easily measured.
Interval weight uncertainty. It is beyond the scope of this
work to characterize these sources of uncertainty. We sim-
ply assume that the nominal edge weights w, provided by

1The process used to set weights by the UNOS US-wide kidney
exchange is published publicly (UNOS 2015).
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policymakers, are an uncertain estimate of the realized edge
weights ŵ, i.e., the “true” value of each transplant. Next, we
formalize edge weight uncertainty and our robust approach.
This section focuses on edge weights, so we write our for-
mulations with decision variables xe ∈ x corresponding to
individual edges.

We assume that realized edge weights ŵ are random vari-
ables with a partially known symmetric distribution, centered
about the nominal weights w. This assumption implies that
E[ŵ] = w, thus a non-robust approach that maximizes w is
equivalent to a stochastic optimization approach that maxi-
mizes expected edge weight. We refer to this edge uncertainty
model as interval uncertainty.
Definition 1 (Interval Edge Weight Uncertainty). Let ŵe

be the realized weight of edge e, with nominal weight we,
and maximum discount 0 ≤ de ≤ we. Let ŵe ≡ we +
deαe, where αe is the fractional deviation of edge e. Both
αe and ŵe are continuous random variables, symmetrically
distributed on [−1, 1] and [we − de, we + de] respectively.

Each discount factor de should reflect the level of uncer-
tainty in we. If we is known exactly, then de = 0; if we is
very uncertain, then we might set de = we, or higher.

To vary the degree of uncertainty, we use an uncertainty
budget Γ, which limits the total deviation from nominal edge
weights. With our uncertainty model, it is natural to let Γ
limit the total fractional deviation of each edge weight—i.e.,
sum of all αe. This uncertainty set UI

Γ is defined as:

UI
Γ =

{
ŵ | ŵe = we + deαe, |αe| ≤ 1,

∑
e∈E

|αe| ≤ Γ

}

For example if Γ = 3, there may be three edges with
|αe| = 1, or one edge with |αe| = 1 and four edges with
|αe| = 1/2, and so on.

Choosing an appropriate Γ is not straightforward. Match-
ings often use only a small fraction of the decision variables
(e.g., transplant edges), and it is difficult to predict the size
of the optimal matching. Intuitively, Γ should reflect the size
of the final matching: for example if we assume that half of
any matching’s edges will be discounted, then we should set
Γ ≃ |x|/2. Generalizing this concept, we define a variable-
budget uncertainty set UI

γ , with budget function γ(|x|).

UI
γ =

{
ŵ | ŵe = we + deαe, |αe| ≤ 1,

∑
e∈E

|αe| ≤ γ(|x|)

}
Next, to define γ, we relate it to a much more intuitive

parameter: the protection level ϵ.

3.1 Uncertainty Budget γ and Protection Level ϵ
The protection level ϵ mediates between a completely conser-
vative approach, and the non-robust approach: as ϵ → 0 the
approach becomes more conservative, and ϵ = 1 corresponds
to a non-robust approach. In this section we relate γ to ϵ,
beginning with the following Theorem 1.
Theorem 1 (Adapted from Theorem 3 of (Bertsimas and Sim
2004)). For a matching x ∈ M with |x| edges, and uncer-
tainty set UI

Γ, the probability that UI
Γ contains the realized

edge weights for x is bounded below by
P (ŵ ∈ UI

Γ) ≥ 1−B(|x|,Γ),

with

B(|x|,Γ) = 1

2|x|

⎛⎝(1− µ)

(
|x|
⌊η⌋

)
+

|x|∑
l=⌊η⌋+1

(
|x|
l

)⎞⎠ ,

with η = (Γ + |x|)/2 and µ = η − ⌊η⌋.

That is, for some ϵ, if Γ is chosen such that ϵ = B(|x|,Γ),
then the inequality P (ŵ ∈ UI

Γ) ≥ 1− ϵ holds by Theorem
1. Next, we use this result to define a variable uncertainty
budget function γ, using the intuitive definition introduced
by Poss (2014): for matching x ∈ M and protection level
ϵ, we find the minimum Γ such that B(|x|,Γ) ≤ ϵ. If this is
not possible (i.e., the matching is too small, or ϵ is too small),
then γ = |x|. This budget function is defined as:

β(|x|) =

⎧⎨⎩|x| if min
Γ>0

{Γ | B(|x|,Γ) ≤ ϵ} is infeasible,

min
Γ>0

{Γ | B(|x|,Γ) ≤ ϵ} otherwise.

It may not be clear how to solve the edge weight robust
problem with this variable uncertainty budget. We use the
approach of Poss (2014), which solves the variable-budget
robust problem by solving several instances of the constant-
budget robust problem; details of this approach can be found
in Appendix A.42. Thus, to solve the variable-budget robust
problem we first solve the constant-budget robust problem.

3.2 Constant-Budget Edge Weight Robust
Approach

We now describe our approach to the constant-budget edge
weight robust problem; a full discussion and derivation can
be found in Appendix A. We need to solve Problem (1) with
edge weight uncertainty set UI

Γ. This requires a minimization
of the objective, over ŵ ∈ UI

Γ, followed by a maximization
over matchings in M.

First we directly minimize the objective of Problem (1)
over UI

Γ. That is, for any matching x ∈ M, we find the
minimum objective value for any realized edge weights in
UI
Γ, denoted by Z(x):

Z(x) = min
ŵ∈UI

Γ

x · ŵ (2)

Thus, solving the robust problem corresponds to maximizing
Z(x) over all feasible matchings. Our approach to doing
so is as follows. First, we linearize Z(x) using several new
variables and constraints; we then add these to an existing
kidney exchange formulation (Dickerson et al. 2016). The
complete linear formulations of Z(x) and Problem (1) are
given in Appendix A.2, but are omitted here for space. Our
robust formulation is scalable—it has a polynomial count of
variables and constraints, regardless of finite chain cap; on
realistic exchanges it takes only a few seconds to solve. We
demonstrate our method’s impact on match composition in
Section 5, and show how it effectively controls for the impact
of robustness using protection level ϵ.

2All appendices are included in the full version of this paper,
available on arXiv: https://arxiv.org/abs/1811.03532
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Figure 1: Sample exchange graph with a 5-chain and two
2-cycles. The NDD is denoted by n, and each patient (and
her associated donor) is denoted by pi (di). A maximum-
cardinality matching algorithm would select the 5-chain, de-
noted with dashed edges; however, the smaller matching
consisting of two disjoint 2-cycles, shown with solid edges,
may be more robust to edge failure.

4 Optimization in the Presence of Edge
Existence Uncertainty

In this section we consider edge existence uncertainty, where
an algorithmic match must be chosen before the full real-
ization of edges is revealed. Algorithmically-matched trans-
plants in a kidney exchange can fail before transplantation
for a variety of reasons: a patient may become too ill to
undergo transplantation, or pre-transplantation testing may
reveal that a patient is incompatible with her planned donor
kidney. Furthermore, some edges are more likely to fail than
others (e.g., edges into particularly sick patients). Edge fail-
ure significantly impacts fielded exchanges–with failure rates
often above 50% (Dickerson, Procaccia, and Sandholm 2018;
Anderson et al. 2015; Ashlagi, Jaillet, and Manshadi 2013).

For illustration, consider the simple exchange in Figure 1
with two potential matchings: single 5-chain initiated by the
NDD, or two 2-cycles (with pairs {1, 4} and {2, 5}). The
5-chain matches the most patient, but is less robust to edge
failures. Consider the worst-case outcome for each matching,
when 1 edge is guaranteed to fail: with the 5-chain, in the
worst-case the first edge fails, causing the entire chain to
fail; with the 2-cycles, a single edge failure only causes a
single cycle to fail, leaving the other cycle complete. With
this notion of edge existence uncertainty (which we define
later), the 2-cycles are more robust than the 5-chain.

Managing edge failure in kidney exchange has been ad-
dressed in the AI and optimization literature in application-
specific (Manlove and O’Malley 2015; Chen et al. 2012)
or stochastic-optimization-based (Dickerson, Procaccia, and
Sandholm 2018; Dickerson et al. 2016; Anderson et al. 2015;
Klimentova, Pedroso, and Viana 2016) ways. These failure-
aware approaches associate with each edge a pre-determined
failure probability pe; these probabilities are used to then
maximize expected matching score, possibly subject to some
recourse actions. This stochastic approach is tractable when
pe is identical for each edge. Our work addresses two major
drawbacks of the failure-aware approach. First, when each

edge has a unique pe, those models require enumerating every
cycle and chain, which is intractable for large graphs or long
chains. Second, the failure-aware approach is very sensitive
to pe (as discussed in, e.g., §4.4 of Dickerson, Procaccia, and
Sandholm (2018)). In practice, precise values of pe are not
known, thus the failure-aware approach can easily produce
unreliable results. We use a simpler notion of edge existence
uncertainty, which assumes that in any matching, the number
of edges is bounded by a constant (Γ). This parameter is
intuitive and simple to estimate from past exchanges.

To our knowledge, ours is the first scalable robust opti-
mization approach to edge existence uncertainty in kidney
exchange. Glorie (2014) develops several elegant robust meth-
ods for edge existence uncertainty, but requires that all cy-
cles and chains are found during pre-processing and stored
in memory. The number of chains grows exponentially in
both the number of edges and the maximum chain length;
thus, these approaches are intractable for exchanges involving
more than a few dozen patient-donor pairs and NDDs.
Edge existence uncertainty. Here we briefly describe our
robust approach to edge existence uncertainty; a full discus-
sion and derivation can be found in Appendix B. For ease
of exposition, in this section, decision variables xc ∈ x cor-
respond to cycles and chains rather than edges. We use the
following model of edge existence uncertainty.

Definition 2 (Γ-Failures Edge Existence Uncertainty). Up
to Γ edges may fail in any matching. After failures occur,
the realized exchange graph is Ĝ = (V, Ê), such that edges
Ê ⊆ E succeed and remain in existence, while all other
edges fail and do not exist.

With this notion of uncertainty, without regard to com-
putational or memory constraints, a stochastic-optimization-
based approach could identify the best matching over all
possible realizations Ĝ (Anderson et al. 2015). This is clearly
intractable, as the number of realized graphs is exponential
in |E|. Instead, we take a robust optimization approach by
maximizing the worst-case (minimum) matching score over
a set of realizable graphs Ĝ in an uncertainty set U . Like the
stochastic approach, the robust approach considers a huge
number of realizations Ĝ; however the robust approach is far
more tractable, as it need only find the worst-case realization
and need not represent all realizable graphs explicitly.
Uncertainty set. Let F ⊆ E be the subset of failed edges
for a realized graph Ĝ; thus, Ê = E \F is the set of realized
edges. Equation (3) defines uncertainty set Uex

Γ in this way:
up to Γ edges may fail (i.e., |F | ≤ Γ).

Uex
Γ =

{
Ĝ = (V, Ê) | Ê = E \ F, |F | ≤ Γ

}
(3)

In kidney exchange, one edge failure can cause other edge
failures: if one cycle edge fails, all edges in the cycle also
fail; edge failure in a chain causes all subsequent chain edges
to also fail. This leads to a notion of weight uncertainty
for cycles and chains, where the realized weight of a cycle
or chain ŵc may be smaller than nominal weight wc. Let
αc be a discount parameter for cycle or chain c, such that
ŵc = wc(1 − αc). For example, if any edge fails in cycle
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c, then the entire cycle fails and αc = 0. We define the
cycle/chain weight uncertainty set Uw

Γ in this way:

Uw
Γ =

{
ŵc | ŵc = wc(1− αc), αc ∈ [0, 1],

∑
c∈X

αi ≤ Γ

}
This uncertainty set is less intuitive than Uex

Γ , but more suited
to the robust approach. In Appendix B we show that Uw

Γ and
Uex
Γ are equivalent for integer Γ, and thus can be used for our

robust approach.

4.1 Robust Optimization Approach
In this section we briefly describe our robust approach; for a
full discussion and derivation, please see Appendix B. Our
robust formulation for uncertainty set Uw

Γ follows a similar
approach to Section 3. First, we directly minimize the kid-
ney exchange objective over Uw

Γ , for some feasible solution
x ∈ M. We express this minimization as a function Z(x):
in effect, Z(x) discounts the Γ largest-weight cycles and
chains. We then linearize Z(x) using several variables and
constraints—this requires a formulation with variables track-
ing individual total chain weights—which is not possible in
any existing compact kidney exchange formulations. For this
purpose, we introduce a new kidney exchange formulation.
The PI-TSP formulation. We propose the position-indexed
TSP formulation (PI-TSP); for details, please see Appendix
B. Our formulation combines innovations from the two lead-
ing kidney exchange clearing approaches: PICEF (Dicker-
son et al. 2016) and PC-TSP (Anderson et al. 2015). PICEF
introduced an indexing schema that enables a more com-
pact formulation in the context of long chains; our formu-
lation builds on this to allow tracking of individual chain
weights, a necessity that PICEF could not do. PC-TSP builds
on techniques from the prize-collecting travelling salesperson
problem (Balas 1989) to provide a tight linear programming
relaxation; in general, the PC-TSP formulation has exponen-
tially many constraints and thus requires constraint genera-
tion to solve. Our formulation uses an efficient version of
position indexing that also requires only O(|E|)+O(|V |·|N |)
constraints. Unlike PICEF, our formulation does not grow
with the chain cap L: PICEF uses O(|V |3) variables (when
L → |V |); for large graphs, the PICEF model becomes too
large to fit into memory (Dickerson et al. 2016). Our for-
mulation uses a fixed number of variables—O(|V |2)—for
any chain cap, alleviating this memory problem. This is es-
pecially relevant to existing exchanges, as long chains can
significantly increase efficiency in kidney exchange (Ashlagi
et al. 2012). PI-TSP uses the following parameters:

• a kidney exchange graph G with cycles C
• L: chain cap (maximum number of edges used in a chain),
• we: edge weights for each edge e ∈ E,
• wC

c : cycle weights for each cycle c ∈ C,

and the following decision variables:

• p{e,v} ≥ 1: the position of edge e or vertex v in any chain,

• p̂e ≥ 0: equal to pe if e is used in a chain, and 0 otherwise,

• zc ∈ {0, 1}: 1 if cycle c is used in the matching,

• ye ∈ {0, 1}: 1 if edge e is used in a chain, and 0 otherwise,

• yne ∈ {0, 1}: 1 if edge e is used in a chain starting with
NDD n, and 0 otherwise,

• wN
n : total weight of the chain starting with NDD n,

• f i
v and fo

v : chain flow into and out of vertex v ∈ P ,

• f i,n
v and f i,n

v : chain flow into and out of vertex v ∈ P ,
from the chain starting with NDD n ∈ N .
The PI-TSP formulation with chain cap L is given in Prob-

lem 4. We use the notation δ−(v) for the set of edges into
vertex v and δ+(v) for the set of edges out of v.

max
∑

n∈N

w
N
n +

∑
c∈C

w
C
c zc (4a)

s.t.
∑
e∈E

wey
n
e = w

N
n n ∈ N (4b)

∑
n∈N

y
n
e = ye e ∈ E (4c)

∑
e∈δ−(v)

ye = f
i
v v ∈ V (4d)

∑
e∈δ+(v)

ye = f
o
v v ∈ V (4e)

∑
e∈δ−(v)

y
n
e = f

i,n
v v ∈ V, n ∈ N (4f)

∑
e∈δ+(v)

y
n
e = f

o,n
v v ∈ V, n ∈ N (4g)

f
o
v +

∑
c∈C:v∈c

zc ≤ f
i
v +

∑
c∈C:v∈c

zc ≤ 1 v ∈ P (4h)

f
o
v ≤ 1 v ∈ N (4i)
pe = 1 e ∈ δ

+
(N) (4j)

p̂e = peye e ∈ E (4k)
pv =

∑
e∈δ−(v)

p̂e v ∈ P (4l)

pe = pv + 1 v ∈ P, e ∈ δ
+
(v)

(4m)∑
e∈E

y
n
e ≤ L n ∈ N (4n)

f
o,n
v ≤ f

i,v ≤ 1 v ∈ V, n ∈ N (4o)
ye ∈ {0, 1} e ∈ E (4p)
zc ∈ {0, 1} c ∈ C (4q)
y
n
e ∈ {0, 1} e ∈ E, n ∈ N (4r)

The ability to express individual chain weights as decision
variables has applications beyond robustness. For particu-
larly valuable NDDs (such as those with so-called “universal
donor” blood-type O), exchanges may enforce a minimum
chain length or chain weight, to ensure that these rare NDDs
are not “used up” on short chains; such a policy was for-
merly used by the United Network for Organ Sharing (Dick-
erson, Procaccia, and Sandholm 2012), using a much less
scalable form of optimization—that also does not consider
uncertainty—than our approach (Abraham, Blum, and Sand-
holm 2007). Such a policy can be implemented efficiently
with PI-TSP, inefficiently with PC-TSP, and not with PICEF,
where decision variables do not indicate from which NDD a
chain originated. In Appendix B we show–using real kidney
exchange data–that PI-TSP can enforce a minimum chain
length, and that this restriction has almost no impact on over-
all matching score.
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5 Experimental Results
In this section, we compare each robust formulation against
the leading non-robust formulation, PICEF (Dickerson et
al. 2016), with varying levels of uncertainty. These experi-
ments use real exchange graphs collected from the United
Network for Organ Sharing (UNOS)—a large US-wide kid-
ney exchange with over 160 participating transplant centers—
between 2010 and 2016, as well simulated exchanges gen-
erated from known patient statistics using the standard
method (Dickerson, Procaccia, and Sandholm 2018).3

For each exchange, we calculate the optimal non-robust
matching MOPT (with total score |MOPT|), and the robust
matching MR, for varying uncertainty budgets. We then
draw many realizations of the exchange graph, based on
the uncertainty model, and calculate the realized scores
of the robust matching |MR| and non-robust matching
|MNR|. We are primarily interested in the fractional dif-
ference from |MOPT|, calculated as ∆OPT

(
M{R,NR}

)
=(

|MOPT| − |M{R,NR}|
)
/|MOPT|.

We calculate ∆OPT (MR) and ∆OPT (MNR) for N =
400 realizations, and compare the robust and non-robust ap-
proaches. In rare cases the optimal matching is empty (i.e.,
there is no solution, or the uncertainty budget exceeds the
matching size), we exclude these exchanges from the results.
Edge Weight Uncertainty We begin by exploring the im-
pact on match utility of robust approaches to managing edge
weight uncertainty. Here, each edge is randomly labeled as
probabilistic (P) or deterministic (D). P edges receive weight
0 or 1 with probability 0.5, while D edges always receive
weight 0.5; thus, expected edge weight is 0.5. The non-robust
approach maximizes expected edge weight, making this a
kind of stochastic approach. The robust approach considers
the discount value (0 or 0.5) of each edge, and avoids edges
with a positive discount value. We vary the level of uncer-
tainty with the fraction of P edges (α). Realizations are drawn
by assigning the P edges to have weight either 0 or 1.

We compute MR for protection levels ϵ ∈
{10−4, 10−3, 10−2, 10−1, 0.5}, and then calculate both
∆OPT (MR) and ∆OPT (MNR). Figure 2 shows ∆OPT
on realistic 64-vertex simulated graphs (left) and larger
(typically 150–300-vertex) real UNOS graphs (right); these
figures show results for each protection level ϵ and for
various α. Note that MNR does not depend on ϵ, and thus the
non-robust results are shown as (constant) dashed lines.

The robust approach guarantees a better worst-case (min-
imum) ∆OPT , but results in a lower median ∆OPT . The
protection level ϵ controls the robustness of our approach;
smaller ϵ protects against more uncertain outcomes, but at
greater cost to nominal behavior. As ϵ → 1, the robust ap-
proach protects against fewer bad outcomes, and approaches
the behavior of non-robust.
Edge Existence Uncertainty We now address edge exis-
tence uncertainty, and compare the robust and non-robust

3All experiments were implemented in Python and used
Gurobi (Gurobi Optimization, Inc. 2018), a state-of-the-art in-
dustrial combinatorial optimization toolkit, as a sub-solver. Our
code is available on GitHub: https://github.com/duncanmcelfresh/
RobustKidneyExchange.

approaches with Γ edge failures, for Γ ∈ {1, 2, 3, 4, 5}. Each
Γ corresponds to a different notion of uncertainty, such that
exactly Γ edges fail.4 For each Γ, we calculate MR, and draw
N = 400 realizations by failing Γ edges in the matching.

We calculate ∆OPT for each realization, and compare
these results for the robust and non-robust matchings. With
edge existence uncertainty, the worst-case outcome is almost
always an empty matching (∆OPT () = −1). Thus, rather
than compare the worst-case ∆OPT , we compare the dis-
tribution of ∆OPT for each approach: we treat ∆OPT as
a random variable, and use three simple statistical tests to
demonstrate that—as expected—the robust approach pro-
duces more conservative and predictable results.

First, we use the Wilcoxon signed-rank test to determine
that the robust and non-robust approaches produce a differ-
ent distribution of ∆OPT . For each Γ, this test produces
p-values well below 10−3, indicating that the distributions of
∆OPT are different for the robust and non-robust approach.
Second, for all exchanges and all Γ, the mean ∆OPT is
typically 1% higher, and the standard deviation 1–2% lower
for the robust approach. That is, the robust approach more
consistently produces higher-weight solutions.

Third, we visualize the difference between these distribu-
tions using their histograms. Figure 3 shows the bin-wise
difference between the histograms of ∆OPT (robust minus
non-robust), with mean ∆OPT for non-robust shown as a
dotted line. In these plots, the height of the bars indicate the
change in probability density due to robustness. On all plots,
the bars are negative for high and low values of ∆OPT ,
meaning that the robust matching is less likely to have an
abnormally high or low ∆OPT . The bars are positive when
∆OPT is near its mean non-robust value—meaning that the
robust matching is more likely to have a ∆OPT near the
mean non-robust value. This is exactly the desired behav-
ior: robustness produces more predictable and less varied
results. In this application robustness exceeds expectations:
the robust approach achieves a lower variance, and slightly
improves nominal performance.

6 Robustness as Fairness
Balancing efficiency and fairness is a classic economic prob-
lem; recently, a body of literature covering fairness in kidney
exchange has developed in the AI/Economics (Dickerson,
Procaccia, and Sandholm 2014; McElfresh and Dickerson
2018; Ashlagi, Jaillet, and Manshadi 2013; Ding et al. 2018)
and medical ethics (Gentry, Segev, and Montgomery 2005)
communities; Appendix C presents a more thorough discus-
sion. Though seemingly unrelated, fairness and robustness
share a key characteristic: the balance between two com-
peting properties. Fairness rules in kidney exchange often
mediate between a fair and efficient outcome, using a parame-
ter to set the balance. Similarly, robustness mediates between
a good nominal outcome with the worst-case outcome, using
an uncertainty budget or protection level to set that balance.

4This is slightly more conservative than the notion of uncertainty
introduced previously; in Section 4, up to Γ edges may fail, while
in the experiments exactly Γ edges fail.
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graphs (3 left plots) and real UNOS exchanges (3 right plots).

0.0

0.5

F
re

q
u

en
cy

Γ = 1 Γ = 2 Γ = 3 Γ = 4

U
N

O
S

Γ = 5

−1 0
∆OPT

0.0

0.5

F
re

q
u

en
cy

−1 0
∆OPT

−1 0
∆OPT

−1 0
∆OPT

−1 0
∆OPT

6
4
-n

o
d

e
si

m
u

la
te

d

Figure 3: Difference between the robust and non-robust histograms of ∆OPT (robust minus non-robust) for real UNOS (top)
and simulated exchanges (bottom), for various Γ. Dotted line: mean ∆OPT for non-robust.

In kidney exchange, fairness often refers to the prioriti-
zation of pediatric or disadvantaged (highly-sensitized) pa-
tients, who are unlikely to find a compatible donor. In the
weighted fairness approach, edges that represent transplants
to prioritized patients receive additional edge weight, mak-
ing them more likely to be matched by standard algorithms;
versions of this prioritization scheme are used by most ex-
changes, including UNOS. To generalize weighted fairness,
let each edge have a priority weight ŵe ∈ [0,∞), equal to
the nominal weight we multiplied by a factor (1 + αe), with
αe ∈ [−1,∞). For example, we might set αe > 0 for all
edges into prioritized patients; this will help prioritized pa-
tients, but will likely lower overall efficiency (a tradeoff often
described as the price of fairness (Caragiannis et al. 2009;
Bertsimas, Farias, and Trichakis 2011; Dickerson, Procaccia,
and Sandholm 2014; McElfresh and Dickerson 2018)).

To balance fairness with efficiency, policymakers limit the
degree of prioritization. Let PΓ be a budgeted prioritization
set, which bounds the sum of absolute differences between
each we and ŵe; this prioritization set is given as:

PΓ =

{
ŵ | ŵe = we(1 + αe), αe ≥ −1,

∑
e∈E

αewe ≤ Γ

}
As with edge weight uncertainty, the budget Γ balances be-
tween fairness and efficiency. If Γ is large, the algorithm

might sacrifice matching size in order to match prioritized
patients—but the maximum amount of efficiency sacrificed
will be predictable, given Γ, which is attractive to policymak-
ers. In Appendix C we further develop this concept, propose
fairness rules that use PΓ, and present some theoretical re-
sults regarding the balance between fairness and efficiency.

7 Conclusions & Future Research

In this paper, we presented the first scalable robust formu-
lations of kidney exchange. Our methods address both un-
certainty over the quality and the existence of a potential
transplant. On real and simulated data from a large, fielded
kidney exchange, we showed that our methods (i) clear the
market within seconds and (ii) result in more predictable and
better quality matchings than the status quo.

Adapting automated ethical decision-making frameworks
that aggregate noisy human value judgments (Noothigattu
et al. 2018; Freedman et al. 2018; Bonnefon, Shariff, and
Rahwan 2016) into our robust formulation is a natural way
to handle uncertainty in the weights determined by a commit-
tee of stakeholders. Approaching dynamic kidney exchange,
where participants arrive and depart over time, via robust
reinforcement learning methods would be fruitful (Lim, Xu,
and Mannor 2013; Xu and Mannor 2010).
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