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Abstract

Recent progress in deep learning is revolutionizing the health-
care domain including providing solutions to medication rec-
ommendations, especially recommending medication combi-
nation for patients with complex health conditions. Existing
approaches either do not customize based on patient health
history, or ignore existing knowledge on drug-drug inter-
actions (DDI) that might lead to adverse outcomes. To fill
this gap, we propose the Graph Augmented Memory Net-
works (GAMENet), which integrates the drug-drug interac-
tions knowledge graph by a memory module implemented
as a graph convolutional networks, and models longitudinal
patient records as the query. It is trained end-to-end to pro-
vide safe and personalized recommendation of medication
combination. We demonstrate the effectiveness and safety of
GAMENet by comparing with several state-of-the-art meth-
ods on real EHR data. GAMENet outperformed all baselines
in all effectiveness measures, and also achieved 3.60% DDI
rate reduction from existing EHR data.

Introduction
Today abundant health data such as longitudinal electronic
health records (EHR) enables researchers and doctors to
build better computational models for recommending accu-
rate diagnoses and effective treatments. Medication recom-
mendation algorithms have been developed to assist doc-
tors in making effective and safe medication prescriptions.
A series of deep learning methods have been designed for
medication recommendation. There are mainly two types of
such methods: 1) Instance-based medication recommenda-
tion models that perform recommendation based only on the
current encounter and do not consider the longitudinal pa-
tient history, see (Zhang et al. 2017; Wang et al. 2017).
As a result, a patient with newly diagnosed hypertension
will likely be treated the same as another patient who has
suffered chronic uncontrolled hypertension. Such a limita-
tion affects accuracy and utility of the recommendations. 2)
Longitudinal medication recommendation methods such as
(Choi et al. 2016b; Choi et al. 2016a; Lipton et al. 2015;
Le, Tran, and Venkatesh 2018) that leverage the temporal
dependencies within longitudinal patient history to predict
future medication. However, to our best knowledge, none of
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them considers drug safety in their modeling, especially ig-
noring the adverse drug-drug interactions (DDI) which are
harder to prevent than single drug adverse reaction. Drugs
may interact when they are prescribed and taken together,
thus DDIs are common among patients with complex health
conditions. Preventing DDIs is important since they could
lead to health deterioration or even death.

To fill the gap, we propose Graph Augmented Memory
Networks (GAMENet), an end-to-end deep learning model
that takes both longitudinal patient EHR data and drug
knowledge base on DDIs as inputs and aims to generate
effective and safe recommendation of medication combina-
tion. In particular, GAMENet consists of 1) patient queries
based on representations learned by a dual recurrent neural
networks (Dual-RNN), and 2) an integrative and dynamic
graph augmented memory module. It builds and fuses across
multiple data sources (drug usage information from EHR
and DDI knowledge from drug knowledge base (Tatonetti et
al. 2012b)) with graph convolutional networks (GCN) (Kipf
and Welling 2017) in Memory Bank (MB). The knowledge
of combined uses of medications and drug-drug interaction
relations are thus integrated. It further writes patient history
to dynamic memory (DM) in key-value form, which mim-
ics case-based retrievals in clinical practice, i.e., considering
similar patient representations from the DM. Information
from the graph augmented memory module can be retrieved
by patient representation as query to generate memory out-
puts. Then, memory outputs and query will be concatenated
to make effective and safe recommendations. GAMENet is
optimized to balance between effectiveness and safety by
combining multi-label prediction loss from EHR data and
DDI loss for DDI knowledge.

To summarize, our work has the following contributions:

• We jointly model the longitudinal patient records as an
EHR graph and drug knowledge base as a DDI graph in
order to provide effective and safe medication recommen-
dations. This is achieved by optimizing a combined loss
that balances between multi-label prediction loss (for ef-
fectiveness) and DDI loss (for safety).

• We propose graph augmented memory networks which
embed multiple knowledge graphs using a late-fusion
mechanism based GCN into the memory component and
enable attention-based memory search using query gener-
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ated from longitudinal patient records.

• We demonstrate the effectiveness and safety of our model
by comparing with several state-of-the-art methods on
real EHR data. GAMENet outperformed all baselines in
effectiveness measures, and achieved 3.60% DDI rate re-
duction from existing EHR data (i.e., identify and reduce
existing DDI cases compared with raw EHR data).

Related Works
Memory Augmented Neural Networks (MANN) have
shown initial successes in NLP research areas such as
question answering (Weston, Chopra, and Bordes 2015;
Sukhbaatar et al. 2015; Miller et al. 2016; Kumar et al.
2016). Memory Networks (Weston, Chopra, and Bordes
2015) and Differentiable Neural Computers (DNC) (Graves
et al. 2016) proposed to use external memory components
to assist the deep neural networks in remembering and stor-
ing things. After that, various MANN based models have
been proposed such as (Sukhbaatar et al. 2015; Kumar et al.
2016; Miller et al. 2016). In healthcare, memory networks
can be valuable due to their capacities in memorizing med-
ical knowledge and patient history. DMNC (Le, Tran, and
Venkatesh 2018) proposed a MANN model for medication
combination recommendation task using EHR data alone. In
this paper, we use memory component to fuse multi-model
graphs as memory bank to facilitate recommendation.

Graph Convolutional Networks (GCN) emerged for in-
ducing informative latent feature representations of nodes
from arbitrary graphs (Kipf and Welling 2017; Defferrard,
Bresson, and Vandergheynst 2016; Hamilton, Ying, and
Leskovec 2017; Chen, Ma, and Xiao 2018). GCN models
learn node embeddings in the following manner: Given each
graph node initially attached with a feature vector, the em-
bedding vector of each node are the transformed weighted
sum of the feature vectors of its neighbors. All nodes are
simultaneously updated to perform a layer of forward prop-
agation. The deeper the network, the larger the local neigh-
borhood. Thus global information is disseminated to each
graph node for learning better node embeddings. GCNs
haven been successfully used to model biomedical n etworks
such as drug-drug interaction (DDI) graphs. For example,
(Ma et al. 2018) models each drug as a node and DDIs as
node labels in the drug association network and extended the
GCN to embed multi-view drug features and edges. (Zitnik,
Agrawal, and Leskovec 2018) used GCN to model the drug
interaction problems by constructing a large two-layer mul-
timodal drug interaction graphs. In this paper, we use GCN
to model medication as nodes and DDIs as links.

Medication Combination Recommendation could be
categorized into instance-based and longitudinal medica-
tion recommendation methods. Instance-based methods fo-
cus on current health conditions. Among them, Leap (Zhang
et al. 2017) formulates a multi-instance multi-label learn-
ing framework and proposes a variant of sequence-to-
sequence model based on content-attention mechanism to
predict combination of medicines given patient’s diagnoses.
Longitudinal-based methods leverage the temporal depen-

dencies among clinical events, see (Choi et al. 2016b;
Choi et al. 2016a; Lipton et al. 2015; Le, Tran, and
Venkatesh 2018; Xiao, Choi, and Sun 2018). Among them,
RETAIN (Choi et al. 2016b) is based on a two-level neu-
ral attention model which detects influential past visits and
significant clinical variables within those visits. DMNC (Le,
Tran, and Venkatesh 2018) highlighted the memory compo-
nent to enhance the memory ability of recurrent neural net-
works and combined DNC with RNN encoder-decoder to
predict medicines based on patient’s history records which
has shown high accuracy. However, safety issue is often ig-
nored by longitudinal-based methods. In this work, we de-
sign a memory component but target at building a structured
graph augmented memory, where we not only embed DDI
knowledge but also design a DDI loss to reduce DDI rate.

Method

Problem Formulation
Definition 1 (Patient Records) In longitudinal EHR data,
each patient can be represented as a sequence of multi-
variate observations: P (n) = [x

(n)
1 ,x

(n)
2 , · · · ,x(n)

T (n) ] where
n ∈ {1, 2, . . . , N}, N is the total number of patients; T (n)

is the number of visits of the nth patient. To reduce clut-
ter, we will describe the algorithms for a single patient and
drop the superscript (n) whenever it is unambiguous. Each
visit xt = [ctd, c

t
p, c

t
m] of a patient is concatenation of corre-

sponding diagnoses codes ctd, procedure codes ctp and med-
ications codes ctm. For simplicity, we use ct∗ to indicate
the unified definition for different type of medical codes.
ct∗ ∈ {0, 1}|C∗| is a multi-hot vector, where C∗ denotes the
medical code set and |C∗| the size of the code set.

Definition 2 (EHR&DDI Graph) EHR graph and DDI
graph can be denoted as Ge = {V, Ee} and Gd =
{V, Ed} respectively, where node set V = Cm =
{cm1

, cm2
, · · · , cmn

} represents the set of medications, Ee
is the edge set of known combination medication in EHR
database and Ed is the edge set of known DDIs between
a pair of drugs. Adjacency matrix Ae,Ad ∈ R|Cm|×|Cm|

are defined to clarify the construction of edge Ee, Ed. For
Ae, we firstly create a bipartite graph with drug on one side
and drug combination on the other side. Then Ae = AbA

ᵀ
b

where Ab ∈ R|Cm|×l is the adjacency matrix of the bipartite
graph, Ab[i, j] = 1 when ith medication exists in jth medi-
cations combination and the number of unique medications
combination denotes as l. For Ad, only pair-wise drug-drug
interactions are considered, Ad[i, j] = 1 when the ith med-
ication has interaction with the jth one.

Problem 1 (MedicationCombinationRecommendation)
Given medical codes of the current visit at time t (exclud-
ing medication codes) ctd, c

t
p, patient history P =

[x1,x2, · · · ,xt−1] and EHR graph Ge, and DDI graph Gd,
we want to recommend multiple medications by generating
multi-label output ŷt ∈ {0, 1}|Cm|.
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Figure 1: The GAMENet: At current tth visit, the multi-hot input ctd, c
t
p are input into Embedding Networks to generate embed-

ding etd, e
t
p using Eq. 1. Then Dual-RNN generates current hidden states ht

d,h
t
p by accepting both embeddings from Embed-

dings Network and longitudinal hidden state ht−1 of RNN denoted by return arrow described in Eq. 2. We use concatenated
ht
d,h

t
p as query qt (a.k.a. patient representation) in Eq. 3 to output ot

b by reading from Memory Bank (MB) Mb in Eq. 7 gen-
erated from late-fusion based multiple knowledge graph in Eq.4, 5. Meantime, the Dynamic Memory (DM) stores key-value
form history information along time by Eq. 6 and can be used to generate ot

d in Eq. 7. Finally, query and memory outputs are
concatenated in Eq. 8 to make recommendation. In training phase, combined loss Eq. 10 is optimized to find optimal model
parameters.

The GAMENet

As illustrated in Fig. 1, GAMENet includes the following
components: a medical embedding module, a patient repre-
sentation module, and a graph augmented memory module.
Next we will first introduce these modules and then provide
details of training and inference of GAMENet.

Medical Embeddings Module As mentioned before, a
visit xt consists of [ctd, c

t
p, c

t
m] where each of ct∗ is a multi-

hot vector at the tth visit. The multi-hot vector ct∗ is bi-
nary encoded showing the existence of each medical codes
recorded at the tth visit. Like (Choi et al. 2016b) used a lin-
ear embedding of the input vector, we derive medical em-
beddings for ctd, c

t
p separately at the tth visit as follows:

et∗ = W∗,ec
t
∗ (1)

where W∗,e ∈ R|C∗|×d is the embedding matrix to learn.
Thus a visit xt is transformed to x̂t = [etd, e

t
p, c

t
m].

Patient Representation Module To enable personalized
medication recommendation which is tailored using patient
EHR data, we design a Dual-RNN to learn patient repre-
sentations from multimodal EHR data where each RNN en-
codes only one type of medical codes. The reason is that it
is quite possible for a clinical visit to have missing modality
(e.g. only diagnosis modality without procedure). Because
of that, we model diagnosis and procedure modalities sep-
arately using two RNNs. Formally, for each input vector
in transformed clinical history [x̂1, x̂2, · · · , x̂t], we retrieve
em, ep and utilize RNN to encode visit-level diagnosis and

procedure embeddings respectively as follows:

ht
d = RNNd(e

1
d, e

2
d, · · · , etd)

ht
p = RNNp(e

1
p, e

2
p, · · · , etp) (2)

Thus, the RNNs accept all patient history visit medical em-
beddings {et′∗ }(t′ ≤ t) to produce hidden states ht

∗ for fur-
ther generating query (a.k.a. patient representation) in Eq. 3.

Graph Augmented Memory Module To leverage drug
knowledge, we construct a graph augmented memory mod-
ule that not only embeds and stores the EHR graph and the
DDI graph as facts in Memory Bank (MB), but also inserts
patient history to Dynamic Memory (DM) key-value form to
fully capture the information from different views. Inspired
by (Weston, Chopra, and Bordes 2015), four memory com-
ponents I, G, O, R are proposed which mimics the architec-
ture of modern computer in some way:

• I: Input memory representation converts inputs into
query for memory reading. Here we can use hidden states
from Dual-RNN to generate query as follows:

qt = f([ht
d,h

t
p]) (3)

where we concatenate hidden diagnosis state ht
d and pro-

cedure state ht
p as the input patient health state. f(·) is the

transform function which projects hidden states to query
and is implemented as single hidden layer fully connected
neural network.
• G: Generalization is the process of generating and up-

dating the memory representation. We design the memory
module by storing graph augmented memory representa-
tion as facts in Memory Bank (MB) and insert patient his-
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Notation Description

P ∈ R|C|×T patient records
C∗ medical codes set of type ∗
c∗,i ith medical code in C∗ of type ∗
c∗ ∈ R|C∗| multi-hot vector of type ∗
xt ∈ R|C| concatenation of medical codes ct∗
G∗ EHR or DDI Graph {V, E∗}
V vertex set same as Cm
E∗ edge set of ∗ dataset
e∗ ∈ Rd medical embeddings of type ∗
h∗ ∈ Rd hidden state
qt ∈ Rd query at tth visit
Ab ∈ R|Cm|×l adjacency matrix of bipartite graph
Ae ∈ R|Cm|×|Cm| adjacency matrix of Ge

Ad ∈ R|Cm|×|Cm| adjacency matrix of Gd

Mb ∈ R|Cm|×d Memory Bank (MB)
M t

d ∈ R|t−1|×(d+|Cm|) Dynamic Memory (DM)
M t

d,k ∈ R|t−1|×d Keys in DM
M t

d,v ∈ R|t−1|×|Cm| Values in DM
at
c ∈ R|Cm| content-attention weight

at
s ∈ R|t−1| temporal-attention weight

at
m ∈ R|Cm| history medication distribution

ot
∗ ∈ Rd memory output

ŷt ∈ R|Cm| multi-label predictions at tth visit
Ŷ recommended medication set
Y ground truth of medication set

Table 1: Notations used in GAMENet

tory to Dynamic Memory (DM) as key-value pairs to fully
capture the information from different view.
For Memory Bank (MB) Mb, two adjacency matrices
Ae,Ad are used. Following the GCN procedure (Kipf
and Welling 2017), each A∗ is preprocessed as follows:

Ã∗ = D̃− 1
2 (A∗ + I)D̃− 1

2 (4)

where D̃ is a diagonal matrix such that D̃ii =
∑

j Aij

and I are identity matrices.
Then we applied a two-layer GCN on each graph to
learn improved embeddings on drug combination usage
and DDIs respectively. The output Mb is generated as a
weighted sum of the two graph embeddings.

Z1 = Ãetanh(ÃeWe1)W1

Z2 = Ãdtanh(ÃdWe2)W2

Mb = Z1 + βZ2 (5)

where We1, We2 ∈ R|Cm|×d are medication embed-
dings from EHR graph and DDI graph (each contains
|Cm| number of d-dimensional vectors), W1, W2 ∈ Rd×d

are hidden weight parameter matrices. All W∗ are up-
dated during training phase. Then, graph node embed-
dings Z1, Z2 ∈ R|Cm|×d are generated using GCN. Fi-
nally we combine different node embeddings as Memory
Bank Mb ∈ R|Cm|×d where β is a weighting variable to
fuse different knowledge graphs.

For Dynamic Memory (DM) M t
d, the combined patient

{qt′}(t′ < t) (the keys) associated with corresponding
multi-hot medication vector {ct′m} (the values) are in-
serted into DM as key-value pairs. This kind of design
provides a way to locate most similar patient representa-
tion over time and retrieve the proper weighted medica-
tions set. Specifically, we can incrementally insert key-
value pair after each visit step and treat M t

d as a vector-
ized indexable dictionary as follows:

M t
d = {qt′ : ct

′

m}t−1
1 (6)

where M t
d is empty when t = 1. For clarity, we use

M t
d,k = [q1; q2; · · · ; qt−1] ∈ R|t−1|×d to denote the key

vectors and M t
d,v = [c1m; c2m; · · · ; ct−1

m ] ∈ R|t−1|×|Cm|

to denote the value vectors at tth visit.
• O: Output memory representation produces outputs ot

b
and ot

d given the patient representation qt (the query) and
the current memory state Mb,M

t
d. Here, we apply atten-

tion based reading procedure to retrieve most relevant in-
formation with respect to query qt as outputs ot

b,o
t
d as

follows:

ot
b = Mᵀ

b

at
c  

Softmax(Mbq
t)

ot
d = Mᵀ

b

at
m  

(M t
d,v)

ᵀ Softmax(M t
d,kq

t)  
at

s

(7)

where ot
b ∈ Rd is directly retrieved using content-

attention at
c based on similarity between patient represen-

tation (query) and facts in Mb.
For ot

d ∈ Rd, it firstly considers similar patient represen-
tation from patient history records M t

d,k with temporal-
attention at

s. Then at
s is utilized to generate history med-

ication distribution at
m by weighted sum of history multi-

hot medication in M t
d,v . Finally, we can get ot

d by further
retrieved information from Mb using at

m from temporal
aspect.
In addition, the attention based reading procedure makes
the model differentiable so that it can be updated end-to-
end using back propagation.

• R: Response is the final step to utilize patient representa-
tion and memory output to predict the multi-label medi-
cation as follows:

ŷt = σ([qt,ot
b,o

t
d]) (8)

where σ is the sigmoid function.

Training and Inference
In the training phase, we need to find the optimal parame-
ters including embedding matrix We1,We2,W∗,e, weight
parameter matrix W1,W2 in GCN, hidden weight in
f(·),RNN as auxiliary model parameter θ. We introduce
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the combined loss in order to find an optimal balance
between recommendation accuracy and safety. At the end
of the part, training algorithm will be given.

Multi-label Prediction Loss (MLL) Since the medica-
tion combination recommendation can be seen as sequen-
tial multi-label prediction, we combine two commonly used
multi-label loss functions, namely, the binary cross entropy
loss Lbce and the multi-label margin loss Lmulti. We use
Lmulti since it optimizes to make the predicted probability
of ground truth labels has at least 1 margin larger than others.
Thus, threshold value in Equation. 11 is easier to be fixed.

Lbce = −
∑T

t

∑
i y

t
i log σ(ŷ

t
i) + (1− yt

i) log(1− σ(ŷt
i))

Lmulti =
∑T

t

∑|Cm|
i

∑|Ŷ t|
j

max(0,1−(ŷt[Ŷ
t
j ]−ŷt[i]))

L

Lp = π[0]Lbce + π[1]Lmulti (9)

where ŷ[i], ŷt
i means the value at ith coordinate at tth

visit, ŷt[Ŷ t
j ] means jth predicted label indexed by predicted

label set Ŷ t at tth visit and π[·] are the mixture weights
(π[0], π[1] ≥ 0, π[0] + π[1] = 1).

DDI Loss (DDI) is designed to control DDIs in the recom-
mendation.

LDDI =

T∑
t

∑
i,j

(Ad ⊙ (ŷᵀ
t ŷt))[i, j]

where every element in ŷᵀ
t ŷt ∈ RN×N gives the pair-wise

probability of predicted result. ⊙ is the element-wise
product. Intuitively, for two memory representation i,j, if i
j combined to induce a DDI, then Ad[i, j] = 1. Thus large
pair-wise DDI probability will yield large LDDI .

Combined Loss functions When training, the accuracy and
DDI Rate often increase together. The reason is that drug-
drug interactions also exist in real EHR data (ground truth
medication set Y ). Thus both the incorrectly predicted med-
ications and correctly predicted medications may increase
the DDI Rate. To achieve the accurate model with low DDI
Rate s we need to find the balance between MLL and DDI.
Inspired by Simulated Annealing (Kirkpatrick, Gelatt, and
Vecchi 1983), we can transform between NRL and MLL
with a certain probability as follows:

L =

⎧⎪⎨⎪⎩
Lp if s′ ≤ s

LDDI ,with prob. p = exp(− s′−s
Temp

) if s′ > s

Lp,with prob. p = 1− exp(− s′−s
Temp

) if s′ > s

(10)

on one hand, there will be high probability to use LDDI

when the DDI Rate s′ of recommended medication set cal-
culated in this step is larger than the expected DDI Rate
s. On the other hand, decay rate ϵ applied on temperature
Temp← ϵTemp makes p low when model becomes stable
along training time. Current DDI Rate s′ can be calculated
using DDI Rate Equation (see Metrics in Experiments sec-
tion below) without sum across all test samples. The idea to

use combined loss like simulated annealing form helps the
model find best combination of parameters to demonstrate
effectiveness and safety in the meantime. In inference phase,
thank to MLL, if the correctly predicted labels have at least
1 margin larger than others we can fix threshold value as 0.5.
Then, the predicted label set corresponds to:

Ŷt = {ŷj
t |ŷ

j
t > 0.5, 1 ≤ j ≤ ||Cm||}. (11)

The training algorithm is detailed as follows.

Algorithm 1 Training GAMENet
Require: Training set R, training epoches N , mixture weight π

in Eq. 9, expected DDI Rate s, initial temperature Temp and
weight decay ϵ in Eq. 10;
Calculate adjacency matrix A∗;
Using uniform distribution to initialize auxiliary model parame-
ters θ ∼ U(−1, 1);
Obtain Memory Bank Mb using Eq. 4, 5;
for i = 1 to N ∗ |R| do

Sample a patient P = [x1,x2, · · · ,xTi ] from R;
Reset Dynamic Memory Md;
for t = 1 to Ti do

Obtain medical embeddings et
d, e

t
p in Eq. 1;

Obtain Dual-RNN ht
d,h

t
d in Eq. 2;

Generate patient representation qt in Eq. 3;
Read from Mb and M t

d using attention weight at
c,a

t
s,a

t
m

and generate memory outputs ot
b,o

t
d in Eq. 7;

Calculate medication prediction ŷt using Eq. 8;
Generate M t+1

d by inserting (qt, ctm) into M t
d in Eq. 6;

end for
Evaluate and obtain DDI Rate s′ of current patient;
Update θ by optimizing loss in Eq. 10 and decay Temp ←
ϵTemp;

end for

Experiments
Experimental Setup
We evaluate GAMENet1 model by comparing against
other baselines on recommendation accuracy and success-
ful avoidance of DDI. All methods are implemented in Py-
Torch (Paszke et al. 2017) and trained on an Ubuntu 16.04
with 8GB memory and Nvidia 1080 GPU.

Data Source We used EHR data from MIMIC-III (John-
son et al. 2016). Here we select a cohort where patients have
more than one visit. In practice, if we use all the drug codes
in an EMR record, the medication set can be very large,
each day in hospital, the doctor can prescribe several types
of medications for the patient. Hence, we choose the set of
medications prescribed by doctors during the first 24-hour
as the first 24-hour is often the most critical time for pa-
tients to obtain correct treatment quickly. In addition, we
used DDI knowledge from TWOSIDES dataset (Tatonetti
et al. 2012a). In this work, we keep the Top-40 severity
DDI types and transform the drug coding from NDC to ATC
Third Level for integrating with MIMIC-III. The statistics of
the datasets are summarized in Table 2.

1https://github.com/sjy1203/GAMENet
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Table 2: Statistics of the Data
# patients 6,350
# clinical events 15,016
# diagnosis 1,958
# procedure 1,426
# medication 145
avg # of visits 2.36
avg # of diagnosis 10.51
avg # of procedure 3.84
avg # of medication 8.80
# medication in DDI knowledge base 123
# DDI types in knowledge base 40

Baselines We consider the following baseline algorithms.

• Nearest will simply recommend the same combination
medications at previous visit for current visit (i.e., Ŷt =
Yt−1)

• Logistic Regression (LR) is a logistic regression with L2
regularization. Here we represent the input data by sum of
one-hot vector. Binary relevance technique (Luaces et al.
2012) is used to handle multi-label output.

• Leap (Zhang et al. 2017) is an instance-based medication
combination recommendation method.

• RETAIN (Choi et al. 2016b) can provide sequential pre-
diction of medication combination based on a two-level
neural attention model that detects influential past visits
and significant clinical variables within those visits.

• DMNC (Le, Tran, and Venkatesh 2018) is a recent work
of medication combination prediction via memory aug-
mented neural network based on differentiable neural
computers (DNC) (Graves et al. 2016).

Metrics To measure the prediction accuracy, we used Jac-
card Similarity Score (Jaccard), Average F1 (F1) and Preci-
sion Recall AUC (PRAUC). Jaccard is defined as the size of
the intersection divided by the size of the union of ground
truth medications Y (k)

t and predicted medications Ŷ (k)
t .

Jaccard =
1∑N

k

∑Tk

t 1

N∑
k

Tk∑
t

|Y (k)
t ∩ Ŷ

(k)
t |

|Y (k)
t ∪ Ŷ

(k)
t |

where N is the number of patients in test set and Tk is the
number of visits of the kth patient. Average Precision (Avg-
P) and Average Recall (Avg-R), and F1 are defined as:

Avg-P(k)
t =

|Y (k)
t ∩ Ŷ

(k)
t |

|Y (k)
t |

, Avg-R(k)
t =

|Y (k)
t ∩ Ŷ

(k)
t |

|Ŷ (k)
t |

F1 =
1∑N

k

∑Tk
t 1

N∑
k

Tk∑
t

2× Avg-P(k)
t × Avg-R(k)

t

Avg-P(k)
t + Avg-R(k)

t

where t means the tth visit and k means the kth patient in
test dataset.

To measure medication safety, we define DDI Rate as per-
centage of medication recommendation that contain DDIs.

DDI Rate =

∑N
k

∑Tk
t

∑
i,j |{(ci, cj) ∈ Ŷ

(k)
t |(ci, cj) ∈ Ed}|∑N

k

∑Tk
t

∑
i,j 1

where the set will count each medication pair (ci, cj) in rec-
ommendation set Ŷ if the pair belongs to edge set Ed of the
DDI graph. Here N is the size of test dataset and Tk is the
number of visits of the kth patient.

The relative DDI Rate (△ DDI Rate %) is defined as the
percentage of DDI rate change compared to DDI rate in
EHR test dataset given DDI rate of the algorithm:

△ DDI Rate % =
DDI Rate - DDI Rate (EHR)

DDI Rate (EHR)

Evaluation Strategies We randomly divide the dataset
into training, validation and testing set in a 2/3 : 1/6 : 1/6
ratio. For LR, we use the grid search technique over typ-
ical range of hyper-parameter to search the best hyperpa-
rameter values which result in L2 norm penalty with weight
as 1.1. For our methods, the hyperparameters are adjusted
on evaluation set which result in expected DDI Rate s as
0.05, initial temperature Temp as 0.5, weight decay ϵ as
0.85 and mixture weights π = [0.9, 0.1]. For all deep
learning based methods, we choose a gated recurrent unit
(GRU) (Cho et al. 2014) as the implementation of RNN and
utilize dropout (Srivastava et al. 2014) with probability of
an element to be zeroed as 0.4 on the output of embeddings.
The embedding size and hidden layer size for GRU is set as
64 and 64 respectively, word and memory size for DMNC
model is 64 and 16 which is the same as (Le, Tran, and
Venkatesh 2018). Training is done through Adam (Kingma
and Ba 2014) at learning rate 0.0002. We fix the best model
on evaluation set within 40 epochs and report the perfor-
mance in test set.

Results
Table 3 compares the performance on accuracy and safety
issue. Results show GAMENet has the highest score among
all baselines with respect to Jaccard, PR-AUC, and F1.

As for the baseline models, Nearest and LR achieved
about 4% lower score compared to GAMENet in terms of
Jaccard and F1. The Nearest method also gives us the clue
that the visit is highly important for the medications com-
bination recommendation task. For both methods, the DDI
rates are very close to the base DDI rate in the EHR data.
This implies without knowledge guidance that it will be
hard to remove DDIs that already exist in clinical practice.
For deep learning baselines, instance-based method Leap
achieved lower performance than those temporal models
such as RETAIN and DMNC, which confirmed the impor-
tant of temporal information in patient past EHRs.

On the other hand, for longitudinal methods such as RE-
TAIN and DMNC, they both achieve higher scores on Jac-
card, PRAUC, and F1 compared with others. DMNC how-
ever recommends a large bunch of medication combination
set which may be one reason that lead to high DDI Rate.

For our methods, we compare the GAMENet and its
variant GAMENet (w/o DDI). Without DDI knowledge,
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Table 3: Performance Comparison of Different Methods. Note that the base DDI rate in EHR test data is 0.0777.
Methods DDI Rate △ DDI Rate % Jaccard PR-AUC F1 Avg # of Med. # of parameters
Nearest 0.0791 + 1.80% 0.3911 0.3805 0.5465 14.77 -
LR 0.0786 + 1.16% 0.4075 0.6716 0.5658 11.42 -
Leap 0.0532 − 31.53% 0.3844 0.5501 0.5410 14.42 436,884
RETAIN 0.0797 + 2.57% 0.4168 0.6620 0.5781 16.68 289,490
DMNC 0.0949 + 22.14% 0.4343 0.6856 0.5934 20.00 527,979
GAMENet (w/o DDI) 0.0853 + 9.78% 0.4484 0.6878 0.6059 15.13 452,434
GAMENet 0.0749 − 3.60% 0.4509 0.6904 0.6081 14.02 452,434

Table 4: Example Recommended Medications for a Patient with Two Visits. Here “unseen” indicates the medications predicted
but are not in ground truth, while “missed” refers to the medications that are in the ground truth but are not predicted.

Diagnosis Methods Recommended Medication Combination

1st Visit:
Malignant neoplasm
of brain
Hyperlipidmia
Gout

Ground Truth N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, C10A, J01D, N03A, A04A, H04A
Nearest 0 correct + 15 missed
LR 3 correct (N02B, A01A, A06A) + 12 missed
Leap 8 correct (N02B, A02B, A06A, A12C, C07A, B01A, C10A, A04A) + 7 missed
RETAIN 0 correct + 15 missed
DMNC 12 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, C10A, N03A) + 6 unseen + 3 missed
GAMENet 11 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, B01A, N03A, A04A) + 4 missed

2nd Visit:
Malignant neoplasm
of brain
Cerebral Edema
Hypercholesterolemia
Gout

Ground Truth N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, J01D, N03A, N05A, A04A
Nearest 13 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, J01D, N03A, A04A) + 2 unseen + 1 missed
LR 3 correct (N02B, A01A, A06A) + 11 missed
Leap 7 correct (N02B, A01A, A02B, A06A, B05C, A12C, B01A) + 2 unseen + 7 missed
RETAIN 10 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, N02A, B01A, N03A) + 5 unseen + 4 missed
DMNC 12 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, N03A, A04A) + 7 unseen + 2 missed
GAMENet 13 correct (N02B, A01A, A02B, A06A, B05C, A12C, C07A, C02D, N02A, B01A, J01D, N03A, A04A) + 1 unseen + 1 missed

GAMENet (w/o DDI) is also better than other methods
which shows the overall framework does work. With DDI
knowledge, both the performance and DDI rate are im-
proved. The result is statistically significant using two-tailed
t-test after ten runs of these two methods.

Case Study
We choose a patient from test dataset based on the consid-
eration of demonstrating the model effect on harder cases:
there are diagnoses and medications change among visits.
As shown in Table. 4, the patient has 3 diagnoses for the 1st

visit and two extra diagnoses Cerabral Edema, Hypercholes-
terolemia for the 2nd visit. The ground truth medications
prescribed by doctors and recommended medications by dif-
ferent methods are listed in the table. Overall, GAMENet
performs the best with 11 correct, 13 correct medications
for two visit respectively, only missed 4 and 1 medications
and wrongly predict 1 (unseen) medication for 2nd visit.
For Nearest and RETAIN methods, they lack the ability to
recommend medication combination for 1st visit. DMNC
tries to recommend more medications which result in more
wrongly predicted medications than other methods. To men-
tion that, all methods except LR and GAMENet will recom-
mend the combination of N02B (Analgesics and Antipyret-
ics) and C10A (Lipid-modifying Agents), which can lead to
harmful side effect such as Myoma. This harmful combina-
tion also existed in ground truth of the patient’s at 1st visit.
For the 2nd visit, C10A is removed from ground truth med-
ications set, which may indicate doctors also try to correct
their decision. Another pair of medications A01A (Stomato-
logical Preparations) and N03A (Antiepileptic Drugs) exists

in the ground truth of both visits. Their combined use could
cause allergic bronchitis. Most methods including Nearest,
RETAIN, DMNC recommend them. GAMENet also recom-
mends them due to the trade off between effectiveness and
safety.

Conclusion

In this work, we presented GAMENet, an end-to-end deep
learning model that aims to generate effective and safe rec-
ommendations of medication combinations via memory net-
works whose memory bank is augmented by integrated drug
usage and DDI graphs as well as dynamic memory based
on patient history. Experimental results on real-world EHR
showed that GAMENet outperformed all baselines in effec-
tiveness measures, and achieved 3.60% DDI rate reduction
from existing EHR data. As we noticed the trade-off be-
tween effectiveness and safety measures, a possibly reward-
ing avenue of future research is to simultaneous recommend
medication replacements that share the same indications of
the harmful drugs but will not induce adverse DDIs.
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