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Abstract
Medical image segmentation is a key step for various appli-
cations, such as image-guided radiation therapy and diagno-
sis. Recently, deep neural networks provided promising solu-
tions for automatic image segmentation; however, they often
perform good on regular samples (i.e., easy-to-segment sam-
ples), since the datasets are dominated by easy and regular
samples. For medical images, due to huge inter-subject vari-
ations or disease-specific effects on subjects, there exist sev-
eral difficult-to-segment cases that are often overlooked by
the previous works. To address this challenge, we propose a
difficulty-aware deep segmentation network with confidence
learning for end-to-end segmentation. The proposed frame-
work has two main contributions: 1) Besides the segmenta-
tion network, we also propose a fully convolutional adver-
sarial network for confidence learning to provide voxel-wise
and region-wise confidence information for the segmenta-
tion network. We relax the adversarial learning to confidence
learning by decreasing the priority of adversarial learning,
so that we can avoid the training imbalance between gener-
ator and discriminator. 2) We propose a difficulty-aware at-
tention mechanism to properly handle hard samples or hard
regions considering structural information, which may go be-
yond the shortcomings of focal loss. We further propose a
fusion module to selectively fuse the concatenated feature
maps in encoder-decoder architectures. Experimental results
on clinical and challenge datasets show that our proposed net-
work can achieve state-of-the-art segmentation accuracy. Fur-
ther analysis also indicates that each individual component of
our proposed network contributes to the overall performance
improvement.

Introduction
The recent development of deep learning has largely boosted
the state-of-the-art segmentation methods (Long et al. 2015;
Ronneberger et al. 2015). Among them, fully convolutional
networks (FCN) (Long et al. 2015), a variant of convolu-
tional neural networks (CNN), is a recent popular choice
for semantic image segmentation in both computer vision
and medical image fields (Long et al. 2015; Ronneberger et
al. 2015; Yu et al. 2017; Pan et al. 2017; Yang et al. 2017;
Xiao et al. 2017). FCN trains neural networks in an end-to-
end fashion by directly optimizing intermediate feature lay-
ers, which makes it outperform the traditional methods that
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often regard the feature learning and segmentation as two
separate tasks. UNet (Ronneberger et al. 2015), an evolu-
tionary variant of FCN, has achieved excellent performance
by effectively combining high-level and low-level features
in the network architecture. Compared to FCN, UNet can
improve the localization accuracy, especially near organ
boundaries.

Though being effective in most cases, the above-
mentioned deep segmentation networks cannot properly
handle the hard-to-segment samples (or regions) since the
training of the network is inclined to be dominated by
the easy-to-segment samples. This easy-to-segment sample
dominance phenomenon often occurs in medical image seg-
mentation tasks due to the irregular distribution of some
medical images which may be caused by the different ab-
normal degree of the lesion or the imaging factors, such as
different vendor devices or imaging protocols.

Several works have been proposed in the literature to ad-
dress the aforementioned challenges (Shrivastava, Gupta,
and Girshick 2016; Lin et al. 2017; Zhou et al. 2017). To
achieve better performance on hard-to-segment (or detect)
samples, (Shrivastava, Gupta, and Girshick 2016) proposed
a simple strategy to automatically select hard samples for
further tuning the networks. To prevent the vast number of
easy samples from overwhelming the networks during train-
ing, (Lin et al. 2017) proposed focal loss for detection and
achieved promising results. In another work, (Zhou et al.
2017) introduced focal loss for the biomedical image seg-
mentation. However, the focal loss has some shortcomings
when applied to medical image segmentation due to its us-
age of predicted probability on the samples as the hard-or-
easy evaluator which could neglect the structural informa-
tion and also suffer from multi-category competition issues.
We argue that the widely used adversarial learning strategies
may contribute to building a better evaluator.

Adversarial learning, derived from the recent popular
Generative Adversarial Network (GAN) (Goodfellow et al.
2014), has achieved great success in image generation and
segmentation (Goodfellow et al. 2014; Kohl et al. 2017;
Nie et al. 2017; Xue et al. 2018; Zhang et al. 2017; Zhu
et al. 2018). The GAN framework consists of two compet-
ing networks: a generator and a discriminator, both of which
are involved in an adversarial two-player game, in which
the generator aims to learn the data distribution while the
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discriminator estimates the probability of a sample coming
from the training data or the generator. It is shown that ad-
versarial learning can help improve the segmentation accu-
racy (Moeskops et al. 2017; Kohl et al. 2017); however, it is
challenging to train such a GAN framework due to the diffi-
culty of balancing the generator and discriminator (i.e., since
discriminator has an easier job compared to the generator,
we may face vanishing gradient for the generator) (Good-
fellow et al. 2014; Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017; Mao et al. 2017). Though various
methods have been proposed to solve this problem (Ar-
jovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017;
Mao et al. 2017), this issue has been alleviated but still not
solved (Mescheder, Geiger, and Nowozin 2018).

To overcome such issues, we propose a difficulty-aware
attention mechanism based on confidence learning for med-
ical image segmentation. Our framework is composed of
two subnetworks: 1) segmentation network and 2) confi-
dence network. Specifically, apart from the segmentation
network, we propose a fully convolutional confidence learn-
ing scheme (i.e., using confidence network), which is in-
spired by the concept of adversarial learning, to learn how
well the local regions are segmented (i.e., the confidence
map generated by the confidence network can provide us the
trustworthy and untrustworthy regions in the segmented la-
bel map from the segmentation network). Based on the con-
fidence map, we propose a difficulty-aware attention mech-
anism to adaptively assign region-level and voxel-level im-
portance for training the network. Since we can adopt a
difficulty-aware mechanism to further train the segmenta-
tion network, the easy-sample dominance issue can be al-
leviated accordingly. Our proposed algorithm has been ap-
plied to several medical image segmentation tasks, such as
prostate segmentation, which is critical for guiding both
biopsy and cancer radiation therapy, and brain tissue seg-
mentation, which can help diagnose the brain lesions. Ex-
perimental results indicate that our proposed algorithm can
significantly improve the segmentation accuracy, compared
to other state-of-the-art methods. In addition, our proposed
fully convolutional confidence learning and difficulty-aware
attention mechanism strategies are proved to be effective.

To summarize, we propose a novel difficulty-aware at-
tention mechanism to overcome the limitations of training
for FCN (or UNet) in medical image segmentation tasks.
Specifically, our proposed method has two main contribu-
tions over FCN (or UNet):

1) We apply a fully convolutional adversarial network to pro-
vide voxel-wise and region-wise confidence information
for the segmentation network. More importantly, we re-
lax the adversarial learning to confidence learning, which
can alleviate the training imbalance problem for the su-
pervised generative adversarial network.

2) With confidence learning, we propose a difficulty-aware
mechanism to largely alleviate the overwhelming effect
of easy samples during training networks, which goes be-
yond the shortcomings of focal loss for medical image
segmentation. Experiments on several clinical datasets
and ablation studies demonstrate the effectiveness of our

proposed method.

Method
As mentioned in the introduction, the proposed method con-
sists of two sub-networks, i.e., 1) segmentation network (de-
noted as S) and 2) confidence network (denoted as D).
The architecture of our proposed framework is presented in
Fig. 1, in which we conduct the fully convolutional confi-
dence learning to avoid the training imbalance of GAN and
design the difficulty-aware mechanism to alleviate the easy-
sample dominance issue for training the segmentation net-
work.

To ease the description of the proposed algorithm, we first
give the formal notation used throughout the paper. Given
a labeled input image X ∈ RH×W×T with corresponding
ground-truth label map Y ∈ ZH×W×T , we encode it to
one-hot format P ∈ RH×W×T×C (by converting the la-
bel map Y into C binary label maps with one-hot encod-
ing), where C is the number of semantic categories in the
dataset. The segmentation network outputs the class proba-
bility maps P̂ ∈ RH×W×T×C . The segmented label map
can be obtained by Ŷ = argmax P̂.

In the following subsections, we first introduce the seg-
mentation network. Then, we describe the confidence net-
work with fully convolutional adversarial learning, followed
by the difficulty-aware attention mechanism. Finally, we de-
scribe the implementation details.

Segmentation Network
As shown in Fig. 1, the segmentation network can be any
end-to-end segmentation network, such as FCN (Long et al.
2015), UNet (Ronneberger et al. 2015), VNet (Milletari et al.
2016), or DSResUNet (Yu et al. 2017) (a UNet-like structure
with residual learning, element-wise addition of skip con-
nection, and deep supervision). In this paper, we adopt an
enhanced UNet as the segmentation network. Specifically,
we replace all the convolutional layers but the last one with
the residual modules (He et al. 2016), apply dilated residual
module in the intermedia layers between encoder and de-
coder (the feature maps with the smallest size) (Yu, Koltun,
and Funkhouser ), utilize the transformation modules in the
long skip connections (Nie et al. 2018), inject deep super-
vision at three scales in the decoder path (Merkow et al.
2016), and propose channel attention module to better fuse
the concatenated information from lower layers and higher
layers (Hu, Shen, and Sun ).
Training segmentation network with hybrid loss: The
class imbalance problem is usually serious in medical im-
age segmentation tasks. To overcome it, we propose using a
generalized multi-class Dice loss (Sudre et al. 2017) as the
training loss for our segmentation network, as defined below
in Eq. (1):

LDice (X,P; θS) = 1− 2

C∑
c=1

πc

H∑
h=1

W∑
w=1

T∑
t=1

Ph,w,t,cP̂h,w,t,c

C∑
c=1

πc

H∑
h=1

W∑
w=1

T∑
t=1

Ph,w,t,c + P̂h,w,t,c

,

(1)
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Figure 1: Illustration of the architecture of the proposed framework. This framework consists of a segmentation network (S), a
confidence network (D), and the difficulty-aware attention mechanism. Note, we pursue a perfect D in this framework.

where πc is the class balancing weight of category c, and
θS contains the parameters of segmentation network. We set

πc = 1/

(
H∑

h=1

W∑
w=1

T∑
t=1

Ph,w,t,c

)2

. P̂ is the predicted proba-

bility maps from the segmentation network: P̂ = S (X, θs).
Besides, we also use the multi-category cross entropy loss

to form the voxel-wise measurement, as shown in Eq. (2):

LCE (X,Y ; θS) = −
H∑

h=1

W∑
w=1

T∑
t=1

C∑
c=1

I {Yh,w,t,c} log P̂h,w,t,c

(2)

To this end, the hybrid loss which leverages both losses
for training the segmentation network can be concluded as
in Eq. (3):

LHyb = LDice + LCE (3)

Fully Convolutional Confidence Learning
Adversarial learning has been shown to be effective in
improving the segmentation network (Luc et al. 2016;
Moeskops et al. 2017; Hung et al. 2018). More impor-
tantly, it can provide a better hard-easy sample evaluator
with proper adjustment. Thus, we decide to incorporate ad-
versarial learning in our architecture to further improve the
segmentation network.

In the classical adversarial networks, the discriminator
is mostly a CNN-based network with the output probabil-
ity of an input image belonging to be the real (Sabokrou
et al. 2018). Obviously, the conventional discriminator only
provides a global confidence over the entire image domain,
without providing any confidence at the local region, e.g.,
voxel-wise confidence. To address this issue, we propose
using an FCN-based network to model the discriminator
and name it as confidence network. The output of confi-
dence network is called as confidence map (M ) with size

H ×W × T × 1, which indicates locally whether automatic
segmentation is similar to the ground-truth segmentation.
We argue that the confidence network can learn the struc-
tural information that can be used to regularize the output
of segmentation network (Hung et al. 2018). In this paper, a
simplified version of typical UNet (Ronneberger et al. 2015)
is used as the architecture of confidence network. Specifi-
cally, to save memory, we only keep one convolutional layer
at each stage and also half the number of feature maps in the
convolution layers across the network except the last one.

However, non-convergence and model collapse issues
usually occur in GAN’s training, which are often explained
as an imbalance between the discriminator and the genera-
tor. Though widely researched, this problem still exists in
training GAN (Mescheder 2018; Mescheder, Geiger, and
Nowozin 2018; Kodali et al. 2017). To avoid the imbalance,
we relax the adversarial learning to confidence learning after
analyzing the role of the discriminator in the GANs.
Relaxing the adversarial learning to confidence learning:
We first analyze the role that the discriminator plays in tra-
ditional GANs. In classical GANs (Goodfellow et al. 2014;
Radford, Metz, and Chintala 2015), the first role of the dis-
criminator is to judge if the input is a real image or generated
image by the generator. In other words, its goal is to deter-
mine how well the generated images look like the real im-
age (for convenience, we denote it as confidence learning).
Moreover, it provides adversarial learning to train the gen-
erator, and this is the most important role it plays since the
GAN is to learn the distribution of the data through the gen-
erator and it is the sole source to provide supervision signals
for training the generator. On the other hand, the discrimi-
nator (i.e., confidence network) in the proposed framework
shown in Fig. 1 also has such two roles: to learn the confi-
dence of how each local region is correctly segmented (i.e.,
confidence learning), and to provide adversarial learning to
train the segmentation network (i.e., adversarial learning).
However, there is the main difference between our proposed
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framework and the classical GANs, i.e., besides the adver-
sarial learning from the discriminator, the segmentation net-
work can provide strong supervision signals to train itself.

As mentioned before, the GAN framework has a big chal-
lenge of imbalance training. Since the discriminator is much
easier to be perfectly trained than the generator and thus
will result in few training signals for the generator from
discriminator (Arjovsky, Chintala, and Bottou 2017), which
will eventually lead to non-convergence and model collapse.
However, it is a different situation in our case since the seg-
mentation network has training supervision signals from it-
self which can provide continuous support to improve the
segmentation network. To this end, we propose to relax ad-
versarial learning to confidence learning for avoiding the
training imbalance by adjusting the role of the discrimina-
tor: we place the role of confidence learning prior to that
of adversarial learning. In other words, we reformulate the
original min-max game to a maximization of discriminator
with a soft constraint over the generator.

With this strategy, we can discover the difficulty degree of
each local region of being segmented and can thus provide
difficulty-aware information to guide the training of the seg-
mentation network. To this end, the segmentation network
can be further improved, which will in return boost the dis-
criminator. As a result, the adversarial learning can be for-
mulated as a soft constraint to work as a high-order potential
regularization for the segmentation network.
Training the confidence network: The training objective
of the confidence network is the summation of binary cross-
entropy loss over the image domain, as shown in Eq. (4).
Here, we use S and D to denote the segmentation and con-
fidence networks, respectively.

LD(X,P; θD) = LBCE(D(P, θD),1) + LBCE(D(S(X), θD),0),

(4)
where

LBCE

(
Q̂,Q

)
= −

H∑
h=1

W∑
w=1

T∑
t=1

Qh,w,t log
(
Q̂h,w,t

)
+(1−Qh,w,t) log

(
1− Q̂h,w,t

) (5)

where X and P represent the input data and its correspond-
ing manual label map (one-hot encoding format), respec-
tively. θD is network parameters for the confidence network.
Adversarial loss of the segmentation network: For seg-
mentation network, besides the hybrid loss as defined in
Eq. (3), there is another loss from D used as “variational”
regularization term working as a soft constraint, which aims
at enforcing higher-order consistency between ground-truth
segmentation and automatic segmentation. In particular, the
adversarial loss (“ADV”) to improve S and fool D can be
defined by Eq. (6):

LADV (X, θS) = LBCE (D (S (X; θS)) ,1) (6)

Difficulty-Aware Attention Mechanism
Focal loss has been shown effective to alleviate the over-
whelming effect of easy samples in many computer vision
tasks, such as image detection and segmentation (Lin et al.

2017; Zhou et al. 2017). The success of focal loss can be at-
tributed to its strategy that it tries to pay more attention on
the recognized hard samples (regions) and less attention to
the easy ones. The key point is how to recognize difficult
samples (regions). Focal loss utilizes the predicted proba-
bility of a sample as the indicator of the difficulty degree,
which may lead to some potential problems in medical im-
age segmentation tasks. Firstly, training may be unstable due
to the dominance of a certain class. Secondly, easy and hard
samples may also have similar focal weights due to the po-
tential multi-class competition. Thirdly, focal loss only pro-
vides voxel-level attention and ignores region-level atten-
tion. Lastly, only predicted mask may not really indicate the
hard regions without considering the original input image
of the segmentation network. These potential problems are
mostly caused by the fact that the focal loss uses predicted
probability from the segmentation network as the standard to
determine whether it is a hard or easy sample. To overcome
the above-mentioned problems, we would prefer a more pro-
fessional easy-or-hard representer.

The previously described confidence learning provides us
with a solution to better recognize the easy-or-hard sam-
ples. The confidence map produced by the confidence net-
work contains the easy-or-hard information. Also, since con-
fidence network is actually a binary classification model, it
will avoid the multi-category competition issue. More im-
portantly, the confidence map contains information from
both the original input image and predicted probability
mask, and thus it can provide structural information about
the easy-or-hard samples (regions).

To this end, we propose a difficulty-aware attention
mechanism to better represent the easy-or-hard information.
Specifically, we design a difficulty-aware hybrid loss using
region-level and voxel-level attentions from both predicted
probability mask and confidence map.

At first, we propose an organ-level attention based gener-
alized Dice loss to depict the region-level difficulty, which
is shown in Eq. (7).

LFDice = 1− 2

C∑
c=1

πc(1− dscc)
r

H∑
h=1

W∑
w=1

T∑
t=1

Ph,w,t,cP̂h,w,t,c

C∑
c=1

πc(1− dscc)
r

H∑
h=1

W∑
w=1

T∑
t=1

Ph,w,t,c + P̂h,w,t,c

(7)
where dscc is the average Dice similarity coefficient of a
specific category c, e.g., a certain organ or tissue. γ is the
organ-level attention parameter with a range of [0, 5]. Fol-
lowing (Lin et al. 2017), we set γ to 2 in this paper.

The voxel-level difficulty-aware attention from the confi-
dence map (M ) is formulated (based on Eq. 2) in Eq. (8):

LFCE (X,Y ; θS) =

−
H∑

h=1

W∑
w=1

T∑
t=1

C∑
c=1

I {Yh,w,t, c}Fh,w,t log P̂h,w,t,c

(8)

where
F = (1−M)

β (9)
where β is the voxel-level attention parameter, and it follows
the settings of γ as described above.
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Now we can define the difficulty-aware attention mecha-
nism with the hybrid loss as Eq. (10).

LDamHyb = LFDice + LFCE (10)

With the difficulty-aware hybrid loss in Eq. (10), we
can pay more attention in the lower confidently (hard) seg-
mented regions. Note, it is different from focal loss which is
defined based on the probability map (P ) from the segmen-
tation network.

Total loss for segmentation network
By summing the above losses, the total loss to train the seg-
mentation network can be defined by Eq. (11).

LSeg = LDamHyb + λ1LADV (11)

where λ1 is the scaling factor for the regularization term of
adversarial learning. It is selected as a very small value (i.e.,
0.005 in our case) since it works as soft constraint.

Implementation Details
Pytorch1 is adopted to implement our proposed framework
shown in Fig. 1. Since we desire a perfect discriminator (D),
we do not adopt the traditionally used strategies to limit the
D (Radford, Metz, and Chintala 2015). We adopt Adam al-
gorithm to optimize the networks. The input size of the seg-
mentation network is 64 × 64 × 16. The network weights
are initialized by the Xavier algorithm (Glorot and Bengio
2010) and weight decay is set to be 1e-4. For the network
biases, we initialize them to 0. The learning rates for the
segmentation network and the confidence network are both
initialized to 5e-3, followed by decreasing the learning rate
2 times for the S, and 5 times for the D every 3 epochs dur-
ing the training. A Titan X GPU server is utilized to train the
networks.

Experiments
To evaluate the proposed method, we apply our algorithm on
three different datasets. The first dataset is our own pelvic
dataset and the other two are both publicly available chal-
lenge datasets which will be introduced in later subsections.

The pelvic dataset consists of 50 prostate cancer patients
from a Cancer Hospital, each with one T2-weighted MR
image and corresponding manually-labeled map by a med-
ical expert. The images were acquired with 3T magnetic
field strength, while different patients were scanned with
different MR image scanners (i.e., Siemens Medical Sys-
tems and Philips Medical Systems). Under such a situation,
the challenge for the segmentation task increases since both
shape and appearance differences are large. The prostate,
bladder, and rectum in all MRI scans have been manu-
ally segmented, which serve as the ground truth for evalu-
ating our segmentation method. The image size is mostly
256 × 256 × (120 ∼ 192), and the voxel size is mainly
1× 1× 1 mm3.

Five-fold cross-validation is used to evaluate our method.
Specifically, in each fold of cross-validation, we randomly

1https://github.com/pytorch/pytorch

MALF SSAE UNet VNet DSResNet Proposed

Figure 2: Pelvic organ segmentation results of a typical sub-
ject by different methods. Orange, silver and pink contours
indicate the manual ground-truth segmentations, and yellow,
red and cyan contours indicate automatic segmentations.

chose 35 subjects as the training set, 5 subjects as the valida-
tion set, and the remaining 10 subjects as the testing set. We
use sliding windows to go through the whole MRI for pre-
diction for a testing subject. Unless explicitly mentioned, all
the reported performance by default is evaluated on the test-
ing set. As for evaluation metrics, we utilize Dice Similarity
Coefficient (DSC) and Average Surface Distance (ASD) to
measure the agreement between the manually and automati-
cally segmented label maps.

Comparison with state-of-the-art methods
To demonstrate the advantage of our proposed method, we
compare our method with other five widely-used methods
on the same dataset as shown in Table 1: 1) multi-atlas label
fusion (MALF), 2) SSAE (Guo et al. 2016), 3) UNet (Ron-
neberger et al. 2015), 4) VNet (Milletari et al. 2016), and 5)
DSResUNet (Yu et al. 2017). Also, we present the perfor-
mance of our proposed method.

Table 1 quantitatively compares our method with the five
state-of-the-art segmentation methods. We can see that our
method achieves better accuracy than the five state-of-the-
art methods in terms of both DSC and ASD, especially for
the prostate and rectum which are believed more difficult to
segment. The VNet works well in segmenting bladder and
prostate, but it cannot work very well for rectum (which is
often more challenging to segment due to the long and nar-
row shape). Compared to UNet, DSResUNet improves the
accuracy by a large margin, indicating that residual learn-
ing and deep supervision bring performance gain. We also
visualize some typical segmentation results in Fig. 2, which
further show the superiority of our proposed method.

Impact of the Difficulty-aware Attention
Mechanism
As mentioned in the Method Section, we propose an en-
hanced UNet with several widely used techniques injected,
and we further propose a difficulty-aware attention mech-
anism to assign different importance for different samples
(regions) so that the network can concentrate on hard-
to-segment examples and thus avoid dominance by easy-
to-segment samples. We visualize the performance com-
parison among the basic UNet, enhanced UNet (enUNet)
and the one with difficulty-aware attention mechanism
(enUNet+dam) in Fig. 3. (Note, we use the hybrid loss to
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Table 1: DSC and ASD on the pelvic dataset by different methods.

Method DSC (%) ASD (in mm)
Bladder Prostate Rectum Bladder Prostate Rectum

MALF 86.69(6.81) 79.28(8.72) 76.43(11.88) 1.641(.360) 2.791(.930) 3.210(2.112)
SSAE 91.75(3.10) 87.07(4.24) 86.38(4.41) 1.089(.231) 1.660(.490) 1.701(.412)
UNet 89.57(2.83) 82.22(5.88) 81.04(5.31) 1.214(.216) 1.917(.645) 2.186(0.850)
VNet 92.61(1.84) 86.40(3.61) 83.16(4.12) 1.023(.186) 1.725(.457) 1.969(.449)
DSResUNet 94.43(.90) 88.24(2.01) 86.91(3.24) .914(.168) 1.586(.358) 1.586(.405)
Proposed 97.48(.65) 92.11(1.70) 91.05(2.47) .850(.146) 1.297(.276) 1.387(.346)

Table 2: Quantitative comparison between our proposed method and other methods on the prostate challenge testing dataset.

Method DSC (%) ASD (in mm) 95HD aRVD Score(std)whole base apex whole base apex whole base apex whole base apex
pxl mcg 91.23 89.07 88.54 1.60 1.76 1.57 4.47 4.48 3.64 2.08 -0.07 2.23 88.98(3.41)
Isensee 91.61 90.29 88.05 1.52 1.65 1.64 4.21 4.20 3.85 3.42 1.86 3.48 88.84(2.94)

whu mlgroup(2) 91.42 89.41 88.51 1.54 1.79 1.57 4.21 4.88 3.82 5.27 4.00 6.43 88.72(4.36)
Proposed 90.12 88.95 87.71 1.84 1.73 1.68 5.36 4.43 3.99 4.99 2.19 6.65 88.28(3.02)
tbrosch 90.46 88.51 85.29 1.70 1.91 1.90 4.91 5.04 4.57 2.14 7.22 -4.93 87.24(4.46)

whu mlgroup(1) 90.26 89.15 88.36 1.86 1.79 1.62 5.57 4.83 3.90 9.74 10.73 9.64 87.04(5.79)
AutoDenseSeg 90.14 88.09 86.79 1.83 1.94 1.79 5.36 5.13 4.32 4.53 5.19 2.05 87.19(4.25)

CUMED 89.43 86.42 86.81 1.95 2.13 1.74 5.54 5.41 4.29 6.95 11.04 15.18 86.65(4.42)
SCIRESU 90.24 88.98 83.30 1.74 1.81 2.11 4.93 4.51 5.34 6.01 8.18 -7.33 86.41 (3.49)

QUILL(M2) 88.81 87.39 85.46 1.97 2.01 1.91 5.29 5.07 4.35 6.97 4.76 5.85 85.93(4.97)

0.75

0.8

0.85

0.9

0.95

1

Bladder Prostate Rectum

DSC

UNet enUNet enUNet+dam

Figure 3: Average Dice ratios of different methods.

train UNet and enUNet). Actually, in our case, the widely
used techniques injected to the basic UNet contribute most
to the performance gain. The effectiveness of difficulty-
aware attention mechanism is also confirmed by the im-
proved performance as shown in Fig. 3. It is worth noting
that our proposed difficulty-aware attention mechanism con-
tributes more performance gain for prostate and rectum com-
pared with the bladder. It is consistent with our assumption
that difficulty-aware attention mechanism could pay more
attention to difficult samples (regions) and thus can handle
difficult samples (regions) much better.

Comparing with the Focal Loss
Since our proposed difficulty-aware attention mechanism is
designed based on the focal loss, it is necessary to investigate
the difference of the proposed module against focal loss for

MRI Ground Truth Predicted Difficulty-aware mask Focal mask

Figure 4: Visualization of the difficulty-aware mask and the
focal mask, obtained after training the network for 5 epochs.

medical image segmentation.
To better understand the two strategies, we firstly visu-

alize the difficulty-aware mask (i.e., (1−M)) and the fo-
cal mask (i.e.,

(
1− P̂

)
) in Fig. 4. The focal mask mainly

focuses on the regions with low predicted probability from
segmentation network which needs more attention. Since it
is directly related with predicted probability map, it can re-
flect the difficult regions more precisely in voxel-level. On
the contrary, difficulty-aware mask reflects the difficulty re-
gions in a more structured manner, in which it focuses more
on the regions with lower confidence ratios from confidence
network. The reason behind it is that we have a professional
hard-or-easy recognizer: The D can represent the input con-
taining both the predicted probability mask from segmen-
tation network and the original input image by confidence
learning so that we can have a more expert hard-or-easy rep-
resentation, as expressed in Eq. (12):

M = D(P̂ ∪X) (12)

where ∪ denotes the concatenation operation.
We further conducted experiments with these different

strategies to segment the prostate only, since the prostate
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Table 3: Comparison of different strategies to segment
prostate on the pelvic dataset in terms of DSC (%).

Method Base Middle Apex
enUNet 86.70(4.91) 87.91(4.83) 83.92(5.87)

enUNet+Focal 88.24(4.53) 89.21(3.20) 86.83(4.90)
enUNet+Hybrid 88.12(4.19) 90.08(2.70) 86.71(5.47)

Proposed 89.41(3.68) 90.90(2.37) 88.21(4.14)

MRI UNet En-UNet Proposed GT

Figure 5: Comparison of segmentation results with different
methods and the manual ground-truth on a sample subject.

is traditionally thought to be hard to segment. To make a
fair comparison, we use the same architecture (enUNet) as
the basis to conduct the experiments. Due to computational
times, we only do a two-fold cross-validation for these com-
parison experiments. To better depict the difficult parts of the
prostate, we partition the prostate into three parts: apex (first
1/3 of the prostate volume), base (last 1/3 of the prostate vol-
ume) and middle (the rest). The performance of the enUNet
with different strategies is listed in Table 3.

As described in Table 3, the focal loss can help improve
the performance, especially for the base and apex parts of
the prostate, since it pays more attention to the hard voxels.
The hybrid loss described in Eq. (3) can achieve similar per-
formances with the focal loss since the hybrid loss can cap-
ture the organ structure as well as the voxel-level informa-
tion. The proposed method (difficulty-aware attention mech-
anism) achieves the largest performance gain, since it can
not only capture the difficult regions in a structured way but
also absorb the advantage of the hybrid loss. This demon-
strates that the proposed difficulty-aware attention mecha-
nism can work better than the focal loss in medical image
segmentation tasks.

Validation on MR Brain Challenge Dataset
We further validate our proposed method on MR Brain
dataset2. This dataset contains 7 subjects, each with T1 MRI,
Flair and manually labeled ground truth map. The task is
to segment each voxel into one of the following (tissue)
types: background, cortical gray matter (CGM), basal gan-
glia (BG), white matter (WM), WM lesion (WML), cere-
brospinal fluid in the extracerebral space (CSF), ventricle
(V), cerebellum (C), brain stem (BS), infarction, and other.

We conduct the experiment in a leave-one-out manner. We
visualize one typical slice of a sample in Fig. 5 to make a
qualitative comparison. The proposed method can capture

2http://mrbrains18.isi.uu.nl/

better contour which is usually considered as hard regions
compared with the UNet and enUNet; this again proves the
effectiveness of our proposed method. The quantitative com-
parison (the proposed mechanism can improve the average
performances by about 3.5% in terms of DSC) also indicates
the success of the proposed modules.

Validation on Prostate Challenge Dataset
We also evaluate our proposed method on the prostate seg-
mentation challenge dataset whose ground-truth label maps
are hidden from the participants. The official evaluation met-
rics used in this challenge include the DSC, the average over
the shortest distance between the boundary (surface) points
of the volumes (ABD or ASD), the percentage of the abso-
lute difference between the volumes (aRVD), and the 95%
Hausdorff distance (95HD). It is worth noting that the orga-
nizers not only calculate the evaluation metrics on the whole
prostate, but also on the apex and base parts of the prostate
that are believed to be the most difficult regions for segmen-
tation. In addition, an overall score (shown in the last col-
umn) combining the above-mentioned evaluation metrics is
also provided to rank the submitted methods (please refer
to (Litjens et al. 2014) for the details about the evaluation
metrics).

The quantitative results of our method and our competi-
tors are shown in Table 2. (Note, the results were directly ob-
tained from the organizers). Currently, there are more than
150 teams successfully submitting their results and listed in
the leaderboard. Note we only list top 10 teams in the Ta-
ble for convenience, and please refer the whole leaderboard
through this link3. Our proposed method ranks 4th in terms
of the overall score among all the participants. It is worth
noting that the top 3 methods all ensemble their results from
different deep networks. In contrast, our submission is a sin-
gle model as presented in this paper. More importantly, our
proposed method presents a much lower standard deviation
value compared to the other top 8 methods. (Note, the low-
est standard deviation comes from the 2nd ranked team who
ensembles results from 20 deep networks), which further
indicates the effectiveness and robustness of our proposed
method.

More importantly, our proposed method achieves a very
competitive performance on the base and apex parts which
are thought to be the most difficult segmented regions, and
it further proves that our designed difficulty-aware attention
mechanism indeed contributes to the gain of performance.

Conclusions
In this paper, we presented a novel difficulty-aware atten-
tion deep networks to segment medical images. Specifically,
we proposed fully convolutional confidence learning to re-
lax the adversarial learning so that we can largely alleviate
the training imbalance between discriminator and genera-
tor, and the discriminator can thus provide wonderful confi-
dence information. Based on that, difficulty-aware attention
mechanism was proposed to effectively address the easy-to-
segment sample dominance issue in a more structured way,

3https://promise12.grand-challenge.org/evaluation/results/
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which goes beyond the shortcomings of focal loss for train-
ing medical image segmentation networks. By integrating
these components into the framework, our proposed frame-
work achieved significant improvement in terms of both ac-
curacy and robustness on three datasets.
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