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Abstract

Large repositories of medical data, such as Electronic Medi-
cal Record (EMR) data, are recognized as promising sources
for knowledge discovery. Effective analysis of such reposito-
ries often necessitate a thorough understanding of dependen-
cies in the data. For example, if the patient age is ignored,
then one might wrongly conclude a causal relationship be-
tween cataract and hypertension. Such confounding variables
are often identified by causal graphs, where variables are con-
nected by causal relationships. Current approaches to auto-
matically building such graphs are based on text analysis over
medical literature; yet, the result is typically a large graph of
low precision. There are statistical methods for constructing
causal graphs from observational data, but they are less suit-
able for dealing with a large number of covariates, which is
the case in EMR data. Consequently, confounding variables
are often identified by medical domain experts via a manual,
expensive, and time-consuming process.
We present a novel approach for automatically constructing
causal graphs between medical conditions. The first part is a
novel graph-based method to better capture causal relation-
ships implied by medical literature, especially in the pres-
ence of multiple causal factors. Yet even after using these
advanced text-analysis methods, the text data still contains
many weak or uncertain causal connections. Therefore, we
construct a second graph for these terms based on an EMR
repository of over 1.5M patients. We combine the two graphs,
leaving only edges that have both medical-text-based and ob-
servational evidence. We examine several strategies to carry
out our approach, and compare the precision of the resulting
graphs using medical experts. Our results show a significant
improvement in the precision of any of our methods com-
pared to the state of the art.

1 Introduction
Electronic Medical Record (EMR) data is a powerful re-
source for discovering medical and other health-related
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knowledge. EMRs are being widely adopted for use in ob-
servational causal studies, where the causal effect of an in-
tervention is sought (Avillach et al. 2012; Stuart et al. 2013;
Casucci et al. 2017; Gottlieb et al. 2017). Crucial to ob-
servational studies is the question of which covariates may
influence the studied effect. These covariates, called con-
founders and mediators (depending on whether they cause
or are caused by the intervention), need to be taken into con-
sideration when analyzing the data.

While ostensibly the large amount of covariates in EMR
data is an advantage, in practice it often creates difficulties
in observational studies. Standard methods for causal infer-
ence in observational studies, such as propensity score ad-
justment or matching, often fail when the number of co-
variates is large, e.g. in the thousands. This is due to the
fact that it is very difficult to define good metrics in high-
dimensions, and that propensity scores often show lack of
overlap in high-dimensions (D’Amour et al. 2017). A com-
mon practice (Triantafillou et al. 2017) is therefore to look
at a small set of confounders and mediators that are believed
to be most relevant to the problem at hand. This set is usu-
ally built manually by experts. However, expert knowledge
is sometimes limited and not fully reproducible, and more-
over, it does not account for the full potential of EMRs to
discover new knowledge. In this work, we focus on the chal-
lenge of automatically constructing useful causal graphs.

Several notions of health graphs have been proposed as
means of capturing expert medical knowledge from the lit-
erature (Rotmensch et al. 2017; Goodwin and M. Harabagiu
2013). Yet, adapting these graphs for causal inference carries
numerous challenges. It is difficult to identify confounders
and mediators from disconnected pieces of causality knowl-
edge extracted from text.

In this work, we propose a new approach to constructing a
causal graph from observational data originating from EMR,
while incorporating knowledge about interventional distri-
butions gained through the countless experiments present in
the medical literature (a repository of 27 million medical ab-
stracts and citations from PubMed). Our approach consists
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of three main steps, which we describe next.
The first two steps represent a novel graph-based method

to better capture causal relationships implied by medical lit-
erature while attempting to preserve causal context. In the
first step we analyze PubMed sentences for causal relation-
ships. We leverage the SemRep (Rindflesch and Fiszman
2003) extractor to retain edges that contain causal seman-
tic predicates, e.g., “Mediastinal emphysema due to acute
bronchial asthma.” In the second step we perform graph
embeddings of the derived terms, optimizing an objective
that preserves local neighborhoods of nodes (Perozzi, Al-
Rfou, and Skiena 2014; Tang et al. 2015). We do this in
order to connect disconnected causal facts. We study re-
cent graph embeddings techniques (Grover and Leskovec
2016) that extend the objective to optimize for embeddings
that capture similarity in network neighborhoods. We show
that inferring causal relations with semantic similarity over
such graph embeddings improves significantly the proposed
causal-graphs.

Yet, even after using the above text-analysis techniques,
the text data still contains many weak or uncertain causal
connections. Therefore, in the third step we use the rele-
vant concepts extracted from the medical literature to con-
struct another graph, this time using the EMR data. While
the text graph is based on causal connections implied by
natural language in the text, the EMR graph is undirected
and contains only correlations. We use a lack of correla-
tion in the EMR data as a criterion for pruning the dense
text-derived graph. We note that our use of the observa-
tional data is different from approaches which attempt to ad-
dress the much more difficult problem of fully constructing
a causal graph from data, where the challenges are mainly
because the data itself is often incomplete and the large
number of variables that need to be accounted for (Hauser
and Bühlmann 2015; Triantafillou and Tsamardinos 2015;
Triantafillou et al. 2017).

We perform an extended experimental evaluation compar-
ing several causal graph construction methods, that show the
merit of each one of the steps as evaluated by medical ex-
perts. Our empirical results show significant precision gains
of the resulting causal graph.

To the best of our knowledge, there is currently no pub-
licly available database of causal medical condition relation-
ships. We consider our work as the starting point of a collab-
orative effort of creating such a database. Our graph not only
supplies the causal relations, but also the specific textual ref-
erences that generated the edge (i.e., the provenance of the
relationship), making the graph highly interpretable. We are
making our results available for other researchers to use and
contribute 1. We especially encourage the addition of corre-
lations obtained from EMRs reflecting diverse populations.

2 Related Work
Observational data has previously been used for construct-
ing causal relations and graphs (Claassen and Heskes 2012;
Triantafillou and Tsamardinos 2015; Triantafillou et al.

1https://github.com/TechnionTDK/causal-graphs

2017; Sachs et al. 2005). These methods measure indepen-
dence and conditional independence between variables in
the data and construct a causal graph accordingly. The main
shortcoming of these methods is that they are limited in
the number of variables that can be modeled. Rotmentch et
al. (Rotmensch et al. 2017) used several probabilistic mod-
els to construct disease-symptom graphs based on EMRs,
without considering medical literature. Observational data,
such as EMR data, is often limited in its representation as
it contains a short summary of symptoms and doctor’s de-
cisions, missing the theoretical medical knowledge behind
them. Moreover, a causal relation such as disease A is caused
by condition B is often considered irrelevant to the EMR
record and the records will contain mention of both diseases
without an annotation of the fact one is a result of the other.
Hence, EMRs will produce useful correlations between con-
ditions but the information of the nature of the correlation –
is it causal or not – will be missing. Goodwin et al. (Good-
win and M. Harabagiu 2013) attempt to capture such hidden
relations from physicians notes. They focus on assessing the
level of physician belief in a medical condition rather than
extracting causal relations. Finlayson et al. (Finlayson, LeP-
endu, and Shah 2014) built a “graph of medicine” based on
co-occurrence of medical concepts in clinical notes.

Medical literature, on the other hand, focuses on the the-
ory and explanation of biomedical processes. It naturally
contains explanations of processes and causation. Natural
language processing (NLP) has been successfully used for
extraction of relations in various domains (Radinsky and
Davidovich 2012) and has also been applied to medical lit-
erature. Bui et al. (Bui et al. 2010) extracted causal relations
of HIV drug resistance. SemRep (Rindflesch and Fiszman
2003) presented a comprehensive data set of predications
describing subject-object relations from medical paper ab-
stracts, amongst them are causation predicates.

3 Data Model and Repositories
Throughout the paper, we assume a set D of medical con-
ditions. We extract relationships over D from two types of
data repositories: textual data from PubMed and EMR data
from a Maccabi Healthcare, Israel’s second largest health-
care provider.

PubMed repository. PubMed is a search engine accessing
all MEDLINE (Kilicoglu et al. 2012) citations and several
other resources. It is a literary repository of over 27 million
citations and abstracts of biomedical academic literature. As
such, it represents detailed professional peer-reviewed med-
ical knowledge. For the sake of simplicity, we refer to this
repository simply as “PubMed” in the remainder of the pa-
per.

We use SemRep (Rindflesch and Fiszman 2003) to extract
semantic propositions from the MEDLINE text, as a basis
for a text-based causal graph. At the initial stages of tok-
enization and part-of-speech identification, domain-specific
noun phrases are identified and mapped to concepts in a spe-
cialized metathesaurus, based on the Unified Medical Lan-
guage System, UMLS (Bodenreider 2004). In UMLS, each
concept belongs to a predefined UMLS semantic type, and
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a semantic network of relations between concepts and types
is defined. A rule-based algorithm maps semantic proposi-
tions between concepts to a set of predefined predicates such
as “treats,” “causes” and “is-a.” The mapping is done using
both syntactic rules and semantic constraints based on the
UMLS semantic net. The resulting predicates are subject-
predicate-object tuples, each extracted from a single sen-
tence in a PubMed abstract. For a full description of the ex-
traction process we refer the reader to (Rindflesch and Fisz-
man 2003).

In formal terms, we use SemRep to extract triples of the
form (d1, p, d2) where d1, d2 ∈ D are medical conditions,
and p is a predicate relationship between medical conditions.
Hence, we extract a directed labeled graph over medical
conditions, represented as a bag of triples. The elements in
D are identified as those having the UMLS type Disease or
Syndrome.

EMR repository. We use Electronic Medical Records
(EMRs) from Israel’s second largest health care provider,
serving more than two million patients, covering the years
2005-2010. The repository holds a complete medical his-
tory for each patient, including disease diagnosis codes
used by clinicians. These codes are specific to the health-
care provider and are mapped to icd-9 codes. More specifi-
cally, the repository contains 115, 000, 000 diagnoses out of
27, 519 possible diagnosis codes. Abstractly, we view this
repository as a collection of pairs (q, d), stating that person
q has been diagnosed with the condition d ∈ D.

4 Building a Medical Condition Causal
Graph

A medical condition causal graph is a directed graph where
the nodes belong to D, and edges represent causal relations
between nodes—an edge e = (d1, d2) where d1, d2 ∈ D,
states that d1 causes d2. In this section, we describe in detail
our construction of the causal graph.

Our general approach is to build a graph from the PubMed
data, and then to prune it using an EMR-based graph. Fig-
ure 1 illustrates the main steps of our algorithm. We first
construct a text-based causal-graph from the textual reposi-
tory (boxes (1)-(3)). Next, we reduce the graph using med-
ical condition embeddings (boxes (4)-(5)), where medical
conditions that share the same network community and/or
similar roles have close vectors in a latent space of low di-
mension, using one of several embedding methods outlined
further in this section. The inferred graph embeddings al-
low us to filter for each medical condition a set of potential
causal neighbors (box (6)). We complete the construction
by detecting the causal neighbors by leveraging correlations
identified in the EMR repository (boxes (7)-(9)).

Building a Text-Based Causal-Graph
In Section 3, we described how we extract a directed la-
beled graph over medical conditions. This graph consists
of triples (d1, p, d2) where d1 and d2 are medical condi-
tions and p is a relationship between them. However, as a
causal graph, these triples contain noise and misclassifica-
tion due to errors in semantic misunderstandings. For ex-

(1) PubMed

(2) Extract predicates
from text

(3) Construct causal
text-based graph

(5) Construct medical
condition embedding

(6) Infer potential
neighbors

(4) Construct text
embeddings

(9) Construct
EMR graph

(8) Observation
statistics

(7) EMR

(10) Final
causal-graph

Figure 1: Construction of the causal-graph

ample, the question: “Is Celiac disease caused by allergy to
Gliadin?” is translated into a causal relation between Celiac
and Gliadin. It may also contain errors due to inconsistent
text. To overcome these drawbacks, we construct a more ac-
curate directed graph according to these predicates, exper-
imenting with several methods for text-edge construction,
outlined below. In each method, we identify a collection of
causal predicates p from UMLS: causes, prevents, disrupts,
inhibits, predisposes, produces. A triple (d1, p, d2) is causal
if p is a causal predicate. We present the following methods
for the causal text-edge construction:

1. Method C1: select all causal edges.

2. Method C2: select causal edges that occur more than m
times; that is, add an edge e = (d1, d2) if the PubMed
graph contains m or more triples (d1, p, d2) where p is
causal. Assuming the textual repository might contain
some degree of error, this methods sets the support thresh-
old m to filter out singular correlations. In our experi-
ments, we set m = 2 for C2.

3. Method C3: select causal edges that appearm-times more
than non-causal edges between the same terms; that is,
if the PudMed graph contains k causal edges (d1, p, d2)
and k′ non-causal edges (d1, p

′, d2), then add an edge
e = (d1, d2) if k ≥ mk′. Here, we attempt to reduce
noise in the graph by filtering out connections that have
stronger non-causal support in the textual repository. In
our experiments, we set m = 2 for C3.

4. Method C4: same as C3, but now with m = 10.

5. Method C5: select pairs (d1, d2) that appear in m edges
(d1, p, d2), regardless of whether or not p is causal. In our
experiments, we set m = 6 for C5.

The parameters were chosen after manual validation on a
validation set separate from the test set.
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Context-Centric Reduction
We aim to produce a small and precise causal graph, for the
sake of both usability by human researchers and automated
analysis. As described in Section 1, it is hard to use standard
methods for causal inference with large numbers of mediat-
ing and confounding variables. We observe that a common
use case of medical condition causal graphs is in the context
of a specific condition d0 of interest, where the goal is to in-
fer conclusions relating to d0. Therefore, we reduce a causal
graphG to a subgraphG′ ofG that is created with respect to
a medical condition d0 ∈ D and contains only nodes that are
relevant to d0. To capture relevance, we define a proximity
function S to measure the relevance of di ∈ D to d0, and
we restrict the graph to the nodes that are closest to d0. We
explore three alternatives for S: co-occurrence, text embed-
dings, and graph embeddings.

Co-occurrence. A common assumption in Natural Lan-
guage Processing (NLP) is that terms that are related appear
together often in the text. Following this assumption, we
may expect related conditions to appear together in the tex-
tual repository. The co-occurrence of term d1 and d2 is the
number of predicates in the PubMed graph in which the two
appear together, divided by the total number of predicates
they occur in: co(d1, d2) =

N(d1,d2)
N(d1)+N(d2)

, where N(d1, d2)

is the number of edges (triples) (d1, p, d2) in the PubMed
graph, and N(di) is the number of triples (di, p, d

′) in the
PubMed graph.

Text Embeddings. Another common approach is
using word embeddings based on a textual corpus.
Word2vec (Mikolov et al. 2013) is an embedding algorithm
which, given an input text corpus, produces a vector rep-
resentation for each word in the text. It is widely accepted
as a baseline for word embeddings in NLP. The distance
between word2vec embeddings of two terms can be viewed
as the semantic distance between the terms: terms that are
closely related are mapped to closer vectors, an vice versa.

Graph Embeddings. Considering only semantic proxim-
ity does not take into account the relations between terms
as they appear in text. For example, consider a corpus com-
posed of the following sentences: “The patient has a family
history of asthma and diabetes,” and “Hypertension can lead
to diabetes.” Here, the co-occurrence measure of the terms
“diabetes” and “asthma” in the first sentence, and the terms
“diabetes” and “hypertension” in the second sentence will
be the same, although the second sentence portrays a much
stronger causal relation. If we take into account the context
that these diseases appear in, we can find that diabetes and
hypertension are often mentioned as related diseases, while
asthma and diabetes are not.

Node2vec (Grover and Leskovec 2016) is an embedding
algorithm that generalizes word2vec for the graph domain.
The nodes in the graph can be regarded as words and the
algorithm creates “sentences” by generating random walks
over the graph starting from each node. The algorithm’s
hyper-parameters are used to control whether the graph
walks they preform are local “within cluster” walks simi-
lar to BFS, or more global walks which are more similar

to DFS. In the first option, node2vec will produce similar
embeddings for nodes in the same cluster. For the second
option, nodes that preform a similar structural role in the
graph (i.e. connecting node, central node) will have simi-
lar embeddings. Given a random walk from node v to node
u, node2vec formulates this bias strategy by defining two
hyper-parameters, p̃ and q̃, which help adjust the transition
probability αp̃q̃(v, x) from node v to some node x:

αp̃q̃(v, x) =


1
p̃ if dvx = 0

1 if dvx = 1
1
q̃ if dvx = 2

where dvx is the distance between node v and node x.
In this way, node2vec can bias the random walk closer

or further away from the source node. This creates different
embedding types. Setting p̃ < q̃ biases the random walk to
nodes closer to each other. This, in turn, causes nodes from
the same cluster to be embedded closer and nodes from dif-
ferent neighborhoods to be embedded further away. Setting
p̃ > q̃ biases the random walk to embed nodes of the same
graph structural role closer together while others are em-
bedded further away. As node2vec only uses the transition
probability, by weighting and directing the random walks,
the embedding algorithm can be extended for weighted and
directed networks as well. We extend the node2vec algo-
rithm and apply its random walks on a directed and weighted
causal text-based graph where the directed edges represent
hypothesized causal relations between medical conditions.
The edge weights are set according to the co-occurrence
of the two conditions in the text. Randomly traversing this
graph can be intuitively thought of as the causal paths a
causes b causes c and so on. The embeddings produced by
this method capture a disease’s position in the causal struc-
ture of the graph, as well as its textual semantic properties
(since the graph is based on text), adding context to the re-
sulting causal graph.

Incorporating the EMR Based Graph
Even after using the above text-analysis techniques, the text-
based causal graph still contains many weak or uncertain
causal connections. In this section, we explain how we lever-
age EMR data to construct the final causal-graph. While the
text graph is based on causal connections implied by natural
language in the text, the EMR graph is undirected and con-
tains only correlations. On itself, the EMR graph holds no
causal information. We use a lack of correlation in the EMR
data as a criterion for pruning the dense text-derived graph.
We look at all patient diagnosis in the EMR data. In order to
establish lack of correlation we preform a pairwise Pearson’s
chi-square test with a 95% significance-level testing whether
the population of patients diagnosed with d1 is independent
of the populations of patients diagnosed with d2. If the pop-
ulations are independent, we take it that there is no support-
ing evidence for the causal relation in the EMR data and we
therefore remove the corresponding edge e = (d1, d2) from
the text-based causal graph.

To reduce statistical uncertainty, we only consider medi-
cal conditions for which more than 5000 patients were di-
agnosed (out of over 1.5M patients in the data base), and
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since we are only looking for correlations, we analyze the
data spanning a six year period (2005-2010), looking at all
the diagnoses at this time, disregarding their temporal order
of appearance.

5 Results
We now describe our experimental study over our techniques
for constructing the causal graph.

Setup. We construct causal graphs for two diseases:
Celiac and Atopic Dermatitis. Both are relatively common
diseases, are not specific to a certain age or other group, and
long-term conditions. From the graphs, we generated a list of
possible causal links by searching for neighbors of distance c
from the target disease d0. The lists were evaluated manually
by medical professionals who were given a list of connected
medical conditions for each target disease. The evaluators
were asked to mark each putatively linked disease on the list
as “positive,” “negative” or “do not know.” They were in-
structed to select “positive” if the condition is either caused
by or causing the target disease and “negative” otherwise. If
they were unsure they chose “do not know.” An evaluation
example is presented in Table 1. We combined the evalu-
ators responses using only medical conditions for which a
“positive” classification was agreed upon by all evaluators
(Cohen’s kappa > 0.8).

We look at the Positive Predictive Value (PPV), i.e. the ra-
tio between the number of medical conditions classified by
the evaluators as “positive” and the total number of medical
conditions linked to the target disease in a given graph. We
wish to emphasize that for our calculation of PPV we com-
pare our graphs with the knowledge of the medical practi-
tioners, as there is no absolute ground truth in this field and
it is very much possible that the physicians’ knowledge is in-
complete. Moreover, we claim that new knowledge is likely
to be discovered when using large textual and EMR reposi-
tories.

As a baseline for comparison, we use SemCause: the
graph that consists of all edges (d1, d2) such that the
PubMed graph contains a triple (d1, p, d2) where p is a
causal predicate (as defined in Section 4).

We conduct our experiment in two stages. First we show
that limiting the node set N increases precision of the text-
based causal graph. Then we show that creating a merged
graph, i.e. combining EMR and textual data, further en-
hances precision.

PPV Results
For our experiments, we use c = 5 to determine a causal
connection. That is, if there exists a directed path of length
<= 5 between source and d0 or between d0 and source we
add source to the list. We constructed the causal graph using
method C1 for constructing textual graph edges.

Due to the size of the SemCause graph, its PPV was eval-
uated using a randomly sampled set of ten edges. Tables 2
and 3 give the results for Celiac and Atopic Dermatitis, re-
spectively. The tables show the PPV of the PubMed graph
compared to the merged graph. The merged graph is the re-
duced text-based graph incorporated with the EMR based

Table 1: Evaluation Example for Atopic Dermatitis

Medical Condition Evaluation
Eczema Herpeticum Positive
Molluscum Contagiosum Negative
Allergy to eggs Negative
Contact Dermatitis Negative
Dermatitis, Irritant Negative
Skin disorder Positive
Dermatitis, Exfoliative Unknown
Mite Infestations Unknown
Immediate hypersensitivity Positive
Allergic Conjunctivitis Negative
Metal allergy Negative
Urticaria Negative

Table 2: PPV for Celiac by a human evaluator.

Method Text Merged
SemCause 0% 0%
word2vec 23% 27%
co-occurrence 24% 35%
node2vec + co-occurance 32% 50%
node2vec combined 29% 33%
node2vec + word2vec 17% 20%

graph as described in Section 4. We see that the PPV for the
SemCause sample was zero for both diseases, i.e., none of
the connections it suggested were evaluated as valid causal
connections by the evaluators.

We first observe that constructing a text-based graph with
a smaller group of nodes is empirically better than using a
graph induced from SemCause with no node selection. We
also note that for Celiac, the merged graphs are smaller but
maintain as high or higher PPV. This means that the merg-
ing chooses the right edges, which to a degree validates our
choice. However for Atopic Dermatitis this is not always the
case. Additionally, we observe that the graphs based on the
nodes created using node2vec were the most precise for both
diseases. This indicates the benefit of using the entire Sem-
Cause graph community structure.

An interesting observation is the difference in overall PPV
between the two diseases. The graphs for Celiac were overall
more precise than the graphs for Atopic Dermatitis, and had
much more agreement amongst evaluators. In some cases,
the agreement amongst evaluators for the Atopic Dermatitis
graph was so low that it led to very low (even zero) PPV
results. This might be due to the fact that our evaluators
had different knowledge or experience in that specific dis-
ease. Atopic Dermatitis is generally less studied than Celiac,
therefore the medical practitioners have less knowledge of
causal relations for this disease.

Comparing PubMed Selection Algorithms. As de-
scribed in Section 4, we create two types of edges: PubMed-
based and EMR-based edges. The EMR-based edges are ex-
tracted from the EMR data based on a statistical correlation
test. We now compare the agreement between the PubMed-
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based edges according to the different methods, and EMR-
based edges.

We evaluate the different methods for building the text-
based graph using two measures: EMR recall and EMR pre-
cision. EMR precision is the number of relations that are
common to the text-based and EMR-based graphs divided
by the number of correlations in the EMR-based graph.

EMRp(Gtext,GEMR) =
|CorrEMR(target)∩Caustext(target)|

|Caustext(target)|

EMR recall is the number of relations that are common to the
text-based and EMR-based graphs divided by the number of
correlations in the EMR-based graph.

EMRr(Gtext,GEMR) =
|CorrEMR(target)∩Caustext(target)|

|CorrEMR(target)|

EMR precision and recall for the Celiac graph built with
methods C1 to C5 as described in Section 4 are presented
in Table 4 and Figures 2a and 2b. The x-axis represents the
different graph composition methods noted in abbreviation:
word2vec (w2v), co-occurance (co.), node2vec based on co-
occurance (n2v-co.), node2vec based on word2vec and co-
occurance combined (n2v combined), and node2vec based
on word2vec (n2v-w2v).

As we pose more constraints on edge selections, we built
smaller graphs, naturally leading to lower EMR recall num-
bers. It is also interesting to observe that the co-occurrence
method and the node2vec based on co-occurrence meth-
ods appear to be less influenced by method chosen, remain-
ing with stable overlap values between EMR and text. we
can see in Figure 2a that EMR recall is generally higher
for co-occurrence or node2vec based graphs and amongst
the node2vec based graphs the EMR recall is higher when
node2vec was fitted on a co-occurrence based graph. A sim-
ilar conclusion can be drawn from Figure 2b regarding the
EMR precision. The C1 method seems to be comparable or
superior to the other methods and is also the most inclu-
sive. We thus use this method for constructing the text-based
graphs.

Contribution of EMR Filtering. The text-based graph
may contain redundant and erroneous links. The EMR data
provides us with important “supporting evidence” that is
used for narrowing down the text-based graph.

Figure 3 describes the EMR recall and EMR precision of
the text-based graphs created for Celiac and Atopic Dermati-
tis with methods C1. Table 5 and Table 6 present the number
of nodes and edges in each graph. EMR recall and EMR pre-
cision give us insight into the amount of overlap or “agree-
ment” between the text-based graph and the EMR data. The

Table 3: PPV for Atopic Dermatitis by a human evaluator.

Method Text Merged
SemCause 0% 0%
word2vec 20% 30%
co-occurrence 7% 0%
node2vec + co-occurance 8% 0%
node2vec combined 29% 25%
node2vec + word2vec 24% 33%

Table 4: Comparing precision and recall of the different text
edge algorithm compared to a standard of EMR correla-
tion identification. The notation a/b in the table refers to the
method the underline graph is built. For example, w2v/co
means the underline graph is built using word2vec (w2v)
nodes and co-occurrence (co) weights. Results are presented
for Celiac disease.

Method Nodes Edges EMR-r EMR-p
word2vec C1 36 49 0.75 0.65
word2vec C2 36 29 0.05 0.25
word2vec C3 36 39 0.3 0.67
word2vec C4 36 23 0.1 0.5
word2vec C5 36 25 0.6 0.67
co-occurrence C1 37 179 1 0.57
co-occurrence C2 37 113 0.95 0.59
co-occurrence C3 37 166 0.95 0.56
co-occurrence C4 37 112 0.95 0.56
co-occurrence C5 37 84 0.95 0.57
node2vec co/co C1 22 79 1 0.73
node2vec co/co C2 22 56 0.94 0.71
node2vec co/co C3 22 75 0.94 0.71
node2vec co/co C4 22 55 0.81 0.72
node2vec co/co C5 22 40 0.94 0.71
node2vec w2v/co C1 16 29 1 0.8
node2vec w2v/co C2 16 19 0.25 0.75
node2vec w2v/co C3 16 22 0.58 0.78
node2vec w2v/co C4 16 14 0.25 0.75
node2vec w2v/co C5 16 16 0.92 0.85
node2vec w2v/w2v C1 29 33 0.56 0.77
node2vec w2v/w2v C2 29 18 0.17 0.75
node2vec w2v/w2v C3 29 30 0.28 0.71
node2vec w2v/w2v C4 29 3 0.11 0.67
node2vec w2v/w2v C5 29 6 0.22 0.67

more common relations there are, the greater the agreement
between the two graphs. We do not necessarily desire com-
plete agreement between the graphs, as the EMR data con-
tains correlations that are not necessarily causal. We seek
correlations in the EMR for as many causal relations dis-
covered in the text-based data but not vice versa. Note that
the text-based graph created using the node2vec based on
word2vec and co-occurrence combined achieves the high-
est EMR recall and precision. Additionally, it achieves the
highest PPV as described in Table 3 and Table 2.

Table 5: Celiac graph data.

Method Nodes Edges
SemCause 203 599
word2vec 36 49
co-occurrence 37 179
node2vec + co-occurrence 22 79
node2vec combined 16 29
node2vec + word2vec 29 33

Qualitative Example: Celiac
We continue using Celiac as a qualitative example. Celiac
disease causes an immune response to gluten consumption
which damages the lining of the small intestines (Booth
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Figure 2: Method Performance

Table 6: Atopic Dermatitis Graph Data

Method Nodes Edges
SemCause 143 396
word2vec 34 68
co-occurrence 32 132
node2vec + co-occurrence 14 27
node2vec combined 16 42
node2Vec + word2vec 31 63

1977). An immediate result of this damage is malabsurb-
tion of nutrients. The medical evaluators annotated medical
conditions related to malabsorption and malnutrition as cor-
rect causal relations. Some digestive system inflammatory
conditions were also identified. Other terms, such as other
autoimmune diseases, Pancriatic insufficiency, Downs Syn-
drome and Dermatitis Herpetiformis were noted by them to
be correlative with Celiac, but without a known causal re-
lation. The merged graph created for the celiac disease is
shown in Figure 4.

Dermatitis Herpetiformis is a skin condition that is ex-
pressed as a rash in response to gluten ingestion. Some ex-
planations of the causal relation between the two condi-
tions also exist.2 Our text-based causal graph contains direct
causal edges between the terms. Exploring the graph we see
the following causal paths:

Celiac→ Steatorrhea→ Malnutrition→ Diabetes Mellitus
Celiac→ Malabsorption Syndromes→ Malnutrition

→ Diabetes Mellitus

The first part of the paths, stating that Celiac causes mal-
nutrition or malabsorption, was acknowledged as a viable
causal connection. The second part, stating that malnutrition

2https://www.niddk.nih.gov/health-information/digestive-
diseases/dermatitis-herpetiformis
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Figure 3: EMR precision and EMR recall for test cases

Celiac Disease

Primary biliary cirrhosis

Osteomalacia Malnutrition

Malabsorption Syndromes
SteatorreahOsteoporosis
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Down Syndrome

Iron deficiency
Diabetes type 2

Infertility Colitis, microscopic

Dermatitis Herpetiformis

Figure 4: Merged causal graph for celiac disease

may cause diabetes, is not an irrational induction. Inspect-
ing the causal paths between Downs Syndrome and Celiac
disease. We find several paths that originate from the predi-
cate “Predisposes” which has a weaker causal meaning and
is perhaps incorrect in this case.

Although our methodology will not create new causal
connections if none existed in the original medical literature
repository, based on the feedback we received from our clin-
ical evaluators, we believe it may support novel discoveries
as it is helpful in bringing forward information that is known
but has not been considered as an explanation of a particular
phenomena.

6 Conclusions
In this paper, we suggest several methods for constructing
causal medical condition graphs. They are of value in many
applications, such as clinical trial design, where potential
confounders need to be identified and adjusted for. We apply
state-of-the-art natural-language-processing techniques for
extracting a small and relevant set of diseases for the causal
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graph, and further prune this graph using correlations found
in EMR data. In this manner we incorporate the EMR data,
which does not contain causal information, with causal rela-
tions extracted from medical literature. The resulting graph
is both useful and relatively precise, as assessed by experts.

Although the task is of high importance for medical re-
search, there is currently no benchmark which can be used
as evaluation of such work. In our work, we compared the
resulting graphs to domain experts. We consider our work
as the first step for a causality database, which is open for
other researchers for use and expansion and can serve as a
benchmark. We believe an automated method for extracting
knowledge based on large theoretical and observational re-
sources, such as the one we presented, will bring high value
to the medical community and enable further research.
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