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Abstract

As a competitive alternative to the Markowitz mean-variance
portfolio, the Kelly growth optimal portfolio has drawn suffi-
cient attention in investment science. While the growth op-
timal portfolio is theoretically guaranteed to dominate any
other portfolio with probability 1 in the long run, it practically
tends to be highly risky in the short term. Moreover, empirical
analysis and performance enhancement studies under practi-
cal settings are surprisingly short. In particular, how to handle
the challenging but realistic condition with insufficient train-
ing data has barely been investigated. In order to fill voids,
especially grappling with the difficulty from small samples,
in this paper, we propose a growth optimal portfolio strategy
equipped with ensemble learning. We synergically leverage
the bootstrap aggregating algorithm and the random subspace
method into portfolio construction to mitigate estimation er-
ror. We analyze the behavior and hyperparameter selection
of the proposed strategy by simulation, and then corroborate
its effectiveness by comparing its out-of-sample performance
with those of 10 competing strategies on four datasets. Ex-
perimental results lucidly confirm that the new strategy has
superiority in extensive evaluation criteria.

1 Introduction
How to wisely construct an investment portfolio with access
to multiple assets has been a long-lasting question of great
concern to both individual and institutional investors (Brandt
2010). The seminal work by (Markowitz 1952) presents a
mean-variance framework as one prevalent answer to this
question. Meanwhile, the growth optimal portfolio, which is
originally considered for gambling by (Kelly 1956) and in-
troduced into investment by (Latané 1959), offers a valuable
alternative. In addition, various successful investors, such as
Warren Buffet, James Simons and John Maynard Keynes,
are reported to have adopted Kelly-type strategies to manage
their funds (MacLean, Thorp, and Ziemba 2011). Briefly,
different from the myopic and risk-return tradeoff consid-
eration in the mean-variance framework, the Kelly growth
optimal portfolio is designed to maximize the long-term ex-
ponential growth rate of an investment capital over multiple
periods. On the one hand, in mild conditions it has been the-
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oretically proved dominating the value of any other portfo-
lio over the long haul and requiring the least time to reach
a preassigned wealth target (Breiman 1961). On the other
hand, however, with the advent of the growth optimal port-
folio its overly high risk in the short term serves as one
major source of enduring debates on its merit as a norma-
tive investment rule in portfolio research (Samuelson 1979;
Ziemba 2015). Moreover, in contrast to the unremitting
efforts expended to improve the poor out-of-sample per-
formance for the classical mean-variance portfolio (Kolm,
Tütüncü, and Fabozzi 2014), empirical studies and enhanc-
ing methods for the growth optimal portfolio are surprisingly
scarce (Estrada 2010; Bottazzi and Santi 2017).

In portfolio construction, balancing stationarity and esti-
mation accuracy of model input parameters has been one
practical conundrum (Broadie 1993). On the one hand, since
return data from 20 years ago might have little bearing on re-
turns this year, parameters are unlikely to be stationary over
a long period of time. On the other hand, while the estima-
tion errors decrease when more data are used, more data
demand a longer time horizon when the data frequency is
fixed. To overcome this dilemma between stationarity and
accuracy, one oft-quoted approach in Markowitz’s frame-
work is the resampled mean-variance portfolio proposed in
(Michaud 1989). In effect, it applies a parametric bootstrap
aggregating algorithm to reduce estimation risk and advance
out-of-sample performance. However, its efficacy has been
continually called into question due to its limited or even no
improvement over Markowitz’s portfolio (Wolf 2013).

As yet, to the best of our knowledge, no work exists on ap-
plying appropriate ensemble methods into Kelly’s portfolio
to boost its performance. Intuitively, as the growth optimal
strategy essentially relies on the complete knowledge of the
joint distribution of asset returns, insufficient data for esti-
mation would dramatically deteriorate its performance. Its
degeneration is more severe than that of the mean-variance
portfolio, where only the first two moments of asset returns
need estimation. Meanwhile, ensemble learning as a rich
area for tools has achieved impressive success in heighten-
ing performance of a vast class of existing algorithms (Zhou
2012). Hence, how to exploit ensemble learning in Kelly’s
portfolio deserves a thorough and fresh investigation.

Motivated by the preceding consideration, in this paper,
we propose an ensemble growth optimal portfolio strategy.
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Specifically, we concentrate on facilitating the applicabil-
ity of the Kelly growth optimal portfolio from a practical
standpoint when the number of assets and the number of his-
torical asset return data are close. In our study, we synergi-
cally combine the bootstrap aggregating algorithm (Breiman
1996) and the random subspace method (Ho 1998) in the
Kelly growth optimal portfolio to mitigate estimation risk
rooted in a small sample size. In particular, the new strategy
is composed of two loops. The outer loop follows a para-
metric bootstrap aggregating algorithm. In each iteration it
calls the inner loop to generate one basis portfolio and then
takes the average over all the generated basis portfolios to
determine the final portfolio strategy. The inner loop em-
ploys a subset resampling method illuminated by the ran-
dom subspace method. For each desired basis portfolio it
averages over multiple estimated optimal weights from re-
sampled small portfolios. Such an approach targets at re-
ducing estimation errors by sacrificing some diversification
benefits. For validation we analyze its behavior and hyper-
parameter selection in a simulation study, and then empiri-
cally compare its out-of-sample performance with those of
10 other strategies on four datasets. Experimental results ev-
idently show that the new strategy has considerable superi-
ority in extensive evaluation criteria.

2 Background and Related Work
In this section, we review finance and machine learning pa-
pers on the Kelly growth optimal portfolio, and then recapit-
ulate relevant observations in the Markowitz mean-variance
portfolio and ensemble methods that motivate our work.

The growth optimal portfolio, also called the log-optimal
portfolio or Kelly’s criterion, makes investment decisions by
maximizing the growth rate of the invested capital (Kelly
1956; Latané 1959). It is equivalent to maximizing the geo-
metric mean return or the median wealth of a portfolio (Lu-
enberger 1998). However, limited work has been undertaken
from empirical and performance enhancing aspects. Specif-
ically, (Hunt 2005) shows that the growth optimal portfo-
lio is commonly unattainable due to huge leveraging and
volatility. (Estrada 2010) concludes that the growth optimal
portfolio is exceedingly aggressive for short-term investors.
(Bottazzi and Santi 2017) demonstrate that among 11 strate-
gies including the growth optimal portfolio no clear winner
emerges. A review may be referred to (Christensen 2005).

Meanwhile, the successful records of leveraging machine
learning algorithms into numerous regimes have promoted
their roles in portfolio research as a new trend (Kolm,
Tütüncü, and Fabozzi 2014). Over years machine learning
researchers have been deeply inspired by Kelly’s criterion
in portfolio construction. Among them, (Cover 1991) in his
seminal work proposes a universal portfolio strategy based
on perfect knowledge of the future without making any as-
sumption on the assets return dynamics. It is analogous to
Kelly’s portfolio in hindsight. (Kalai and Vempala 2002)
present an efficient implementation of Cover’s algorithm to
retard the exponential growth of computational costs with
the number of assets for universal portfolios. (Agarwal et
al. 2006) consider an online Newton step algorithm to com-
pute the portfolio in the universal portfolio context. (Györfi,

Ottucsák, and Walk 2012) publish a self-contained text con-
tributing its main content on Kelly’s portfolio with machine
learning. (Shen et al. 2015) and (Shen and Wang 2016) intro-
duce bandit learning and Thompson sampling into portfolio
construction, respectively. (Li et al. 2017) provide an online
learning portfolio framework in the presence of transaction
costs. (Uziel and El-Yaniv 2018) underscore its asymptotic
properties with tail risk constraints under unknown station-
ary and ergodic processes. An in-depth review may be found
in the monograph by (Li and Hoi 2015).

On the one hand, the well-known mean-variance portfolio
often has poor out-of-sample performance, especially when
the number of assets is larger than that of data (Broadie
1993). That is primarily because estimation errors in in-
put parameters, i.e., the first two moments of asset returns,
are amplified by optimization and then propagate into the
solution (Michaud 1989). Among efforts in retrofitting its
performance, a strand of work respectively design two-
fund, three-fund and four-fund aggregating portfolios to
cancel propagated errors in optimal solutions by a hand-
ful of sophisticated basis portfolios (Kan and Zhou 2007;
Tu and Zhou 2011; Kan, Wang, and Zhou 2016). Their ex-
periments on moderately large samples have substantiated
the error cancellation idea through boosted performance.
On the other hand, ensemble learning virtually shares the
theme of diversification with portfolio research (Derbeko,
El-Yaniv, and Meir 2002). It replaces financial assets by base
learners from algorithms. The level of diversity of individual
learners determines the generalization quality of the aggre-
gated learner. In particular, (Shen and Wang 2017) apply a
subset resampling algorithm into the mean-variance portfo-
lio and obtain promising results. Thus, we believe that en-
semble learning could be a more general and effective ap-
proach for canceling estimation errors in Kelly’s portfolio
than aforementioned multiple fund aggregations .

Further, among ensemble methods, the bootstrap aggre-
gating algorithm (bagging) and the random subspace method
are particularly efficacious in improving weak learners when
the training set is small (Rokach 2010; Polikar 2006). For a
decreasing learning curve, i.e., that the generalization error
of the base learner decreases with an increase in the train-
ing sample size, the random subspace method is commonly
recommended. For a flat and non-decreasing learning curve,
bagging could be advantageous when the sample size is crit-
ical (Skurichina and Duin 2002). As Kelly’s portfolio im-
plicitly requires estimating a high-dimensional distribution
of asset returns, estimation errors in all the moments and co-
moments of the distribution will be amplified by optimiza-
tion and then affect the solution. If the distribution is statis-
tically stationary, implying that the learning curve would be
decreasing, then the random subspace method will take ef-
fect. In addition, if the decreasing rate of the learning curve
is low ascribed to regime shift or high volatility reflected in
the selected data span, then bagging may be instrumental in
the out-of-sample performance as well. Noticeably, (Kleiner
et al. 2014) present a scalable bootstrap for massive data by
combining multiple ensemble methods. Therefore, for im-
proving the Kelly growth optimal portfolio, we attempt to
infuse bagging and the random subspace method.
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3 Methodology
In this section, we first introduce notations and finance
terms. Then we describe the proposed portfolio selection
strategy. Finally we discuss properties and behaviors of the
new method in a simulation study.

Notations
In a frictionless, self-financing, discrete-time and finite hori-
zon investment environment, we denote a series of trading
periods as tk = k∆t, k = 0, . . . ,m, where ∆t represents
one week or one month, depending upon the rebalancing in-
terval in the context. For simplicity, we use k as the index to
indicate the trading period at time tk hereinafter. From time
tk−1 to tk the gross return vector of n risky assets acces-
sible to investors is denoted as Rk = (Rk,1, . . . , Rk,n)

⊤.
The gross return Rk,i for the i-th asset is computed as
Rk,i = Sk,i/Sk−1,i, where Sk,i and Sk−1,i represent the
prices of the i-th asset at time tk and tk−1, respectively. De-
note by ωk = (ωk,1, . . . , ωk,n)

⊤ the vector of the portfolio
weights as the investment decision at time tk. The i-th el-
ement of ωk specifies the invested percentage of wealth in
the i-th asset. The completion investment condition reads
ω⊤

k 1 = 1, where 1 stands for the n × 1 vector of ones.
ωk,i > 0 means that investors take a long position of the i-th
asset; ωk,i < 0 indicates a short sale of the i-th asset. For
a short sale position, investors sell the borrowed i-th asset
for cash and then invest it in other assets. If the price of the
borrowed asset surges, investors who have obligation to buy
back and return the borrowed asset will suffer from a loss.
The realized portfolio net return rk from time tk−1 to tk is
computed as rk = R⊤

k ωk−1 − 1.

Ensemble Growth Optimal Portfolio
At time tk investors construct the unconstrained growth op-
timal portfolio based on the following optimization:

max
ωk

Ek[ln(ω
⊤
k Rk)] s.t. ω⊤

k 1 = 1, (1)

where the symbol Ek[·] denotes the conditional expectation
up to time tk. As portfolio position constraints are generally
equivalent to some shrinkage estimators that can uninten-
tionally curtail estimation risk (Jagannathan and Ma 2003),
no position constraints are imposed for obtaining an uncon-
taminated assessment of the proposed method.

In order to compute the conditional expectation, we need
to know the multivariate probability distribution of asset re-
turns. Practically, given τ number of periods of return data
up to time tk as {Rl}kl=k−τ+1, assuming the returns are
identically and independently distributed (i.i.d.), the opti-
mization (1) can be approximated by

max
ωk

k∑
l=k−τ+1

1

τ
ln(ω⊤

k Rl) s.t. ω⊤
k 1 = 1, (2)

where the continuous distribution of asset returns is dis-
cretely approximated by a probability mass function (Uziel
and El-Yaniv 2018; Bottazzi and Santi 2017). The objective
function in (2) with a logarithmic function implicitly rests on
sample estimates of all the moments and comoments of the

Algorithm 1 Ensemble Growth Optimal Portfolio

1: Inputs: τ : number of periods of return data; n: num-
ber of assets; {Rl}kl=k−τ+1: historical return data for
training; Rk+1: one out-of-sample return for testing;
n1: number of resamples; n2: size of each resample; n3:
number of resampled subsets; n4: size of each subset;

2: Compute the sample covariance matrix Σ̂k and the sam-
ple mean µ̂k of the return data {Rl}kl=k−τ+1;

3: for h = 1 → n1 do
4: Generate n2 normally distributed returns of all the n

assets {R̃h
l }

n2

l=1 based on the parameters Σ̂k and µ̂k;
5: for j = 1 → n3 do
6: Randomly sample a set Ij of n4 indices from

{1, . . . , n} without replacement;
7: Select the return data {R̃h,j

l }n2

l=1 from {R̃h
l }

n2

l=1 ac-
cording to the index set Ij ;

8: Compute the optimal subset portfolio weights ω̃h,j
k

by solving optimization (2) with {R̃h,j
l }n2

l=1;
9: Construct the weights for the basis portfolio

ω̂h,j
k = (ω̂h,j

k,1 , . . . , ω̂
h,j
k,n)

⊤ through
10: for i = 1 → n do
11: ω̂h,j

k,i = ω̃h,j
k,i I{i ∈ Ij};

12: Construct the basis portfolio from the n3 subsets as
ω̂h

k = n−1
3

∑n3

j=1 ω̂
h,j
k ;

13: Aggregate the basis portfolios as ω̂k = n−1
1

∑n1

h=1 ω̂
h
k ;

14: Compute the realized out-of-sample portfolio net return
r̂k+1 = R⊤

k+1ω̂k − 1;
15: Outputs: The vector of portfolio weights ω̂k and the

realized out-of-sample portfolio return r̂k+1.

distribution from the data {Rl}kl=k−τ+1. While approximat-
ing a high-dimensional distribution by a small set of sample,
i.e., τ ≈ n, is formidably challenging, the accurate quantifi-
cation of comovements in asset returns is critical in portfo-
lio construction. As such, in our study, we apply ensemble
learning to lessen the impact of the associated estimation er-
rors on the optimal solution.

The proposed ensemble growth optimal portfolio (EGO)
presented in Algorithm 1 is straightforward to implement.
The algorithm consists of an outer loop and an inner loop.
At each time tk, the outer loop of EGO follows a parametric
bagging algorithm that repeats the basis portfolio construc-
tion in the inner loop for n1 times and then takes the average
over the generated n1 basis portfolios to produce the final
portfolio strategy. The inner loop applies a subset resam-
pling approach inspired from the random subspace method
to construct each basis portfolio by averaging over n3 opti-
mal weights from n3 resampled small portfolios.

Specifically, in the h-th outer iteration for h = 1, . . . , n1,
EGO first generates n2 normally distributed returns of all n
assets {R̃h

l }
n2

l=1 based on the sample covariance matrix Σ̂k

and the sample mean of returns µ̂k estimated from the his-
torical data {Rl}kl=k−τ+1. Second, using {R̃h

l }
n2

l=1 as the in-
put sample, the inner loop of EGO as the basis portfolio con-
structor produces the h-th basis portfolio ω̂h

k . Third, EGO
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attains the portfolio strategy by averaging over the derived
n1 basis portfolios ω̂k = n−1

1

∑n1

h=1 ω̂
h
k . Accordingly, the

realized out-of-sample portfolio net return r̂k+1 from time
tk to tk+1 is computed as r̂k+1 = R⊤

k+1ω̂k − 1.
In the j-th inner iteration for j = 1, . . . , n3, EGO uni-

formly at random samples n3 subsets of size n4 ≤ n from
the original n assets. Denote by Ij ⊂ {1, . . . , n} the cor-
responding index set with |Ij | = n4. Denote by {R̃h,j

l }n2

l=1
the associated return data according to the index set Ij . The
selected subset of returns {R̃h,j

l }n2

l=1 has a size of n2 × n4

with the typical size order of n4 ≤ n ≤ n2. Next, for each
subset, EGO computes the optimal subset portfolio weights
ω̃h,j

k by solving the optimization problem (2) based on the
lower-dimensional data {R̃h,j

l }n2

l=1. This step essentially de-
creases the dimensionality of the distribution involved in
optimization from n to n4. Then, the inner loop averages
over portfolio weights from all the subsets to generate the
weights for the basis portfolio as ω̂h

k = n−1
3

∑n3

j=1 ω̂
h,j
k ,

where ω̂h,j
k = (ω̂h,j

k,1 , . . . , ω̂
h,j
k,n)

⊤ is a prolonged n × 1 col-
umn vector with its element as ω̂h,j

k,i = ω̃h,j
k,i I{i ∈ Ij}, and

the symbol I(·) stands for an indicator function.
In particular, if n1 = 1 and n2 = τ , the outer loop degen-

erates and only the subset resampling step in the inner loop
remains functional. We term this case as the subset resam-
pled growth optimal portfolio (SS) for simplicity. If n3 = 1
and n4 = n, the inner loop is redundant and only bagging
in the outer loop remains effective. We term this case as the
resampled growth optimal portfolio (RE) for brevity. Like-
wise, if n1 = 1, n2 = τ , n3 = 1 and n4 = n, EGO degen-
erates to the classical growth optimal portfolio (GO).

Discussion
EGO collaboratively integrates bagging in the outer loop and
subset resampling in the inner loop to alleviate the estima-
tion risk from the parameter uncertainty by sacrificing some
diversification benefits. The pivotal hyperparameters that de-
termine its performance characteristics include the number
of resamples n1, the size of each resample n2, the number
of resampled subsets n3 and the size of each subset n4. The
embedded structure of the two loops assists with their se-
lection. The former two are demanded in the outer loop; the
latter two are needed in the inner loop. On the one hand, if
available computing power is unrestricted, sufficiently large
values of n1, n2 and n3 should be preferred to achieve con-
vergence. Thus, sensitivity analysis for those three hyperpa-
rameters will be emphasized. On the other hand, however,
a tradeoff exists when we determine n4. The smaller the
subset size is, the more accurate the estimation of the n4-
dimensional joint distribution would be, yet the more diver-
sification benefits within the basis portfolio would get lost,
and vice versa. Undoubtedly, a large value of n3 increases
diversification across basis portfolios. Thus, while general
results for the optimal hyperparameters are unavailable as
they would hinge on the underlying return dynamics of as-
sets, our study below offers some insights and suggestions.

In Figure 1, we investigate the empirical behavior of EGO
with respect to the four hyperparameters in constructing

growth frontiers by simulation. Briefly, a growth frontier
plots the best growth and risk tradeoff curve that a set of
assets could possibly achieve by following one given strat-
egy (Luenberger 1998). One growth frontier dominates an-
other when the former lies on the upper left of the latter.
Following (Broadie 1993), we report two types of frontiers:
actual and true frontiers. An actual frontier represents out-
of-sample performance, whereas a true frontier stands for
the best possible performance. In the case with a lognormal
return model the growth optimal portfolio has a closed-form
solution, so we can construct the true frontiers in our simu-
lation study.

From Figure 1a to Figure 1l, we analyze the two special
cases, i.e., RE and SS, to shed light on the more complicated
case of EGO discussed afterwards. First, those figures indi-
cate that the ensemble step in the inner loop can improve per-
formance more than that in the outer loop. Compared with
the growth frontiers generated by RE, those by SS locate
closer to the true frontiers, and always dominate the frontiers
generated by GO. Second, Figures 1a, 1e, 1i, 1b, 1f and 1j
illustrate that while repeating the outer loop for a small num-
ber of times, e.g., n1 = 50, may be sufficient, the length of
each resample should be longer than that of the input data,
e.g., n2 = 3τ . Noticeably, all the frontiers by RE in Fig-
ure 1b are even inferior to that by GO. As opposed to the
wide concern about the ineffectiveness of the well-known re-
sampled mean-variance portfolio in improving Markowitz’s
portfolio (Wolf 2013), RE in most cases outperforms GO.
Third, Figures 1c, 1g and 1k show that for a fixed number
of resampled subsets n3 in the inner loop, there exists a fine
structure in the size of each subset n4. The location or equiv-
alently the performance of the actual frontiers by SS shows
a typical U-shape manner in classical Vapnik-Chervonenkis
(VC) analysis. This observation implies some tradeoff be-
tween diversification benefits and estimation errors, i.e., that
the cases with n4 = n0.5 and n4 = n0.9 both underper-
form the case with n4 = n0.7. Fourth, Figures 1d, 1h and
1l saliently show that SS is more sensitive to the size of
each subset n4 than the number of resampled subsets n3.
In each of those figures the frontiers by SS with the same n4

are identical, whereas across those figures the corresponding
frontiers by SS with the different n4 have gaps.

From Figure 1m to Figure 1p, we explore the characteris-
tics of EGO. First, the effectiveness of the inner loop chiefly
determines the level of performance of EGO, i.e., that all the
frontiers by EGO resemble those by SS and dominate those
by RE. Second, in line with our observations in the previous
figures, although all the four hyperparameters impact EGO,
the size of each subset n4 is most influential. Not only wider
gaps among frontiers from different n4 can be observed, but
also the magnitude of the associated gaps is larger than that
due to the changes of other hyperparameters. Thus, the study
suggests that users of EGO should focus on testing its perfor-
mance by tuning the subset size n4 and possibly choose large
values for n1, n2 and n3 to increase diversification within a
given bound of computing power. Besides cross-validation,
we offer one heuristic guideline of selecting n4: Users could
start with the value of n4 that gives no fewer than five data
points per asset and covers 30% to 50% of assets.
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(a) RE, n1 = 50
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(c) SS, n3 = 50
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(d) SS, n4 = n0.5
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(e) RE, n1 = 100

  0%  20%  40%  60%  80% 100%

Portfolio Standard Deviation

-30%

-20%

-10%

  0%

 10%

 20%

P
o
r
tf

o
li

o
 G

r
o
w

th

n
1
=50

n
1
=100

n
1
=200

GO

True

(f) RE, n2 = 3τ
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(h) SS, n4 = n0.7
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(i) RE, n1 = 200
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Figure 1: Growth frontiers for EGO based on different hyperparameters in a simulation study. The whole dataset FF48 with
n = 48 assets is used to estimate the means and the covariance matrix as the parameters in a multivariate lognormal return
model for simulation. τ = 60 return data for training are then synthesized by simulation. In the last row for EGO, the base
hyperparameters are n1 = 50, n2 = τ , n3 = 50 and n4 = n0.5. One of the four hyperparameters varies in each case.

4 Experiments
In this section, we first elaborate on tested datasets, baseline
portfolios and evaluation metrics. Then we conduct compar-
ison studies and report experimental results.

Data
We select four diverse datasets from two categories to fairly
appraise the new strategy. The Fama and French datasets as
the first category have been recognized as high-quality and
standard protocols in portfolio research (Fama and French
1992). Based on different financial segments of the U.S.
stock market, the datasets encompass a wide range of in-

dices constructed by historical data. They extensively cover
various assets classes and span long periods. FF25 includes
monthly returns of 25 portfolios formed on the basis of size
and book-to-market ratio over forty years, and FF48 con-
tains monthly returns of 48 portfolios representing differ-
ent industrial sectors. The second category comprises of the
ETF139 and EQ181 datasets downloaded from the stock
market. ETF139 has 139 exchange-traded funds as recently
popular investments and EQ181 contains 181 equities with
the largest market capital from the Russell Top 200 Index.

Table 1 summarizes these two types of testing data. They
stress different aspects in performance assessment. On the
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Table 1: Summary of the testing datasets

Dataset Time Period Frequency m n

FF25 07/01/1963 - 12/31/2004 Monthly 498 25
FF48 07/01/1963 - 12/31/2004 Monthly 498 48
ETF139 01/01/2008 - 10/30/2012 Weekly 252 139
EQ181 01/01/2008 - 10/30/2012 Weekly 252 181

one hand, as representative academic benchmarks, the Fama
and French datasets highlight the long-term performance
with less selection bias. They also cover multiple recessions
in their time spans, such as those in 1987, 1997 and 2000. On
the other hand, the two real-world datasets reflect the fluctu-
ating market condition after the financial crisis of 2008. By
empirical studies on those datasets, we can more confidently
understand the performance of each strategy.

Baseline Portfolio Strategies
To scrutinize the proposed strategy EGO and its two degen-
erated variants RE and SS, we consider another eight com-
peting portfolios in our comparison studies: (a) Growth op-
timal portfolio (GO) as the classical Kelly growth optimal
portfolio should inevitably serve as the first benchmark. (b)
Equally-weighted portfolio (EW) is a naive yet robust strat-
egy. It has shown superior performance among 15 sophisti-
cated models across eight datasets (DeMiguel, Garlappi, and
Uppal 2009). (c) Value-weighted portfolio (VW) is a pas-
sive market mimicking portfolio. Market mimicking port-
folios generally surpass a majority of active mutual fund
managers in finance industry (Fama and French 2010). (d)
Two-fund portfolio by (Tu and Zhou 2011) (TZT) as a port-
folio blending model mixes the classical mean-variance and
EW portfolio for achieving both estimation error cancella-
tion and wealth growth. (e) Three-fund portfolio by (Kan
and Zhou 2007) (KZT) aggregates the risk-free asset, the
classical mean-variance and minimum-variance portfolio to
cure the instability in the standard mean-variance frame-
work. (f) Four-fund portfolio by (Tu and Zhou 2011) (TZF)
further blends KZT and EW to achieve better performance.
(g) Two-fund portfolio by (Kan, Wang, and Zhou 2016)
(KWZ) as an updated version of TZT forms portfolios solely
with risky assets. It targets at outperforming EW. (h) On-
line passive aggressive mean reversion portfolio by (Li et
al. 2012) (PAMR) is a portfolio strategy via online learning.
It has been shown robustly beating 12 portfolio strategies on
six datasets. These baselines are state-of-the-art strategies in
both finance and machine learning on the relevant topic. For
example, TZT, KZT, TZF and KWZ embody up-to-date ef-
forts in multiple fund portfolio aggregating strategies. They
share the fundamental thoughts with EGO about estimation
risk mitigation via basis portfolio aggregation.

Performance Metrics
In the experiments we employ four standard metrics in fi-
nance to justify the performance of each portfolio (Brandt
2010). First, Sharpe ratio (SR) as the most broadly adopted
risk-adjusted return measure for a portfolio strategy is pro-
vided. Without a risk-free asset, SR is calculated as the port-

folio return normalized by its standard deviation: SR = r̃/σ̃
with r̃ as the mean of portfolio net returns and σ̃ as the cor-
responding standard deviation:

r̃=
1

m− τ

m∑
k=τ+1

r̂k and σ̃=

√ 1

m− τ

m∑
k=τ+1

(r̃ − r̂k)2. (3)

To compare portfolios with different rebalancing frequen-
cies, we report the annualized Sharpe ratio as

√
HSR, where

the scaling factor H is the number of rebalancing times per
year. We set H = 12 and 52 for monthly and weekly rebal-
ances, respectively. Second, Volatility (VO) as a basic quan-
titative risk measure in finance is offered to gauge risk for
each portfolio, i.e., σ̃. Likewise, we report the annualized
volatility as

√
Hσ̃. Third, Turnover rate (TO) measuring the

volume of transaction and thereby reflecting the impact from
market frictions is computed as

TO =
1

m− τ

m−1∑
k=τ

||ω̂k+ − ω̂k||1, (4)

where ω̂k+ denotes the portfolio weight vector before rebal-
ancing at tk+1 and ∥ · ∥1 is l1-norm. The above equation cal-
culates an average absolute value of the rebalancing trades
across all the assets and over all the trading periods. A high
TO could lead to extra trading costs and drastically degrade
after-cost return performance. Fourth, Maximum drawdown
(MDD) as the maximum percentage drop of the cumulative
wealth over a tested time period is computed as

MDD = max
k∈[τ,m]

(1−Wk/Mk), (5)

with the running maximum of the cumulative wealth Mk and
the cumulative wealth Wj at time tj obtained by

Mk = max
j∈[τ,k]

Wj with Wj = Wτ

j∏
h=τ+1

(1 + r̂h). (6)

MDD is one topmost risk measure for fund managers, be-
cause large drawdowns often trigger fund redemptions.

In addition, for each strategy in our calculation we ap-
ply the “rolling-horizon” setting for the sequential out-of-
sample performance evaluation (DeMiguel, Garlappi, and
Uppal 2009). In particular, from time tτ to tm, at each re-
balancing time tk for k = τ, . . . ,m, we first calculate the
portfolio weight ω̂k based on the return data {Rl}kl=k−τ+1.
Then, we compute the realized out-of-sample net return r̂k
for the subsequent trading period. Then, we evaluate the out-
of-sample characteristics of portfolios in the discussed four
standard metrics by the achieved sequences of r̂k and ω̂k.

Results
Across the four datasets Table 2 reports the overall perfor-
mance of the compared 11 portfolios, including the pro-
posed EGO and its two degenerated variants SS and RE.
First, EGO outruns other strategies in most cases. A progres-
sive performance enhancement is demonstrated from GO to
EGO. In particular, RE is slightly superior to GO, SS mostly
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Table 2: Portfolio performance of strategies

Dataset Metrics EGO SS RE GO EW VW TZT KZT TZF KWZ PAMR

FF25 SR 1.11 1.09 0.71 0.70 0.80 0.87 -0.03 0.20 0.34 0.53 0.94
p-value 0.01 0.02 0.66 0.65 1.00 0.01 0.31 0.02 0.15 0.27 0.27
VO (%) 13.79 13.93 27.51 27.68 17.84 17.67 109.98 881.12 53.14 42.44 19.91
TO (%) 85.10 138.11 1087.23 1100.42 1.81 0.00 2572.46 23936.66 617.56 1930.11 0.01
MDD (%) 36.82 37.35 47.51 47.44 47.77 47.81 -100.00 -100.00 -100.00 86.80 54.46

FF48 SR 1.02 1.00 0.44 0.43 0.71 0.73 0.25 0.27 0.75 0.46 0.69
p-value 0.05 0.05 0.24 0.22 1.00 0.60 0.03 0.03 0.49 0.29 0.28
VO (%) 12.37 13.20 25.32 25.25 17.07 16.42 85.39 1000.95 17.46 33.22 18.57
TO (%) 33.01 82.13 463.92 462.63 3.14 0.00 1435.98 37083.69 100.82 759.08 0.24
MDD (%) 34.91 35.80 75.92 76.15 48.33 45.74 -100.00 -100.00 43.08 66.7 47.43

ETF139 SR 1.45 1.40 1.45 1.33 0.51 0.50 0.42 0.97 0.32 -0.27 0.86
p-value 0.31 0.34 0.26 0.35 1.00 0.55 0.82 0.14 0.51 0.19 0.21
VO (%) 4.11 4.40 5.55 5.62 21.20 21.06 21.78 56.46 18.6 22.57 36.85
TO (%) 89.35 273.15 286.86 357.52 1.08 0.00 403.91 10520.42 338.78 5762.82 153.38
MDD (%) 2.02 2.38 5.35 5.56 22.35 22.51 24.83 19.35 20.44 28.11 34.33

EQ181 SR 1.41 1.34 0.52 0.67 0.97 0.97 1.34 -0.24 1.00 1.96 0.30
p-value 0.77 0.82 0.75 0.83 1.00 0.84 0.41 0.41 0.87 0.43 0.21
VO (%) 8.58 8.87 24.16 23.94 15.43 15.29 17.45 45.50 15.07 45.57 22.86
TO (%) 33.90 99.17 580.96 587.33 1.85 0.00 140.72 1332.92 55.33 114.74 140.48
MDD (%) 4.84 5.67 9.54 9.53 9.19 9.17 10.21 22.18 8.45 16.81 18.70

Note: We use short sliding widows τ = 30, 60, 150 and 200 for the four datasets, respectively. EGO, SS, RE and GO implement the growth
optimal portfolio with the return target as the average of minimum and maximum estimated returns at each step. The relevant parameters
for EGO, SS and RE are from n1 = 100, n2 = 5τ , n3 = 100 and n4 = n0.7. The risk-aversion coefficient in TZT, KZT, TZF and KWZ
is three as the original papers. The p-values under SR quantify the statistical significance of the difference in SR between two portfolios
with EW as the benchmark portfolio. As portfolio returns are seldom i.i.d., the studentized circular block bootstrapping method is used to
compute the p-values with 5000 bootstrap resamples and a block with the size of five (Ledoit and Wolf 2008).

outperforms both RE and GO at a marked effect size, and
EGO further improves SS with the aid of its outer loop for
bagging. Those observations that RE exceeds GO and EGO
surpasses SS also imply that bagging, whose usefulness to
Markowitz’s portfolio becomes debatable (Wolf 2013), is
effectual in improving Kelly’s portfolio. That may indicate
that bagging helps by keeping a lid on the exacerbating mo-
ments estimation errors in Kelly’s portfolio.

Second, VW and EW as two passive baselines produce
highly competitive results. Consonant with the observed ro-
bustness in (DeMiguel, Garlappi, and Uppal 2009), VW and
EW in this study also largely beat all strategies other than
EGO and SS. In additional, their TOs are artificially low due
to their intrinsic design for marginal transaction.

Third, TZT, KZT, TZF and KWZ as the exclusively de-
signed multiple fund aggregating strategies underperform
EGO, SS and others in most cases. Although these four
strategies share the similar thoughts of canceling estima-
tion errors by aggregating multiple portfolios as EGO and
SS, their original goal can hardly be realized in the con-
dition with a small training sample. It is unsurprising be-
cause many of their desired properties are only asymptot-
ically achievable when the sample size is large. Because
of the paucity of training data, the estimation risk in those
strategies overwhelms the benefits from peculiarly designed
portfolio structure. As such, they all generate high TOs and
in a few cases are even ruined, i.e., MDD = −100%. Port-
folios with large estimation errors in input parameters often
show high turnovers due to huge variation of the optimal
solution. Theoretically, when the training sample is small,
out-of-sample performance will be substantially penalized
by model complexity, i.e., that the sample complexity for

a complex model is high. That has occurred to the preced-
ing four strategies. In contrast, EGO and SS without having
stringent requirements on asymptotic conditions diminish
the model complexity for a fixed sample size, thereby low-
ering the sample complexity and enhancing out-of-sample
performance. Thus, EGO and SS reap benefits from error
cancellation more than the four aggregating strategies.

Fourth, PAMR is superior to TZT, KZT, TZF and KWZ,
and is comparable to EW and VW but underperforms EGO
and SS. In view of the above, when data are insufficient to
build complex but robust strategies, besides EGO and SS
investors may also consider online strategies.

5 Conclusions and Discussions
In this paper, we have presented a new portfolio construc-
tion strategy via ensemble learning. It has filled some voids
of empirical studies on the classical Kelly growth optimal
portfolio. Underlining the challenging but realistic condition
with noisy small samples, we have analyzed the hyperpa-
rameter selection and compared the proposed portfolio with
10 other strategies on four diversified datasets. In extensive
evaluation criteria, our studies have demonstrated that the
proposed portfolio outperforms peers in most cases. We be-
lieve that it represents a fresh effort in hastening the appli-
cability of machine learning algorithms to finance research
and will cross-fertilize ideas and techniques in specific top-
ics, such as enhancing stock prediction accuracy via incor-
porating texts from social media (Wu et al. 2018).
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