
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

NEVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta∗

IIT Kharagpur
bidisha@iitkgp.ac.in

Abir De
MPI-SWS

ade@mpi-sws.org

Gourhari Jana
IIT Kharagpur

gour2015hari@iitkgp.ac.in

Pratim Kumar Chattaraj
IIT Kharagpur

pkc@chem.iitkgp.ernet.in

Niloy Ganguly
IIT Kharagpur

niloy@cse.iitkgp.ac.in

Manuel Gomez Rodriguez
MPI-SWS

manuelgr@mpi-sws.org

Abstract

Deep generative models have been praised for their ability
to learn smooth latent representation of images, text, and au-
dio, which can then be used to generate new, plausible data.
However, current generative models are unable to work with
molecular graphs due to their unique characteristics—their
underlying structure is not Euclidean or grid-like, they re-
main isomorphic under permutation of the nodes labels, and
they come with a different number of nodes and edges. In this
paper, we propose NeVAE, a novel variational autoencoder
for molecular graphs, whose encoder and decoder are spe-
cially designed to account for the above properties by means
of several technical innovations. In addition, by using mask-
ing, the decoder is able to guarantee a set of valid proper-
ties in the generated molecules. Experiments reveal that our
model can discover plausible, diverse and novel molecules
more effectively than several state of the art methods. More-
over, by utilizing Bayesian optimization over the continuous
latent representation of molecules our model finds, we can
also find molecules that maximize certain desirable proper-
ties more effectively than alternatives.

Introduction
Drug design aims to identify (new) molecules with a set of
specified properties, which in turn results in a therapeutic
benefit to a group of patients. However, drug design is still a
lengthy, expensive, difficult, and inefficient process with low
rate of new therapeutic discovery (Paul et al. 2010), in which
candidate molecules are produced through chemical syn-
thesis or biological processes. In the context of computer-
aided drug design (Merz, Ringe, and Reynolds 2010), there
is a great interest in developing automated, machine learn-
ing techniques to discover sizeable numbers of plausible, di-
verse and novel candidate molecules in the vast (1023−1060)
and unstructured molecular space (Polishchuk, Madzhidov,
and Varnek 2013). In recent years, there has been a flurry of
work devoted to developing deep generative models for au-
tomatic molecule design (Dai et al. 2018; Kusner et al. 2017;
Gómez-Bombarelli et al. 2016; Simonovsky and Komodakis
2018; Jin, Barzilay, and Jaakkola 2018), which has predom-
inantly followed two strategies. The first strategy (Dai et al.
2018; Kusner et al. 2017; Gómez-Bombarelli et al. 2016)

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

consists of representing molecules using a domain specific
textual representation—SMILES strings—and then leverag-
ing deep generative models for text generation for molecule
design. Unfortunately, SMILE strings do not capture the
structural similarity between molecules and, moreover, a
molecule can have multiple SMILES representations. As a
consequence, the generated molecules lack in terms of di-
versity and validity, as shown in Tables 1–2 and Figure 3.
The second strategy (Simonovsky and Komodakis 2018;
Jin, Barzilay, and Jaakkola 2018) consists of representing
molecules using molecular graphs, rather than SMILES rep-
resentations, and then developing deep generative models
for molecular graphs, in which atoms correspond to nodes
and bonds correspond to edges. However, current generative
models for molecular graphs share one or more of the fol-
lowing limitations, which preclude them from realizing all
their potential: (i) they can only generate (and be trained on)
molecules with the same number of atoms while, in practice,
molecules having similar properties often come with a dif-
ferent number of atoms and bonds; (ii) they are not invariant
to permutations of their node labels, however, graphs remain
isomorphic under permutation of their node labels; (iii) their
training procedure suffers from a quadratic complexity with
respect to the number of nodes in the graph, which make
it difficult to leverage a sizeable number of large molecules
during training; and, (iv) they generate molecular graphs by
combining a small set of molecular graphlets (or subgraphs).
The above shortcomings constrain the diversity of the gen-
erated molecules, as shown in Table 1 and Figure 3.

In this paper, we develop NeVAE, a deep generative
model for molecular graphs based on variational autoen-
coders that overcomes the above shortcomings. To do so,
it relies on several technical innovations, which distinguish
us from previous work (Dai et al. 2018; Kusner et al. 2017;
Gómez-Bombarelli et al. 2016; Simonovsky and Komodakis
2018; Jin, Barzilay, and Jaakkola 2018):
(i) Our probabilistic encoder learns to aggregate informa-

tion (e.g., atom and bond features) from a different num-
ber of hops away from a given atom and then map this
aggregate information into a continuous latent space,
as in inductive graph representation learning (Hamilton,

∗This work was partially done during B. Samanta’s internship at MPI-SWS.

1110

Ying, and Leskovec 2017; Lei et al. 2017). However, in
contrast with inductive graph representation learning, the
aggregator functions are learned via variational inference
so that the resulting aggregator functions are especially
well suited to enable the probabilistic decoder to gen-
erate new molecules rather than other downstream ma-
chine learning tasks such as, e.g., link prediction. More-
over, by using (symmetric) aggregator functions, it is in-
variant to permutations of the node labels and can encode
graphs with a variable number of atoms, as opposed to
existing graph generative models, with a few the notable
exception of those based on GCNs (Kipf and Welling
2016b).

(ii) Our probabilistic decoder jointly represents all edges
as an unnormalized log probability vector (or ‘logit’),
which then feeds a single multinomial edge distribution.
Such scheme allows for an efficient inference algorithm
with O(l) complexity, where l is the number of true
edges in the molecules, which is also invariant to per-
mutations of the node labels. In contrast, previous work
typically models the presence and absence of each po-
tential edge using a Bernoulli distribution and this leads
to inference algorithms with O(n2) complexity, where n
is the number of nodes, which are not permutation in-
variant.

(iii) Our probabilistic decoder is able to guarantee a set of lo-
cal structural and functional properties in the generated
graphs by using a mask in the edge distribution defini-
tion, which can prevent the generation of certain undesir-
able edges during the decoding process. While masking
have been increasingly used to account for prior (expert)
knowledge in generative models (Gómez-Bombarelli et
al. 2016; Kusner et al. 2017) based on SMILES, their
use in generative models for molecular graphs has been
lacking.

We evaluate our model using molecules from two publicly
available datasets, ZINC (Irwin et al. 2012) and QM9 (Ra-
makrishnan et al. 2014), and show that our model beats the
state of the art in terms of several relevant quality metrics,
i.e., validity, novelty and uniqueness.

We also observe that the resulting latent space represen-
tation of molecules exhibit powerful semantics—we can
smoothly interpolate between molecules—and generaliza-
tion ability—we can generate (valid) molecules that are
larger than any of the molecules in the datasets. Finally, by
utilizing Bayesian optimization over the latent representa-
tion, we can also identify molecules that maximize certain
desirable properties more effectively than alternatives. We
are releasing an open source implementation of our model
in Tensorflow. 1

Background on Variational Autoencoders
Variational autoencoders (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) are characterized
by a probabilistic generative model pθ(x|z)

of the observed variables x ∈ RN given the latent vari-
ables z ∈ RM , a prior distribution over the latent vari-

1https://github.com/Networks-Learning/nevae

ables p(z) and an approximate probabilistic inference model
qφ(z|x). In this characterization, pθ and qφ are arbitrary
distributions parametrized by two (deep) neural networks θ
and φ and one can think of the generative model as a prob-
abilistic decoder, which decodes latent variables into ob-
served variables, and the inference model as a probabilistic
encoder, which encodes observed variables into latent vari-
ables.

Ideally, if we use the maximum likelihood principle
to train a variational autoencoder, we should optimize
the marginal log-likelihood of the observed data, i.e.,
ED [log pθ(x)], where pD is the data distribution. Unfortu-
nately, computing log pθ(x) requires marginalization with
respect to the latent variable z, which is typically in-
tractable. Therefore, one resorts to maximizing a variational
lower bound or evidence lower bound (ELBO) of the log-
likelihood of the observed data, i.e.,

max
θ

max
φ

ED
[
−KL(qφ(z|x)||p(z)) + Eqφ(z|x)log pθ(x|z)

]
.

Finally, note that the quality of this variational lower bound
depends on the expressive ability of the approximate infer-
ence model qφ(z|x), which is typically assumed to be a nor-
mal distribution whose mean and variance are parametrized
by a neural network φ with the observed data x as an input.

NeVAE: A Variational Autoencoder
for Molecular Graphs

In this section, we first give a high-level overview of the de-
sign of NeVAE, our variational autoencoder for molecular
graphs, starting from the data it is designed for. Then, we
describe more in-depth the key technical aspects of its in-
dividual components. Finally, we elaborate on the training
procedure, scalability and implementation details.
High-level overview. We observe a collection of N molec-
ular graphs {Gi = (Vi, Ei)}i∈[N], where Vi and Ei denote
the corresponding set of nodes (atoms) and edges (bonds),
respectively, and this collection may contain graphs with a
different number of nodes and edges. Moreover, for each
molecular graph G = (V, E), we also observe a set of
node features F = {fu}u∈V and edge weights Y =
{yuv}(u,v)∈E . More specifically, the node features fu are
one-hot representations of the type of the atoms (i.e., C, H ,
N or O), and the edge weight yuv are the bond types (i.e.,
single, double, triple). Our goal is then to design a varia-
tional autoencoder for molecular graphs that, once trained on
this collection of graphs, has the ability of creating new plau-
sible molecular graphs, including node features and edge
weights. In doing so, it will also provide a latent representa-
tion of any graph in the collection (or elsewhere) with mean-
ingful semantics.

Following the above background on variational autoen-
coders, we characterize NeVAE by means of:

— Prior: p(z1, . . . , zn), where |V| = |F| = n ∼ Poisson(λn)
— Inference model (encoder): qφ(z1, . . . ,zn|V, E,F ,Y)
— Generative model (decoder): pθ(E,F ,Y|z1, . . . , zn)

In the above characterization, note that we define one latent
variable per node, i.e., we have a node-based latent represen-
tation, and the number of nodes is a random variables and, as

1111

W1W1W1 W2W2W2 WWW3..K3..K3..K

ccc1(1, ..,K), .., ccc|V|(1, ..,K)

c1c1c1(K)

c2c2c2(K)

ccc|V|−1(K)

ccc|V|(K)

cccu(1, ..,K)

cccv(1, ..,K)

cccw(1, ..,K)

φφφenc(ccc∗(1, ..,K))

µµµ1, ..,µµµ|V|
σσσ1, ..,σσσ|V|

Wh, bh

Wµ, bµ
Wσ , bσ

G,F ,Y
u

u

v

v

w

w

cccv(j) → cccv(j + 1)

zzzu

zzzv

zzzw

Figure 1: The encoder of our variational autoencoder for molecular graphs. From left to right, given a molecular graph G with
a set of node features F and edge weights Y , the encoder aggregates information from a different number of hops j ≤ K
away for each node v ∈ G into an embedding vector cv(j). These embeddings are fed into a differentiable function φenc which
parameterizes the posterior distribution qφ, from where the latent representation of each node in the input graph are sampled
from.

a consequence, both the latent representation as well as the
graph can vary in size. Next, we formally define the func-
tional form of the inference model, the generative model,
and the prior.
Inference model (probabilistic encoder). Given a graph
G = (V, E) with node features F and edge weights Y , our
inference model qφ defines a probabilistic encoding for each
node in the graph by aggregating information from differ-
ent distances. More formally, for each node u, the inference
model is defined as follows:

qφ(zu|V, E ,F ,Y) ∼ N (µu,diag(σu)) (1)
where zu is the latent variable associated to node u,
[µu,diag(σu)] = φenc (cu(1), . . . , cu(K)), and cu(k) ag-
gregates information from k hops away from u, i.e.,

cu(k) =

{
r(Wkfu) if k = 1

r
(
Wkfu �Λ

(
∪v∈N (u) yuv g(cv(k − 1)

))
if k > 1.

(2)
In the above,Wk are trainable weight matrices, which prop-
agate information between different search depths, Λ(.) is
a (possibly nonlinear) symmetric aggregator function in its
arguments, g(·) and r(·) are (possibly nonlinear) differen-
tiable functions, φenc is a neural network, and � denotes
pairwise product. Figure 1 describes our encoder architec-
ture.

The above node embeddings, defined by Eq. 2, are very
similar to the ones used in several graph representation
learning algorithms such as GraphSAGE (Hamilton, Ying,
and Leskovec 2017), column networks (Pham et al. 2017),
and GCNs (Kipf and Welling 2016a), the main difference
with our work is the way we will train the weight matrices
Wk. Here, we will use variational inference so that the re-
sulting embeddings are especially well suited to enable our
probabilistic decoder to generate new, plausible molecular
graphs. In contrast, the above algorithms use non variational
approaches to compute general purpose embeddings to feed
downstream machine learning tasks.

The following proposition highlights several desirable
theoretical properties of our probabilistic encoder (details in
arxiv version),2 which distinguishes our design from most
existing generative models of graphs (Jin, Barzilay, and
Jaakkola 2018; Simonovsky and Komodakis 2018):

2https://arxiv.org/abs/1802.05283

Proposition 1 The probabilistic encoder defined by Eqs. 1
and 2 has the following properties:

(i) For each node u, its corresponding embedding cu(k) is
invariant to permutations of the node labels of its neigh-
bors.

(ii) The weight matrices W1, . . . ,Wk do not depend on the
number of nodes and edges in the graph and thus a sin-
gle encoder allows for graphs with a variable number of
nodes and edges.

Generative model (probabilistic decoder). Given a set of
of n nodes with latent variables Z = {zu}u∈[n], our gener-
ative model pθ is defined as follows:

pθ(E ,Y,F|Z) = pθ(F|Z) pθ(E ,Y|Z), (3)

with
pθ(F|Z) =

∏
u∈V

pθ(fu|Z),

pθ(E,Y|Z) = pθ(l
∣∣Z) . pθ(E,Y|Z, l),

pθ(E,Y|Z, l) =
∏
k∈[l]

pθ(ek|Ek−1,F ,Z)pθ(yukvk |Yk−1,F ,Z),

where the ordering for the edge and edge weights is in-
dependent of node labels and hence permutation invariant,
ek and yukvk denote the k-th edge and edge weight under
the chosen order, and Ek−1 = {e1, . . . , ek−1} and Yk−1 =
{yu1v1 , . . . , yuk−1vk−1

} denote the k − 1 previously gener-
ated edges and edge weights respectively.

Moreover, the model characterizes the conditional proba-
bilities in the above formulation as follows. For each node,
it represents all potential node feature values fu = q as
an unnormalized log probability vector (or ‘logits’), feeds
this logit into a softmax distribution and samples the node
features. Then, it represents the average number of edges
through as a logit, feeds this logit into a Poisson distribu-
tion and samples the number of edges. Finally, it represents
all potential edges as logits and, for each edge, all poten-
tial edge weights as another logit, and it feeds the former
vector into a single softmax distribution and the latter vec-
tors each into a different softmax distribution. Moreover, the
edge distribution and the corresponding edge weight distri-
butions depend on a set of binary masks, which may depend
on the sampled node features and also get updated every
time a new edge and edge weight are sampled. By doing so,

1112

Figure 2: The decoder of our variational autoencoder for molecular graphs. From left to right, the decoder first samples the
number of nodes n = |V| from a Poisson distribution pn(λn) and it samples a latent vector zu per node u ∈ V from N (0, I).
Then, for each node u, it represents all potential node feature values as an unnormalized log probability vector (or ‘logits’),
where each entry is given by a nonlinearity θdecγ of the corresponding latent representation zu, feeds this logit into a softmax
distribution and samples the node features. Next, it feeds all latent vectors Z into a nonlinear log intensity function θdecβ (Z)
which is used to sample the number of edges. Thereafter, on the top row, it constructs a logit for all potential edges (u, v), where
each entry is given by a nonlinearity θdecα of the corresponding latent representations (zu, zv). Then, it samples the edges one
by one from a soft max distribution depending on the logit and a mask xe(Ek−1), which gets updated every time it samples a
new edge ek. On the bottom row, it constructs a logit per edge (u, v) for all potential edge weight values m, where each entry
is given by a nonlinearity θdecξ of the latent representations of the edge and edge weight value (zu, zv,m). Then, every time it
samples an edge, it samples the edge weight value from a soft max distribution depending on the corresponding logit and mask
xm(u, v), which gets updated every time it samples a new yukvk .

it prevents the generation of certain undesirable edges and
edges weights, allowing for the generated graph to fulfill a
set of predefined local structural and functional properties.

More formally, the distributions of each node feature, the
number of edges, each edge and edge weight are given by:

pθ(fu = q|Z) =
eθ
dec
γ (zu,q)∑

q′ e
θdecγ (zu,q′)

, pθ(l
∣∣Z) = pl(e

θdecβ (Z)),

pθ(e = (u, v)|Ek−1,Z) =
xeeθ

dec
α (zu,zv)∑

e′=(u′,v′)/∈Ek−1
xe′e

θdecα (zu′ ,zv′)
,

pθ(yuv = m|Yk−1,Z) =
xm(u, v)eθ

dec
ξ (zu,zv,m)∑

m′ 6=m xm′ (u, v)e
θdec
ξ

(zu,zv,m′)
,

where pl denotes a Poisson distribution, xe is the binary
mask for edge e and xm(u, v) is the binary mask for fea-
ture edge value m, and θdec• are neural networks. Note that
the parameters of the neural networks do not depend on the
number of nodes or edges in the molecular graph and the de-
pendency of the binary masks xe and xm(u, v) on the node
features and the previously generated edges Ek−1 and edge
weights Yk−1 is deterministic and domain dependent. Fig-
ure 2 summarizes our decoder architecture.

Note that, by using a softmax distribution, it is only nec-
essary to account for the presence of an edge, not its ab-
sence, and this, in combination with negative sampling, will
allow for efficient training and decoding, as it will become
clear later in this section. This is in contrast with previ-
ous generative models for graphs (Kipf and Welling 2016b;
Simonovsky and Komodakis 2018), which need to model
both the presence and absence of each potential edge. More-
over, we would like to acknowledge that, while masking may

be useful to account for prior (expert) knowledge, it may
be costly to check for some local (or global) structural and
functional properties on-the-fly.
Prior. Given a set of n nodes with latent variables Z =
{zu}u∈[n], pz(Z) ∼ N (0, I).
Training. Given a collection of N molecular graphs {Gi =
(Vi, Ei)}i∈[N], each with ni nodes, a set of node features
Fi and set of edge weights Yi, we train our variational
autoencoder for graphs by maximizing the evidence lower
bound (ELBO), as described in the previous section, plus
the log-likelihood of the Poisson distribution pλn modeling
the number of nodes in each graph. Hence we aim to solve:

maximize
φ,θ,λn

1

N

∑
i∈[N]

(
Eqφ(Zi|Vi,Ei,Fi,Yi) log pθ(Ei,Yi,Fi|Zi)

− KL(qφ||pz) + log pλn(ni)
)

(4)

Note that, in the above objective, computation of
Eqφ log pθ(Ei,Yi,Fi|Zi) requires to specify an order of
edges present in the graph Gi. To determine this order,
we use breadth-first-traversals (BFS) with randomized tie
breaking during the child-selection step. Such a tie break-
ing method makes the edge order independent of all node
labels except for the source node label. Therefore, to
make it completely permutation invariant, for each graph,
we sample the source nodes from an arbitrary distribu-
tion. More formally, we replace log pθ(Ei,Yi,Fi|Zi) with
logEs∼ζ(Vi)pθ(Ei,Yi,Fi|Zi) for each graph Gi, where s is
the randomly sampled source node for the BFS, and ζ is
the sampling distribution for s. Note that, the logarithm of a
marginalized likelihood is difficult to compute. Fortunately,
by using Jensen inequality, we can have a lower bound of
the actual likelihood:
logEs∼ζ(Vi)pθ(Ei,Yi,Fi|Zi) ≥ Es∼ζ(Vi) log pθ(Ei,Yi,Fi|Zi)

1113

Therefore, to train our model, we maximize

1

N

∑
i∈[N]

(
Eqφ(Zi|Vi,Ei,Fi,Yi),s∼ζ(Vi) log pθ(Ei,Yi,Fi|Zi)

− KL(qφ||pz) + log pλn(ni)
)
, (5)

The following theorem points out the key property of our
objective function (proven in arxiv version).3

Theorem 2 If the source distribution ζ does not depend on
the node labels, then the parameters learned by maximizing
the objective in Eq. 5 are invariant to the permutations of
the node labels.

Scalability and implementation details. In terms of
scalability, the major bottleneck is computing the gra-
dient of the first term in Eq. 5 during training, rather
than encoding and decoding graphs once the model is
trained. More specifically, given a source node for a net-
work without masks, an exact computation of the per
edge partition function of the log-likelihood of the edges,
i.e.,

∑
e′=(u′,v′)/∈Ek−1

exp(θdecα (zu′ , zv′)), requires O(|V|2)
computations, similarly as in most inference algorithms for
existing generative models of graphs, and hence is costly to
compute even for medium networks. Fortunately, in prac-
tice, we can approximate such partition function using neg-
ative sampling (Mikolov et al. 2013) which reduces the like-
lihood computation to O(l), where l = |E| is the number of
(true) edges in the graph. Therefore, for S samples of source
nodes, the complexity becomes O(Sl). Here, note that most
real-world graphs are sparse and thus l� |V|2.

Experiments on Real Data
In this section, we first show that our model beats sev-
eral state of the art machine learning models for molecule
design (Dai et al. 2018; Gómez-Bombarelli et al. 2016;
Kusner et al. 2017; Simonovsky and Komodakis 2018;
Jin, Barzilay, and Jaakkola 2018; Liu et al. 2018) in terms
of several relevant quality metrics, i.e., validity, novelty and
uniqueness. Then, by applying Bayesian optimization over
the latent space of molecules provided by our encoder, we
also show that our model can find a greater number of
molecules that maximize certain desirable properties. Fi-
nally we show that the continuous latent representations of
molecules that our model finds are smooth.
Experimental setup. We sample ∼10,000 drug-like com-
mercially available molecules from the ZINC dataset (Ir-
win et al. 2012) with E[n] = 44 atoms and ∼10,000
molecules from the QM9 dataset (Ramakrishnan et al. 2014;
Ruddigkeit et al. 2012) with E[n] = 21 atoms. For each
molecule, we construct a molecular graph, where nodes
are the atoms, the node features are the type of the atoms
i.e. fu ∈ {C,H,N,O}, edges are the bonds between two
atoms, and the weight associated to an edge is the type of
bonds (single, double or triple)4. Then, for each dataset, we
train our variational autoencoder for molecular graphs us-
ing batches comprised of molecules with the same number

3https://arxiv.org/abs/1802.05283
4We have not selected any molecule whose bond types are others than these three.

of nodes5. Finally, we sample 106 molecular graphs from
each of the (two) trained variational autoencoders using: (i)
G ∼ pθ(G|Z), where Z ∼ p(Z) and (ii) Z ∼ pθ(Z|G =
GT), where GT is a molecular graph from the correspond-
ing (training) dataset. In the above procedure, we only use
masking on the weight (i.e., type of bond) distributions both
during training and sampling to ensure that the valence of
the nodes at both ends are valid at all times, i.e., xm(u, v) =
I(m+nk(u) ≤ mmax(u)∧m+nk(v) ≤ mmax(v)), where
nk(u) is the current valence of node u and mmax(u) is the
maximum valence of node u, which depends on its type
fu. Moreover, during sampling, if there is no valid weight
value for a sampled edge, we reject it. To assess to which
extent masking helps, we also train and sample from our
model without masking. Here, we would like to highlight
that, while using masking during test does not lead to signif-
icant increase in the time it takes to generate a graph, using
masking during training does lead to an increase of 5% in
training time.

We compare the quality of the molecules generated by
our trained models and the molecules generated by sev-
eral state of the art competing methods: (i) GraphVAE (Si-
monovsky and Komodakis 2018), (ii) GrammarVAE (Kus-
ner et al. 2017), (iii) CVAE (Gómez-Bombarelli et al.
2016), (iv) SDVAE (Dai et al. 2018), (v) JTVAE (Jin,
Barzilay, and Jaakkola 2018) and (vi) CGVAE (Liu et al.
2018). Among them, GraphVAE, JTVAE and CGVAE use
molecular graphs, however, the rest of the methods use
SMILES strings, a domain specific textual representation of
molecules. We use the following evaluation metrics for per-
formance comparison:

(i) Novelty: we use this metric to evaluate to which degree
a method generates novel molecules, i.e., molecules
which were not present in the (training) dataset, i.e.
Novelty = 1 − |Cs ∩ D|/|Cs|, where Cs is the set of
generated molecules which are chemically valid, D is
the training dataset, and Novelty ∈ [0, 1].

(ii) Uniqueness: we use this metric to evaluate to what
extent a method generates unique chemically valid
molecules. We define, Uniqueness = |set(Cs)|/ns
where ns is the number of generated molecules and
Unique ∈ [0, 1].

(iii) Validity: we use this metric to evaluate to which de-
gree a method generates chemically valid molecules6.
That is, Validity = |Cs|/ns where ns is the num-
ber of generated molecules, Cs is the set of generated
molecules which are chemically valid, and note that
Validity ∈ [0, 1].

Quality of the generated molecules. Tables 1–2 compare
our trained models to the state of the art methods above in
terms of novelty, uniqueness, and validity. For GraphVAE
and CGVAE we report the results reported in the paper and,
for SDVAE, since there is no public domain implementation

5We batch graphs with respect to the number of nodes for efficiency reasons since,
every time that the number of nodes changes, we need to change the size of the com-
putational graph in Tensorflow.

6We used the opensource cheminformatics suite RDkit (http://www.rdkit.org) to
check the validity of a generated molecule.

1114

Novelty
Dataset NeVAE NeVAE∗ GraphVAE GrammarVAE CVAE SDVAE JTVAE CGVAE
ZINC 1.000 1.000 - 1.000 0.980 1.000 0.999 1.000
QM9 1.000 1.000 0.661 1.000 0.902 - 1.000 0.943

Uniqueness
Dataset NeVAE NeVAE∗ GraphVAE GrammarVAE CVAE SDVAE JTVAE CGVAE
ZINC 0.999 0.588 - 0.273 0.021 1.000 0.991 0.998
QM9 0.998 0.676 0.305 0.197 0.031 - 0.371 0.986

Table 1: Novelty and Uniqueness of the molecules generated using NeVAE and all baselines. The sign ∗ indicates no masking.
For both the datasets, we report Novelty (Uniqueness) over valid (106) sampled molecules.

Validity
Dataset Sampling type NeVAE NeVAE∗ GraphVAE GrammarVAE CVAE SDVAE JTVAE CGVAE

ZINC Z ∼ P (Z)
Z ∼ P (Z|GT)

1.000
1.000

0.590
0.580

0.135
-

0.440
0.381

0.021
0.175

0.432
-

1.000
1.000

1.000
-

QM9 Z ∼ P (Z)
Z ∼ P (Z|GT)

0.999
0.999

0.682
0.660

0.458
-

0.200
0.301

0.031
0.100

-
-

0.997
0.965

1.000
-

Table 2: Validity the molecules generated using NeVAE and all baselines. The sign ∗ indicates no masking. For both the datasets,
we report the numbers over 106 sampled molecules.

of these methods at the time of writing, we have used the
sampled molecules from the prior provided by the authors
for the ZINC dataset. For CVAE, GrammarVAE and JTVAE,
we run their public domain implementations in the same set
of molecules that we used. We find that, in terms of novelty,
both our trained models and all competing methods except
for the GraphVAE, which assumes a fixed number of nodes,
are able to (almost) always generate novel molecules. How-
ever, we would also like to note that novelty is only defined
over chemically valid molecules. Therefore, despite hav-
ing (almost) perfect novelty scores, all baselines except JT-
VAE generate significantly fewer novel molecules than our
method. In terms of uniqueness, which is defined over the
set of sampled molecules, we observe that all baseline meth-
ods, except CGVAE (for ZINC and QM9) and JTVAE (for
ZINC), perform very poorly in both datasets in comparison
with NeVAE. In terms of validity, our trained model signif-
icantly outperform four competing methods—GraphVAE,
GrammarVAE, CVAE and SDVAE—even without the use
of masking, and achieve a comparable performance to JT-
VAE and CGVAE. In contrast to our model, GrammarVAE,

1 2 3 4 5

No of BO iterations

0

50

100

150

#
U

n
iq

u
e

 m
o

ls

GrammarVAE
CVAE
JTVAE
NeVAE

(a) Uniqueness

0 50 100 150 200

i'th best molecule

-10

-5

0

5

S
c
o

re
s

GrammarVAE

CVAE

JTVAE

NeVAE

(b) Score

Figure 3: Property maximization using Bayesian optimiza-
tion. Each plot shows the values of y(m) in decreasing or-
der for unique molecules. Panel (a) shows the variation of
Uniqueness with the no. of BO iterations. Panel (b) shows
the values of y(m) sorted in the decreasing order.

Objective NeVAE GrammarVAE CVAE JTVAE
LL -1.45 -1.75 -2.29 -1.54
RMSE 1.23 1.38 1.80 1.25
Fraction of valid molecules 1.00 0.77 0.53 1.00
Fraction of unique molecules 0.58 0.29 0.41 0.32

Table 3: Property prediction performance (LL and RMSE)
using Sparse Gaussian processes (SGPs) and property max-
imization using Bayesian Optimization (BO).

y(m) = 2.826 (1st) y(m) = 2.477 (2nd) y(m) = 2.299 (3rd)

Figure 4: Best molecules found by Bayesian Optimization
(BO) using our model.

CVAE and SDVAE use SMILES, a domain specific string
based representation, and thus they may be constrained by
its limited expressiveness. Among them, GrammarVAE and
SDVAE achieve better performance by using a grammar
to favor valid molecules. GraphVAE generates molecular
graphs, as our model, however, its performance is inferior to
our method because it assumes a fixed number of nodes, it
samples edges independently from a Bernoulli distribution,
and is not permutation invariant.
Bayesian optimization. Here, we leverage our model to
discover novel molecules with desirable properties. Simi-
larly as in previous work (Gómez-Bombarelli et al. 2016;
Kusner et al. 2017; Jin, Barzilay, and Jaakkola 2018), we
use Bayesian optimization (BO) to identify novel molecules
mwith a high value of the octanol-water partition coefficient
(logP) y(m), penalized by synthetic accessibility (SA) score
and number of long cycles. More specifically, we first sam-

1115

(179.26, -3.03) (179.26, -3.99) (166.26, -4.05) (179.26, -4.86) (179.26, -4.76)

(179.26, -3.03) (179.26, -4.52) (179.26, -4.81) (179.26, -4.78) (179.26, -5.37)

(179.26, -3.03) (179.26, -4.78) (179.26, -4.81) (179.26, -4.40) (168.28, -4.09)

(179.26, -3.03) (179.26, -4.73) (165.23, -5.10) (165.26, -4.66) (166.26, -4.04)

(179.26, -3.03) (179.26, -4.90) (179.26, -4.62) (166.26, -4.38) (179.26, -5.23)

(a) ZINC dataset

(129.15, -4.51) (133.14, -4.27) (166.16, -3.77) (103.16, -3.73) (103.16, -3.22)

(129.15, -4.51) (129.15, -4.89) (112.17, -4.72) (112.17, -5.13) (112.17, -3.78)

(129.15, -4.51) (120.15, -3.82) (116.16, -4.77) (100.16, -4.17) (99.17, -2.75)

(129.15, -4.51) (112.17, -4.30) (112.17, -4.91) (116.16, -2.99) (120.14, -3.26)

(129.15, -4.51) (120.15, -3.82) (116.16, -4.42) (103.16, -4.21) (112.17, -4.48)

(b) QM9 Dataset

Figure 5: Molecules sampled using the probabilistic decoder G ∼ pθ(G|Z), where Z = {zi + aizi| zi ∈ Z0, ai ≥ 0} and
ai are given parameters. In each row, we use same molecule set ai > 0 for a single arbitrary node i (denoted as •) and set
aj = 0, j 6= i for the remaining nodes. Under each molecule we report its molecular weight and synthetic accessibility score.

Figure 6: Molecules sampled using probabilistic decoder,
i.e. Gi ∼ pθ(G|Z), given the (sampled) latent representa-
tion Z of a given molecule G from the ZINC dataset. The
sampled molecules are topologically similar to each other as
well as the original.

ple 3,000 molecules from our ZINC dataset, which we split
into training (90%) and test (10%) sets. Then, for our model
and each competing model with public domain implemen-
tations, we train a sparse Gaussian process (SGP) (Snelson
and Ghahramani 2006) with the latent representations and
y(m) values of 100 inducing points sampled from the train-
ing set. The SGPs allow us to make predictions for the prop-
erty values of new molecules in the latent spaces. Then, we
run 5 iterations of batch Bayesian optimization (BO) using
the expected improvement (EI) heuristic (Jones, Schonlau,
and Welch 1998), with 50 (new) latent vectors (molecules)
per iteration. Here, we compare the performance of all mod-
els using several quality measures: (a) the predictive per-
formance of the trained SGPs in terms of log-likelihood
(LL) and root mean square error (RMSE) on the test set and
(b) the average value E [y(m)], fraction of valid molecules
and fraction of good molecules, i.e., y(m) > 0, among the
molecules found using EI.

Table 3, Figure 3 and Figure 4 summarize the results.
In terms of log-likelihood and RMSE, the SGP trained us-
ing the latent representations provided by our model outper-

forms all baselines. In terms of the property values E [y(m)]
of the discovered molecules and fraction of valid and good
molecules, BO under NeVAE also outperforms all baselines.
Here, we would like to highlight that, while BO under JT-
VAE is able to find a few molecules with larger property
value than BO under NeVAE, it is unable to discover a size-
able set of unique molecules with high property values.

Smooth latent space of molecules. In this section, we first
demonstrate (qualitatively) that the latent space of molecules
inferred by our model is smooth. Given a molecule, along
with its associated graph G, node features F and edge
weights Y , we first sample its latent representation Z using
our probabilistic encoder, i.e., Z ∼ qφ(Z|G,F ,Y). Then,
given this latent representation, we generate various molec-
ular graphs by sampling from our probabilistic decoder, i.e.,
Gi ∼ pθ(G|Z). Figure 6 summarizes the results for one
molecule from ZINC dataset, which show that the sampled
molecules are topologically similar to the given molecule.

Next, we show that our encoder, once trained, creates a
latent space representation of molecules with powerful se-
mantics. In particular, since each node in a molecule has a
latent representation, we can make fine-grained changes to
the structure of a molecule by perturbing the latent represen-
tation of single nodes. To this aim, we proceed by first select-
ing one molecule with n nodes from the ZINC dataset. Given
its corresponding graph, node features and edge weights, G,
F and Y , we sample its latent representation Z0. Then, we
sample new molecular graphs G from the probabilistic de-
coder G ∼ pθ(G|Z), where Z = {zi + aizi| zi ∈ Z0, ai ≥
0} and ai are given parameters. Figure 5 provides several ex-
amples across both datasets, which show that the latent space
representation is smooth and, as the distance from the initial
molecule increases in the latent space, the resulting molecule
differs more from the original. Here, note that the interpola-
tion is smooth both in terms of graph structure and relevant
chemical properties, e.g., synthetic accessibility score and
molecular weight.

1116

Conclusions
In this work, we have introduced a variational autoencoder
for molecular graphs, that is permutation invariant of the
nodes labels of the graphs they are trained with, and allow
for graphs with different number of nodes and edges. More-
over, the decoder is able to guarantee a set of local structural
and functional properties in the generated graphs through
masking. Finally, we have shown that our variational au-
toencoder can also be used to discover valid and diverse
molecules with certain desirable properties more effectively
than several state of the art methods.

Our work also opens many interesting venues for future
work. For eg. in the design of our variational autoencoder,
we have assumed graphs to be static, however, it would be
interesting to augment our design to dynamic graphs by,
e.g., incorporating a recurrent neural network. We have per-
formed experiments on a single real-world application, e.g.,
automatic chemical design, however, it would be interesting
to explore other applications e.g. an end-to-end generative
modeling of molecules with specified properties.
Acknowledgements. B. Samanta was supported by a
Google India Ph.D. Fellowship and the “Learning Repre-
sentations from Network Data” project sponsored by Intel.
P. K. Chattaraj would like to thank DST, New Delhi for the
J.C.Bose National Fellowship.

References
Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; and Song, L. 2018.
Syntax-directed variational autoencoder for structured data.
In ICLR.
Gómez-Bombarelli, R.; Duvenaud, D.; Hernández-Lobato,
J. M.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.;
and Aspuru-Guzik, A. 2016. Automatic chemical design
using a data-driven continuous representation of molecules.
arXiv preprint arXiv:1610.02415.
Hamilton, W.; Ying, R.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. NIPS.
Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; and
Coleman, R. G. 2012. Zinc: a free tool to discover chemistry
for biology. Journal of chemical information and modeling
52(7):1757–1768.
Jin, W.; Barzilay, R.; and Jaakkola, T. 2018. Junction
tree variational autoencoder for molecular graph generation.
arXiv preprint arXiv:1802.04364.
Jones, D. R.; Schonlau, M.; and Welch, W. J. 1998. Effi-
cient global optimization of expensive black-box functions.
Journal of Global optimization 13(4):455–492.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kipf, T. N., and Welling, M. 2016a. Semi-supervised clas-
sification with graph convolutional networks.
Kipf, T. N., and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Kusner, M. J.; Paige; Brooks; and Hernández-Lobato, J. M.
2017. Grammar variational autoencoder. arXiv preprint
arXiv:1703.01925.

Lei, T.; Jin, W.; Barzilay, R.; and Jaakkola, T. 2017. Deriv-
ing neural architectures from sequence and graph kernels.
ICML.
Liu, Q.; Allamanis, M.; Brockschmidt, M.; and Gaunt,
A. L. 2018. Constrained graph variational autoencoders
for molecule design. arXiv preprint arXiv:1805.09076.
Merz, K. M.; Ringe, D.; and Reynolds, C. H. 2010. Drug
design: structure-and ligand-based approaches. Cambridge
University Press.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS.
Paul, S. M.; Mytelka, D. S.; Dunwiddie, C. T.; Persinger,
C. C.; Munos, B. H.; Lindborg, S. R.; and Schacht, A. L.
2010. How to improve r&d productivity: the pharmaceutical
industry’s grand challenge. Nature reviews Drug discovery
9(3):203.
Pham, T.; Tran, T.; Phung, D. Q.; and Venkatesh, S. 2017.
Column networks for collective classification. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, 2485–2491.
Polishchuk, P. G.; Madzhidov, T. I.; and Varnek, A. 2013.
Estimation of the size of drug-like chemical space based on
gdb-17 data. Journal of computer-aided molecular design
27(8):675–679.
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; and Von Lilien-
feld, O. A. 2014. Quantum chemistry structures and proper-
ties of 134 kilo molecules. Scientific data 1:140022.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. arXiv preprint arXiv:1401.4082.
Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; and Rey-
mond, J.-L. 2012. Enumeration of 166 billion organic small
molecules in the chemical universe database gdb-17. Jour-
nal of chemical information and modeling 52(11):2864–
2875.
Simonovsky, M., and Komodakis, N. 2018. Graphvae: To-
wards generation of small graphs using variational autoen-
coders. arXiv preprint arXiv:1802.03480.
Snelson, E., and Ghahramani, Z. 2006. Sparse gaussian
processes using pseudo-inputs. In Advances in neural infor-
mation processing systems.

1117

