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Abstract

With the wide use of smartphones with Global Positioning
System (GPS) sensors, the analysis of the population from
GPS traces has been actively explored in the last decade. We
propose herein a brand new population prediction model to
capture the population trends in a fine-grained point of inter-
est (POI) densely distributed over large areas and understand
the relationship of each POI in terms of spatiality preserva-
tion. We propose a new framework, called Spatiality Preserv-
able Factorized Regression (SPFR), to realize this model. The
SPFR is inspired by the success of the recently proposed bi-
linear Poisson regression and the concept of multi-task learn-
ing with factorization approach and the graph proximity reg-
ularization. Given that the proposed model is written simply
in terms of optimization, we achieve scalability using our
model. The results of our empirical evaluation, which used
a massive dataset of GPS logs in the Tokyo region over 32 M
count logs, show that our model is comparable to the state-
of-the-art methods in terms of capturing the population trend
across meshes while retaining spatial preservation in finer
mesh areas.

The understanding of the flow of people in a city, which
is known as the analysis of urban dynamics, is of great im-
portance in urban planning, emergency management, and
commercial activity. Questionnaire-based surveys, such as
the person trip survey and the traffic flow survey, have been
useful for understanding urban dynamics (Sekimoto et al.
2011). With the spread of smart devices, a large amount
of mobility log data, such as the global positioning system
(GPS) and cell tower logs, has been accumulated. Therefore,
studies have paid attention to the analysis of urban dynam-
ics using mobility logs from smartphones without other ad-
ditional survey costs.

With the structured property of the population data across
regions, time, and days obtained from GPS logs, the analyt-
ics based on spatio-temporal tensor factorization (Fan, Song,
and Shibasaki 2014) and discriminative approach, such as
neural network (Jiang et al. 2018), and Poisson regression
(Okawa, Kim, and Toda 2017) have been established as ur-
ban dynamics analysis in the last decade. In the former ap-
proach, the tensor data, where the population data with re-
spect to locations, time-zones, and days are accumulated, are
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analyzed by using non-negative tensor factorization (Fan,
Song, and Shibasaki 2014). This approach is known to be
prominent for analyzing urban dynamics to understand the
functionality (Yao et al. 2017) and the population trend of
each POI (Nishi, Tsubouchi, and Shimosaka 2014) when the
stored data are sufficient in each tensor cell. However, it has
a critical drawback when used for predictive tasks, such as
congestion forecast (Konishi et al. 2016). This stems from
the fact that the approach based on tensor factorization is
originally designed for the data compression to intuitively
interpret the past GPS records, whereas it provides an in-
accurate performance without any near future observation.
With regard to the well-known recommendation systems,
this issue is akin to the out-of-example extension (i.e., cold
start problem for the recommendation systems research)
(Lika, Kolomvatsos, and Hadjiefthymiades 2014).

In contrast to the factorization approach, recent advances
on urban dynamics based on the discriminative approach
using contextual information, such as calendar informa-
tion, weather information, and urban-scale event informa-
tion, were reported to provide accurate prediction results
(Jiang et al. 2018). However, its POI size in their analyses
was prone to be large (e.g., approximately 1 km square with
GPS data and 2 ∼ 3 km square with cellular network data).
This can be attributed to the performance of the prediction-
based approaches being degraded on small-sized regions.
This is also analogous to the data sparseness problem in the
counting problem (Lichman and Smyth 2018). Furthermore,
the increases of the number of POIs were not negligible be-
cause of the high spatial granularity. Therefore, the previ-
ous work tended to choose the POI sizes, which were, by
no means, small. Without the spatially fine-grained analysis
(e.g., 100 m square per POI), the population trend in a com-
mercial building, visualization of rush hour in front of the
terminal stations, and the functionality of POI with small
areas could not be available. In spite of the importance of
the analysis with high spatial granularity, to the best of our
knowledge, no work on the population analysis with a high
spatial granularity, except (Xu et al. 2016), exists in the lit-
erature. Indeed, the work provides successful results on vi-
sualization and functionality analysis of each POI within a
fine-grained way; however, this state-of-the-art work is de-
signed for real-time estimation instead of the prediction task.
Prediction tasks are highly significant for real-world applica-
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tions. For example, personnel distribution for an event must
be predetermined, and real-time estimation cannot be ap-
plied for this situation.

This study takes on the challenging new task of construct-
ing a model that predicts urban dynamics at a finer POI
scale. Urban dynamics in a fine-grained POI is more impor-
tant and more practical than the analysis reported in the pre-
vious approach with respect to services, applications, mar-
keting, and politics. However, we encounter unexperienced
difficulties in performing this task. First, we face the chal-
lenge of sparse data caused by far less smartphone GPS logs
in small-sized POIs compared to that in urban scales that
causes the degradation of the prediction performance. Sec-
ond, we face a non-negligible computational cost on training
with respect to the increase of the number of POIs, thanks to
the high spatial granularity.

We propose herein a new framework that provides an ac-
curate prediction result for a large-scale fine grained urban
dynamics analysis to mitigate the issues for urban dynam-
ics analytics with spatial granularity: Spatiality Preservable
Factorized Regression (SPFR). We extend the idea of a re-
cently proposed work on predictive population, called bi-
linear Poisson regression (Shimosaka et al. 2015), with the
idea of the factorized regression being actively explored in
recommendation systems (Xu, Zhou, and Tan 2015) for ef-
ficiency and robustness against a large number of POI anal-
yses. Furthermore, when we consider that the target areas
are densely distributed with the spatial granularity, we in-
corporate the idea that the proposed model retains the spatial
preservability of population trends on the dense distributed
POIs.

The main contributions of this work are summarized as
follows:

• We propose a new framework, called Spatiality Preserv-
able Factorized Regression (SPFR), as a novel method to
model large-scale urban dynamics at a finer-grained POI
densely distributed over large areas. To the best of our
knowledge, this is the first work that attempts to model
and predict fine-grained urban dynamics incorporating vi-
tal domain knowledge: spatiality preservable factoriza-
tion. The derived statistical model can be simply formal-
ized and optimized by a simple sequence of convex opti-
mizations.

• We use a large-scale real-world dataset and show the pro-
posed scheme’s performance compared with that of the
state-of-the-art methods in large-sized POIs while the per-
formance is still robust against the data sparseness prob-
lem at the spatial granularity scale analysis (e.g., 100 m
square mesh size). Furthermore, the proposed model sup-
presses the computational cost against the increase of the
number of POIs in comparison with the state-of-the-art
techniques.

• We also show that the proposed model could be a helpful
tool for the visualization perspective in terms of capturing
the relationship among the meshes and the basic patterns
inherited from the demographics of the POIs.

Related work

The large amount of available mobile phone location data
has motivated research on urban dynamics. A typical ap-
proach in urban dynamics research is the extraction of active
population patterns over the course of a day. Researchers
often use mixture modeling (Shimosaka et al. 2016), ten-
sor factorization or matrix factorization (Zheng et al. 2014;
Takeuchi et al. 2013; Fan, Song, and Shibasaki 2014; Zhang
et al. 2015; Yuan, Zheng, and Xie 2012), or eigen decom-
position (Reades, Calabrese, and Ratti 2009) to extract basic
dynamics patterns in the dataset. Mixture modeling is fre-
quently used as a simple approach for discovering the latent
structure of population trends across the meshes (Shimosaka
et al. 2016). However, these techniques are not feasible for
the use of forecasting congestions of specific areas from the
model (Konishi et al. 2016), which is analogous to the cold-
start problem on recommendation systems (Lika, Kolomvat-
sos, and Hadjiefthymiades 2014).

Discriminative methods for active population forecast us-
ing features have been proposed as an alternative to the ten-
sor factorization approach (Shimosaka et al. 2015; Zhang,
Zheng, and Qi 2017; Jiang et al. 2018; Okawa, Kim, and
Toda 2017). Most of these approaches focus on the accu-
racy of the given POI; however, they tend to choose highly
crowded areas, such as stations and amusement areas, and
their POI size tends to be large because of the data sparse-
ness problem in a fine-grained POI. (Shimosaka et al. 2015)
heuristically chose points of interest by focusing on the num-
ber of commuters or popular sightseeing locations. In con-
trast to this selection, some applications in urban computing
requires analytics for densely distributed fine-grained POIs.
In this sense, it is not feasible to handle a fine-grained POI
densely distributed over wider residential and congestion ar-
eas in a unified manner.

From the viewpoint of statistical modeling, the proposed
model is inspired by the success of the factorized regression
techniques developed in recommendation systems (Yang,
Zhao, and Gao 2017; Xu, Zhou, and Tan 2015). However,
the performance of population prediction in a fine-grained
POI is degraded even if we employ the idea of the fac-
torization approach. In other words, spatiality preservation,
which is a brand new concept derived herein, suppresses
the performance drawback for this issue. Locality preserv-
able tensor factorizations were proposed (Cai et al. 2009;
An, Liu, and Ruan 2017), but they require the approxima-
tion of the objective function for the spatiality preservation,
which causes instability in learning. Our proposed method
optimizes parameters with iterations of convex program-
ming, and its computational cost is at the same level as those
in previous factorization methods.

The rest of this paper is organized as follows: Section 3
describes the formalization of the population pattern and the
base model considered herein; Section 4 presents our pro-
posed statistical model; Section 5 describes the experiments
used to verify our model; and finally, Section 6 presents the
conclusions of this study.
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Problem setting
We model herein the daily transitions of an active popula-
tion in certain target areas. For simplicity, we consider the
subsection square area (e.g., 100 m × 100 m) as point of in-
terest (POI) inside the whole area of interest as entire areas
for prediction. We could use road network information to
segment the whole areas of interest to generate the adaptive
size of the POI (Xu et al. 2016); however, we assume that
the POIs are arranged in a surface inside the whole areas of
interest. For simplicity, we call a POI with the square shape
mesh. Regarding the problem of active population predic-
tion, we define the number of mobile phone logs within a
certain duration in a certain day in a single mesh as an active
population.

We divide the d-th day into S segments, then evaluate the
number of GPS logs in l-th mesh as the active population
number. Let τ be the index of time segment of the day. Given
that the population number is influenced by the day of the
week and the weather condition, let c denote these condi-
tions as well as l, d, and τ .

In this setting, the main issue to be solved is the precise
prediction of the y

(d,l)
c,τ ∈ Z sequence across τ = 1 . . . , S

from the conditions l, c. Note that condition c is a kind of
tuple containing the days of the week and the weather condi-
tions. The details of c will be described in the experimental
results.

Prediction using bilinear Poisson regression model
As the basis of the model proposed herein, we describe the
bilinear Poisson regression proposed in (Shimosaka et al.
2015). This assumes that y(d,l)c,τ is drawn from the Poisson
distribution defined as

y(d,l)c,τ ∼ P(y(d,l)c,τ |λ(l)
c,τ ) =

λy(d,l)
c,τ exp(−λ

(l)
c,τ )

y
(d,l)
c,τ !

. (1)

This method infers y(d,l)c,τ from c, and τ and its relationship
can be inferred by using generalized linear regression. The
explanatory variable is decoupled into two parts: the time
factor φ(τ) ∈ RS and the rest of the factors ϕ(c) ∈ RM .

As for the representation of the time factor, the feature
φ(τ) ∈ RS can be thought of as a smoothed variant of
the one-hot encoding on the time index τ : {φ(τ)}t =
N (τ |t, σ2), where N (·) indicates Gaussian distribution. Let
t ∈ {1, . . . , S} be the means and σ > 0 be the standard de-
viation. Note that σ serves as a smoothing term for proper
population prediction, and is adjusted by empirical evalu-
ation. As for the representation of the rest of the features,
ϕ(d) ∈ RM is a kind of one-hot feature encoding handling
the weather conditions, the days of the week, and whether or
not it is a holiday.

Given that the linear Poisson regression cannot handle the
peak shift with respect to the changes in condition c (e.g.,
commuter congestion is always found on weekdays, but it is
rarely found on a Sunday), a bilinear feature representation
is employed as one of the simplest ways of handling this
issue.

In bilinear representation, the weight parameter W (l) ∈
RM×S is used for inferring the rate parameter λ(l)

c,τ ∈ R in
Poisson distribution as

lnλ(l)
c,τ = ϕ(c)TW (l)φτ (τ). (2)

This model could be simply optimized via MAP inference.
Note that this is independently executed in each mesh in the
previous approach.

Problem with large scale finer mesh analytics
In the previous model, the model on each mesh l is treated
independently from the other meshes l′ = 1, . . . , l − 1, l +
1, . . . , L. In other words, many parameter optimizations are
handled when the number of regions L is increased or the
mesh size is set to be fine (e.g., 100 m × 100 m square).
When each model is learned independently, MSL parame-
ters are required to represent their model. To avoid the over-
fitting issue raised by the large number of parameters in the
bilinear Poisson regression, the previous work employed a
low rank approximation of W ; however, the number of pa-
rameters is still very large at K(M+S)L, where K is a rank
of W (l).

When analytics with large scale urban data and many fine
meshes are needed the parameter of one mesh gets close to
that of the neighboring meshes. If mesh l becomes neighbors
with another mesh l′, it is preferable to plug in the assump-
tion W (l) ≈ W (l′) to avoid overfitting issues. However, the
previous work cannot handle this issue.

Another drawback of the bilinear Poisson regression ap-
proach is that the model does not leverage common shared
population patterns found in the other areas. Given that the
previous work describes the discovery of basic population
patterns in large-scale population analytics (Fan, Song, and
Shibasaki 2014) (e.g., the population pattern in business
areas and that in residential areas are quite distinctive), it
is preferable to employ the property into the model. Us-
ing tensor factorization (Fan, Song, and Shibasaki 2014)
and hierarchical Bayesian models (Shimosaka et al. 2016)
for finding basic latent population patterns across regions is
quite common. However, given that no spatial preservation
is plugged in their modeling, their performance drastically
worsens when they use a much finer mesh size for large-
scale analyses.

In this section, we formalize the model proposed herein.
The model heavily relies on the bilinear Poisson regres-
sion, but superior to the previous ones in terms of the large-
scale/finer mesh analysis. Our model leverages the basic no-
tation described in the previous section and assumes that the
active population y

(d,l)
c,τ depends on the mesh l, time index τ ,

and other certain explanatory variables c, and is drawn from
Poisson distribution. In contrast to the previous approach,
we pursue both accuracy and robustness in finding the rate
parameter λ

(l)
c,τ in finer mesh areas. The model shares the

basic population pattern across the regions (e.g., patterns in
commercial areas are similar to those in other regions of
commercial areas even if they are far away from each other)
to ensure that the inference is robust and accurate. In con-
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trast, the basic patterns derived from our model should be
similar when two meshes are close together.

We focus on the success of the factorization approach for
personalized modeling in recommendation systems (Xu,
Zhou, and Tan 2015; Yang, Zhao, and Gao 2017) for find-
ing basic pattern structures across regions to employ both of
the abovementioned properties for robustness. Moreover, we
consider the spatiality preservation of densely arranged and
fine-grained POIs via a graph regularization-based multi-
task learning approach (Widmer et al. 2012).

Pattern factorization via parameter space

In this section, we assume that the daily active population
pattern contains a variety of latent active population pat-
terns across meshes, and that these patterns are shared across
meshes. We leverage the basic idea of factorized regression,
which has been actively explored in recommendation sys-
tems, to formalize this (Yang, Zhao, and Gao 2017). The
active population y

(d,l)
c,τ at the l-th mesh at the τ -th time

index with the given explanatory variable c is assumed to
be drawn from Poisson distribution, y(d,l)c,τ ∼ P(·|λ(l)

c,τ ).
We also assume the log of the rate parameter lnλ

(l)
c,τ as

in (2). Although the previous approach independently op-
timized the rate parameter of each mesh, our model adds
the following assumption that the weight parameter in each
mesh can be factored as the weighted sum of the basic pat-
terns. W (l) ∈ RM×S can be concretely defined as the
linear weighted sum of the B ≪ L base weight matri-
ces Q1, . . . ,QB : W (l) =

∑B
b=1 zl,bQb, where the weight

corresponding to the l-th mesh can be defined as vector
z(l) = (zl,1, . . . , zl,b)

T ∈ RB .
We also employ an additional constraint on z as simplex

to find a simple interpretation of the resultant model, where
z(l) must be

∑
b zl,b = 1, zl,b ≥ 0. The final form of the

weight matrix W (l) can be thought of as a mixture of basic
patterns because of this constraint.

The main merit of leveraging the factored approach is that
the number of parameters is drastically reduced when com-
pared with the modern models. The previous model of the
bilinear Poisson regression requires LK(M + S) parame-
ters because they independently optimize the weight param-
eter in their analytics. If we employ M = 64 explanatory
variables and S = 48 (used in a previous paper (Shimosaka
et al. 2015)) to analyze the L = 1000 × 1000 regions, 560
M parameters are needed, where K = 5 is the rank of the
weight parameter using low-rank approximation.

In contrast to the previous model, our approach only re-
quires LB + BMS = B(MS + L). Note that B ≪ L.
The total number used in the model is limited to 15 M if we
set B = 15. This prevents critical overfitting issues even if
the low-rank approximation of each weight parameter ma-
trix is not employed. The low rank approximation could be
employed in our model; however, we omit this issue to sim-
plify the implementation.

Spatiality preservation via graph proximity matrix
The factored representation brings us the benefit of param-
eter shrinkage, and is expected to prevent overfitting issues;
however, the model could not preserve the spatial relation-
ship across regions because of the factorization approach.
In a finer mesh analysis, this sometimes results in a non-
smoothed population prediction result. Given that the popu-
lation number is proportional to the area of the meshes, the
issue of parameter sensitivity is raised in a finer mesh anal-
ysis.

We overcome this issue by leveraging another perspective
of multi-task learning, called graph regularization (Widmer
et al. 2012). The model relies on the graph theory, where
each node depicts a single mesh, and each edge represents
the relationship between two meshes. Thanks to the prop-
erty of graph regularization, the parameter matrix gets close
when two meshes are close together. We simplify the model
by employing this idea into the learning phase of Z as a reg-
ularization term. We define the following weighted sum of
the differentiation of two weight vectors, namely z(l) and
z(l′), as:

ΩG(Z) =
1

2
ζG

∑
l,l′

∥z(l) − z(l′)∥22Al,l′ , (3)

where Al,l′ denotes an adjacency matrix reflecting the sim-
ilarity between l and l′. In each A element, we use a Gaus-
sian kernel with a domain-specific distant metric between
two meshes: Al,l′ = exp

(
−ηdist2(l, l′)

)
, where η > 0, and

ζG > 0 are the hyper parameters fixed via an empirical per-
formance evaluation. This regularization term is smooth and
convex with respect to the latent variable Z. Thus, we can
simply add this term to the parameter learning process.

As the distance metric dist(·, ·) used in our model, the
simple Euclidean distance metric can be employed for its
simplicity. However, note that a custom distance metric can
be assigned using the knowledge derived from geographical
information, such as railway, stations and residential areas.
In our experiment, we verify the customized distance de-
rived from the attributes of the areas. In the customized ver-
sion of the distance metric distg(l, l′) = µ

[gl=gl′ ]
0 diste(l, l

′),
where gl represents an attribute of the l-th mesh; diste(l, l′)
depicts the Euclidean distance between the l-th and l′-th
meshes; 0 < µ0 < 1 denotes some constant variables; and
[·] represents a bracket returning 1 if the argument is true;
otherwise, returning 0.
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Figure 1: Left: mesh area containing the railway line (red).
Right: distance metric from the center mesh considering the
railway line. The longer distance gets darkened.
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Parameter learning
This section explains the parameter learning process of the
proposed model. Let us assume that we have a GPS log
dataset ranging from l = 1, . . . , L-th meshes for d =
1, . . . , D-th days. Similar to the previous model, MAP in-
ference is used as regularized training to obtain the optimal
parameters from the dataset. We formalize the training pro-
cess of Q1, . . . ,QB , Z as the following optimization prob-
lem:

argminQ1:B ,Z −
∑

d,l lnP(y
(d,l)
c,τ |λ(l)

c,τ )
+
∑

b ΩQ(Qb) + ΩG(Z),
subject to |z(l)|1 = 1, zl,b ≥ 0, (l = 1, . . . , L),

(4)

where ΩQ(Qb) = ξQ∥Qb∥2Fro is the regularization term for
the base latent weight parameter matrices. ∥ · ∥Fro is known
to be a Frobenius norm on matrix.

This optimization is not bi-convex over Q1:B and Z, but
is convex over Q1:B with the given Z and over Z with
the given Q1:B . We employ an alternating optimization ap-
proach frequently used in non-negative matrix factorization
or related recommendation systems (Yang, Zhao, and Gao
2017).

For optimizing Q1, . . . ,QB , we leverage quasi-Newton
optimization (Wright and Nocedal 1999) to obtain better
Q1:B owing to the smoothness of the objective function with
respect to Q1:B . We use the projected steepest gradient tech-
nique inspired by a similar technique (Lin 2007) to obtain
better Z because the domain of Z is simplex. Note that the
projection onto the simplex region could be analytically and
efficiently solved (Duchi et al. 2008).

As for the implementation, we use the MapReduce frame-
work implemented in Apache Spark for our empirical eval-
uation because of its efficiency in parallelization. Apache
Spark is known to be the next generation of Apache Hadoop.
In this framework, we aggregate gradient information with
respect to z(l) in each region l and Qb using a similar word-
counting technique in MapReduce.

Experimental results
We conducted the experiment using a population scale mo-
bile phone location dataset with the two settings described
below to validate the superiority of our model over the other
previous methods.

First, we conducted the experiment to compare the perfor-
mance of our model with variants of bilinear Poisson mod-
els. Note that the results for the mesh-type dataset is not pro-
vided in the literature; therefore, we carefully chose a wider
area of regions as the whole of areas and divide it into sub-
sequent meshes as a target to be analyzed (Fig. 2). We chose
subsequent square areas of 100 m × 100 m, which are used
as meshes with 3 km × 3 km regions that cover the center of
Tokyo region. We adjusted the size of meshes ranging from
100 m × 100 m, 200 m × 200 m, 600 m × 600 m, and
1 km × 1 km within the fixed 3 km × 3 km regions, then
obtained the predictive performance and the computational
cost in comparison with the state-of-the-art techniques.

As for the second experiment, a qualitative evaluation
on active population pattern discovery and latent structures
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Figure 2: Finer mesh areas used in the 2nd and 3rd evalua-
tions

across the meshes in geographical maps through the visu-
alization of latent variables z, Q is described by compar-
ing the effectiveness of the spatial preservation term. In this
evaluation, we verified the effects, thanks to the spatiality
preservation, by showing the visualization result using the
same dataset used in the first quantitative evaluation.

Dataset
We used anonymized large-scale GPS log records collected
from the mobile phone application released by commercial
companies1. Each record has three components: timestamps,
latitude, and longitude. We used the data collected over 365
days (from July 1, 2013 to June 30, 2014), which consist of
15 million records per day in the Kanto region of Japan.

As mentioned earlier, the entire areas used in these eval-
uations are 3 km × 3 km through three evaluations. In this
setting, the model is assumed to predict active population
counts S = 48 times per day in each mesh. In the first eval-
uation, we evaluated the performance in L = 9, 25, 225, and
900 meshes.

Evaluation Criteria
As for the evaluation, we employed the Mean Nega-
tive Log Likelihood (MNLL) as a performance indica-
tor: MNLL = − 1

DT

∑D
d=1

∑S
τ=1 ln p(y

(l,d)
c,τ |λ(l)

c,τ ). In this
sense, the smaller MNLL indicates the better prediction per-
formance. We also obtained the computational cost of the
model training in each condition.

Feature description on Poisson regressors
This section describes the process of encoding the explana-
tory variable c into ϕ(c) of our model. As an external fac-
tor, we leverage days of week and holidays in this exper-
iment. The day of week feature can be written as seven
distinctive discrete values, whereas the holiday can be de-
fined as Boolean. Let ϕ1(c) ∈ R7 be a one-hot vector of
the days of week and ϕ2(c) ∈ R2 be that of holidays.
In that manner, the total feature ϕ(c) can be written as:

1The reference of the dataset is not disclosed for the submission
phase because of the double blind review policy; however, it will
be explicitly disclosed in the camera-ready version.

1146



ϕ(c) = ϕ1(c) ⊗ ϕ2(c), where the dimension of the re-
sultant feature is 14.

Comparison scheme
To show the validity of our model, we evaluated the per-
formance of the variants of the bilinear Poisson regression
models, given that this model is a base of our model. In con-
trast to the factorization models, bilinear models do not con-
sider the basic population patterns shared across the meshes,
but use an explanatory variable c in their prediction stage.

1. BP 1 for All: This setting produces a single model with a
single parameter (i.e., W (1) = . . . ,= W (L)). The model
always outputs the same number, regardless of the mesh
ID l. The model has a strong bias, but has a small variance,
thanks to the small number of parameters. We employed
the same feature ϕ(c) in this model.

2. BP 1 for 1: This setting produces the L models of the bi-
linear Poisson regression, where the parameter optimiza-
tion is independently executed across meshes. The total
number of parameters to be learned is LSM . This also
uses the same feature ϕ(c) as the proposed model. Note
that this model is quite equivalent to the state-of-the-art
model presented in (Shimosaka et al. 2015).

3. BP with index: This model produces a single (low rank)
bilinear Poisson model, where the mesh ID is directly
encoded as c, which is in contrast to our model. This
work is thought of as a combination of tensor factor-
ization and discriminative models (Tomioka and Suzuki
2013), except that we did not install the nuclear norm
regularization for our experiment. The feature ϕ(c) in
this comparative model is written as follows: ϕ(c) =
ϕ1(c)⊗ϕ2(c)⊗ϕ3(c), where ϕ3(c) ∈ RL indicates the
mesh index as one-hot encoding. With this formulation,
the low rank approximation brings an effect of factoriza-
tion of urban dynamics across meshes even if we did not
use nuclear norm minimization.

4. SPF(ζG = 0): This model produces factorized regres-
sion, where no spatiality preservation is installed (i.e., this
model is equivalent to the proposed model with ζG = 0).

Predictive performance in various mesh sizes
The performance of each method was evaluated through the
training data with 30 days and the testing data with 180 days
to understand the robustness under the severe condition in
the setting with the fine-grained POI. The numbers of days
for the training and testing datasets were determined by pre-
liminary experiments. The prediction accuracy of the pre-
diction methods was saturated when we used over 30 days
of data. As for the testing dataset, the number of days for the
testing was determined long enough for better evaluations.

The performance was obtained from a five-fold cross-
validation. We also compared this with the performance of
the proposed method. In this evaluation, we controlled the
size of meshes/the number of the POIs L in the fixed size
of regions 3 km × 3 km in total, then observed the pre-
diction performance of each method and the training cost.

Table 1: MNLL of various mesh sizes
Mesh size

Model 100 m 200 m 600 m 1 km
BP 1 for All 1.52 ± 0.15 3.08 ± 0.44 11.2 ± 3.38 23.7 ± 9.22
BP 1 for 1 1.60 ± 0.19 3.07 ± 0.39 9.91 ± 3.21 21.41 ± 8.87
BP with index 1.48 ± 0.14 2.90 ± 0.41 10.2 ± 3.15 22.11 ± 8.69
SPF(ζG = 0) 1.47 ± 0.15 2.86 ± 0.42 10.1± 3.01 21.94 ± 9.14
SPF (proposed) 1.46 ± 0.14 2.83 ± 0.38 9.89 ± 3.23 21.27 ± 8.98

We employed 100 m (L = 900), 200 m (L = 225), 600 m
(L = 25), and 1000 m (L = 9) as the POI sizes.

From the table, the experimental results indicated that our
method achieved the best performance among the other bi-
linear Poisson models. BP 1 for 1 obtained a severe perfor-
mance drawback because of the large number of parameters
in spite of the limited number of training dataset. Needless to
say, the performance of BP 1 for all did not achieve the best
performance because of the variety of population patterns in
each mesh. Additionally, the BP with the index behaved as a
kind of factorization model, thanks to the low rank approxi-
mation; however, this model became overfitted in the setting
with the fine-grained POI.

Note that we showed the means and the standard devia-
tions of the MNLL calculated from five means in the five-
fold cross-validation. We also confirmed the significant dif-
ference between our proposed model and the comparison
methods by the p-value (p < 10−3) in each iteration cal-
culated from a large number of samples (180 (days) × 48
(time bins) ×L ) for the evaluation in each validation. Thus,
the performance of the model was clearly better than that of
the other models in terms of the MNLL. These results indi-
cated that the spatiality preservation promotes the stability
under the limited number of training data, while factoriza-
tion (in BP with the index and SPF) is essential in achieving
a better performance compared with the individual training
process.

For the model accuracy, we also calculated the computa-
tional cost of our approach and that of the comparison meth-
ods. Fig. 3 shows the increase of the computation time ac-
cording to the number of meshes. The computational time of
BP 1 for 1 was O(L) for the L meshes because it was trained
in each city separately, and the total number of parameters
also increased by O(L), as mentioned earlier. Thanks to the
reduction of parameters, the increases of the computational
time of the proposed model were much smaller than those of
BP 1 for 1.

Visualization of the latent parameters
One of the main advantages of the proposed method is pro-
viding the functionality to capture the relationship of mesh
areas with spatiality preservation and be useful for forecast-
ing the population. In this evaluation, we confirmed the ef-
fectiveness of the proposed method by showing the visual-
ization result, where the relationship among the meshes was
captured. We also showed the performance of the factorized
bilinear Poisson regression without spatiality preservation to
ensure the proximity property.

As for the visualization, our model consisted of sev-
eral parameters with a basic pattern shared across meshes:
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Figure 3: Computation time for training with respect to the
number of meshes

Q1, . . . ,QB , and latent weight vectors z(1), . . . ,z(L) that
were specific to the l-th mesh. The latter parameters z(l) can
be used to understand the similarity between two meshes.

In this experiment, we visualized the relationship of
meshes by projecting learned parameters z1,b, . . . , zL,b in
B-times and B basic population patterns governed by c, τ .
In our experiment, we used 30 days of data for training as
in the previous experiment. The visualization result on Qb

was normalized by scale to intuitively visualize the activity
pattern (i.e., the total counts of data per mesh per day were
assumed to be 5000).

Fig. 4 represents the b = 6-th and b = 8-th patterns from
the B = 12 patterns on ζG = 0.01. The b = 8 pattern clearly
corresponds to the areas related to railway transportation,
whereas the b = 6 patterns correspond to the activity on
residential areas.

Fig. 5 shows the obtained Q4 and Q8 of Q1:12 in the sec-
ond experiment. Q8 also clearly reflects the pattern at the
railway/station areas, where two peaks of congestion can
be found on weekdays, but no peaks were found on holi-
day weekends. Q4 can be inferred as population patterns in
residential areas. In the future analysis, we will apply SPFR
to large-scale finer meshes spreading over the nation(s).
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Figure 4: z(l)4 and z
(l)
8 in each mesh l on ζG = 0.01, respec-

tively.

In addition to ζG = 0.01, we also tried to obtain an-
other result on ζG = 0 to confirm the effect of the spatial
preservation. Fig. 6 and Fig. 7 show the visualization re-
sults on ζG = 0. This result indicated that the larger size of
ζG provides smoothed changes of latent variable z(l) across
meshes. This result implied that the usage of graph regular-
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Figure 5: Population patterns Q4 and Q8 on ζG = 0.01
obtained in parameter learning in the second experiment

ization improves the interpretability of the population pat-
tern analysis as well as avoidance of overfitting issues.
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Figure 6: z(l)2 and z
(l)
11 in each mesh l on ζG = 0
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Figure 7: Population patterns Q2 and Q11 on ζG = 0 ob-
tained in parameter learning in the second experiment

Conclusion
This study presented population pattern modeling using
large amounts of GPS data derived from crowd smartphones
for urban computing. Our model focuses on the analysis of
finer mesh regions densely distributed over large-scale areas
of interest. To tackle this issue, we proposed a new frame-
work of urban dynamics analytics, called Spatiality Preserv-
able Factorized Regression (SPFR). Factored modeling en-
abled us to reduce the number of parameters using basic fac-
tored population patterns shared across regions, and a graph
regularization term helped the model to preserve spatiality
with reasonable optimization. In our empirical evaluation,
which used a large dataset of over 32 M GPS logs in the
Tokyo region, our model is shown to be superior to the state-
of-the-art predictive models.

Future research could address a much larger scale analysis
(e.g., nationwide) with the finer mesh analysis and irregular-
ity detection using our model.
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