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Abstract
Non-intrusive load monitoring (NILM), also known as energy
disaggregation, is a blind source separation problem where
a household’s aggregate electricity consumption is broken
down into electricity usages of individual appliances. In this
way, the cost and trouble of installing many measurement de-
vices over numerous household appliances can be avoided,
and only one device needs to be installed. The problem has
been well-known since Hart’s seminal paper in 1992, and
recently significant performance improvements have been
achieved by adopting deep networks. In this work, we focus
on the idea that appliances have on/off states, and develop a
deep network for further performance improvements. Specif-
ically, we propose a subtask gated network that combines the
main regression network with an on/off classification subtask
network. Unlike typical multitask learning algorithms where
multiple tasks simply share the network parameters to take
advantage of the relevance among tasks, the subtask gated
network multiply the main network’s regression output with
the subtask’s classification probability. When standby-power
is additionally learned, the proposed solution surpasses the
state-of-the-art performance for most of the benchmark cases.
The subtask gated network can be very effective for any prob-
lem that inherently has on/off states.

Introduction
Non-intrusive load monitoring (NILM) was first proposed
by Hart in 1992, and it is the process of estimating the power
consumptions of individual appliances by using the aggre-
gated electricity consumption as the only input (Hart 1992).
Because the power consumption of multiple appliances are
added together to form the aggregated consumption, and be-
cause the goal of NILM is to disaggregate each appliance’s
power consumption from the aggregate power consumption
measured with a single sensor, NILM is also called energy
disaggregation. The disaggregated energy consumption in-
formation can be used to provide feedback to the consumers
and affect their energy consumption behaviors, and for in-
stance Neenan et al. showed that 15% energy saving can be
achieved (Neenan, Robinson, and Boisvert 2009). Further-
more, NILM can be used for detecting malfunctioning appli-
ances, designing energy incentives, and managing demand-
response (Froehlich et al. 2010). As an exemplary use case,
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Figure 1: Snippets of individual appliances in REDD.

utility companies can identify which homes are running a
particular appliance (e.g., air conditioner) during the peak
hours and take proper actions to reduce the power usage.

In the last few years, deep learning has become a pop-
ular approach for NILM (Kelly and Knottenbelt 2015;
Huss 2015; Zhang et al. 2018). These works show improved
NILM performance by applying deep learning algorithms
that mainly developed in other fields. However, the previ-
ous works do not explicitly exploit the inherent properties
of electricity consumption data. In our work, we utilize one
of these properties, the on/off state concept of appliances
that we can observe in Figure 1. We present subtask gated
networks (SGN) that adopt one DNN for regression, and
the other DNN for on/off classification. By multiplying re-
gression output with classification probability to form the fi-
nal estimates, this model outputs the power estimation gated
with on/off classification. Through the loss function that ex-
plicitly reflects the classification errors, classification sub-
network serves as the on/off based gate. SGN shows 15-30%
improved performance in REDD and UK-DALE on aver-
age. Also, we further investigated its variants that reflects
standby power and hard gating, which shows additional im-
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provements for some appliances.

Related Works
Non-intrusive load monitoring
The most frequently used approach for NILM is the Fac-
torial Hidden Markov Model (FHMM) (Ghahramani and
Jordan 1997) and its variants (Kim et al. 2011; Kolter and
Jaakkola 2012; Parson et al. 2012; Zhong, Goddard, and
Sutton 2014; Shaloudegi et al. 2016). Kim et al. proposed
an energy disaggregation algorithm based on a conditional
factorial hidden semi-Markov model, which exploits addi-
tional features related to when and how appliances are used
(Kim et al. 2011). Kolter and Jaakkola presented an approx-
imate factorial hidden Markov model based on convex opti-
mization for inference, that aggregates the difference signal
and other constraints for aggregated energy data (Kolter and
Jaakkola 2012). Parson et al. showed that prior models of
appliances in FHMM could be applied to real-world energy
disaggregation system (Parson et al. 2012). Zhong et al. in-
corporated signal aggregate constraints (SACs) into an addi-
tive factorial hidden Markov model, which significantly im-
proves the original additive factorial hidden Markov model
(Zhong, Goddard, and Sutton 2014). Shaloudegi et al. en-
hanced Zhong et al.’s algorithms by combining convex
semidefinite relaxations randomized rounding and a scalable
ADMM optimization algorithm (Shaloudegi et al. 2016).

The latest approaches are based on deep learning. Jack
Kelly et al. tried a variety of deep learning models including
Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), and Denoising Autoencoder (DAE)
(Kelly and Knottenbelt 2015). Huss proposed a hybrid en-
ergy disaggregation algorithm based on CNNs and a hidden
semi-Markov model (Huss 2015). Zhang et al. suggested
a sequence-to-point learning with CNN such that the sin-
gle mid-point of a time window is treated as the output of
the network instead of the whole sequence of the window
(Zhang et al. 2018). While showing significant performance
improvements, none of the approaches utilize on/off states
of appliances with end-to-end training.

Multi-task learning
Our work was inspired by Multi-Task Learning (MTL).
In general, multi-task learning learns with multiple tasks
that are associated with task-specific loss functions (Ruder
2017). Multi-task learning methods enable models to gen-
eralize better for the original task by sharing parameters
among the related tasks. Caruana summarizes the goal of
MTL as following — “MTL improves generalization by
leveraging the domain-specific information contained in the
training signals of related tasks” (Caruana 1998).

Most multitask learning studies have focused on improv-
ing the performance of the main task or all tasks by lower
layer parameter sharing among multiple tasks (Zhang et al.
2014; Yu and Jiang 2016; Liu et al. 2015; Cheng, Fang, and
Ostendorf 2015). For example, In the work of Zhang et al.,
head pose estimation and facial attribute inference tasks are
used as the auxiliary tasks, which shares parameters except
for the last layer’s parameters that participate in each tasks’

output. These related tasks improve the facial landmark de-
tection task by learning better parameter values (Zhang et al.
2014).

The proposed architecture in this paper, subtask gated net-
works, can be interpreted as multi-task learning with an aux-
iliary task of classification. However, there is a major differ-
ence in the way subtask output is used. In our work, the aux-
iliary task output is used as a multiplication unit to calculate
the final output of the main task, and this is beyond param-
eter sharings that indirectly affect the main task through the
loss functions.

Gating mechanism
Gating mechanism in deep learning means softly selecting
one of two or more components using sigmoid or softmax
function. For example, sigmoid has been widely used to de-
termine whether a hidden state should be memorized or not
in recurrent neural networks (Hochreiter and Schmidhuber
1997; Gers and Schmidhuber 2000; Cho et al. 2014). As an-
other example, in the mixture of experts (Jacobs et al. 1991),
softmax has been used to decide which expert to use for
each input region. However, in these examples, gating net-
works cannot explicitly learn from gating task itself. Instead,
these examples use EM algorithm or backpropagation with
the loss function related with the final output, not the gating
itself. In our subtask gated network, we added a sort of ‘gat-
ing loss’ using auxiliary task label that is available, which
makes our model learn from on/off gating task directly.

Preliminary
Problem formulation of energy disaggregation
Given the aggregate power consumption for time T periods
as x = (x1, x2, · · · , xT ), let yi = (yi1, y

i
2, · · · , yiT ) denote

the power consumption of i-th appliance in the house. At
each time step, the aggregate power consumption could be
represented as the summation of individual power consump-
tions as follows

xt =
∑
i

yit + ϵt, (1)

where ϵt is assumed Gaussian noise with zero mean and
variance σ2

t . Suppose we are only interested in I appliances,
which are widely used household appliances in most of
households. Then, the power consumption from unknown
appliances can be represented u = (u1, u2, · · · , uT ), and
(1) can be reformulated as follows

xt =

I∑
i

yit + ut + ϵt. (2)

The disaggregation problem is then to estimate the power
consumption sequences of appliances y1,y2, · · · ,yI from
x.

Deep neural networks for energy disaggregation
In previous studies (Kelly and Knottenbelt 2015; Zhang
et al. 2018), deep neural networks for nonlinear regres-
sion are used to estimate the power consumption of indi-
vidual appliances from the sequence of aggregated power
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Figure 2: A generic subtask gated network.

consumptions. For practical reasons, deep neural networks
use partial sequences xt,s := (xt, · · · , xt+s−1) and yi

t,s :=

(yit, · · · , yit+s−1) starting at t with length s as input and out-
put respectively, rather than the whole sequences of x and
yi. To avoid the loss of context information, we can consider
additional windows of length w on both end sides, only for
input. To be precise, x̃t,s,w := (xt−w, · · · , xt+s+w−1) as
the input and yi

t,s as the output. Since the sequence length
s and the additional window length w are fixed throughout
this paper, we will omit the subscripts s and w on notations
for simplicity. In our work, we denote the appliance power
estimation model f i

power : Rs+2w
+ → Rs

+ for an individual
appliance is defined as

p̂i
t = f i

power(x̃t). (3)

Architectures Although RNN architectures are widely
used for sequence modeling (Sutskever, Vinyals, and Le
2014), CNN is also an attractive solution for energy disag-
gregation problems and shows better performance than the
RNN architectures (Kelly and Knottenbelt 2015; Huss 2015;
Zhang et al. 2018). Recently, an empirical study showed that
CNNs can outperform RNNs across a diverse range of se-
quence modeling tasks and data sets (Bai, Kolter, and Koltun
2018). When some of RNNs were tried for our problem, they
showed worse performance than CNNs even with a longer
training time. Therefore, RNNs are excluded in this study
and we only consider the CNN model used in Zhang’s paper
(Zhang et al. 2018).

Subtask Gated Networks (SGN)
Auxiliary classification subtask for NILM
Our general framework uses the auxiliary classification sub-
task as the gating unit of the main regression task as shown
in Figure 2. Using the subtask, we can exploit the on/off state
in an explicit way. To be precise, we can formulate on/off
classification as a subtask for non-intrusive load monitoring.

Let oi = (oi1, o
i
2, · · · , oiT ) be the state sequence of ap-

pliance i where oit ∈ {0, 1} represents the on/off state of
appliance i at time t:

oit =

{
1, if yit > threshold,
0, otherwise.

(4)

Again, we use the notation oi
t,s := (oit, · · · , oit+s−1) for

partial sequence. The subscript s will be omitted as long as
the sequence length s is fixed. And then, we define a neural
network f i

on : Rs+2w
+ → [0, 1]s for on/off state classification

of appliance i, which is the mapping:

ôi
t = f i

on(x̃t). (5)

We want to emphasize that each element in ôi
t means a prob-

ability that an appliance has ‘on’ state.
We define f i

output, the final output of our structure, as

f i
output(x̃t) = f i

power(x̃t)⊙ f i
on(x̃t) (6)

where ⊙ represents the element-wise multiplication. Then,
this architecture naturally induces the following loss func-
tions:

Li
output =

1

T

T∑
t=1

(yit − p̂itô
i
t)

2, (7a)

Li
power =

1

T

T∑
t=1

(yit − p̂it)
2, (7b)

Li
on = − 1

T

T∑
t=1

(
oit log ô

i
t +

(
1− oit

)
log(1− ôit)

)
. (7c)

Note that Li
output and Li

power are the mean squared error
loss in the whole network and the regression subnetwork for
the power estimation task, respectively. Li

power is the loss
function used in literatures (Kelly and Knottenbelt 2015;
Zhang et al. 2018). Li

on is the sigmoid cross entropy loss
in the classification subnetwork.

Loss function
In our work, we use the following loss function for the joint
optimization.

L = Li
output + Li

on. (8)
This loss function represents the sum of the overall network
loss and the classification subnetwork loss. Our model can
be trained using Li

output only, but, Li
on directly instill on/off

state information to the classification subnetwork. It induces
the classification subnetwork to operate as an on/off gate and
using Li

output and Li
on shows better performance.

The loss function and its gradient for the whole network
are:

Li
output =

1

T

T∑
t

(yit − p̂itô
i
t)

2,

∂Li
output

∂ŷij
= − 2

T
ôij

(
yij − p̂ij ô

i
j

)
,

∂Li
output

∂ôij
= − 2

T
ŷij

(
yij − p̂ij ô

i
j

)
.
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Above equations show that the regression subnetwork
learns only when the classification subnetwork classifies
the state of the target appliance as ‘on’ state. However, if
the classification subnetwork is saturated as zero for the
input, the power estimation subnetwork cannot learn be-
cause gradients are also zeros. For that case, minimizing
∂Li

output/∂ô
i
j can revive the classification network later if

the regression subnetwork outputs non-zero values.

Variants of subtask gated networks for NILM
Here, we consider several options to enhance the perfor-
mance of SGN for NILM problem.

REDD UK-DALE

Dish washer 0.27 0.61
Fridge 3.82 3.02
Kettle - 1.10

Microwave 3.66 0.50
Washing machine 1.14 2.76

Table 1: Mean standby power (W) of appliances.

SGN with standby power (SGN-sp) Appliances may
have non-zero power consumption even when it is in ‘off’
state. By analyzing data, we have easily identified standby
power as shown in Table 1. They may seem small, but they
are not negligible because the ‘off’ state takes up a signifi-
cant portion of the time. Because SGN has the assumption
that an appliance power consumption is zero when it is in
‘off’ state, a slight modification is required to take into ac-
count standby power. Considering that standby power is a
fixed value when the appliance is in ‘off’ state, the formula-
tion can be simply modified as follows.

f i
output(x̃t) = f i

power(x̃t)⊙f i
on(x̃t)+(1−f i

on(x̃t))b, (9)

where b is a learnable scalar.

Hard SGN Instead of multiplying the power estimation
value by the probability output of classification subnetwork
as it is, multiplying the power estimation by 0 or 1 depend-
ing on the output of classification subnetwork may be more
compliant to the meaning of the on/off gating. The hard
gating can be made simply by applying a condition function
g(x) such that

g(x) =

{
1, if x ≥ 0.5,

0, otherwise.
The final output is modified as follows.

f i
output(x̃t) = f i

power(x̃t)⊙ g(f i
on(x̃t)). (10)

We can also derive Hard SGN-sp model straightfor-
wardly with the modified output formulation as follows.

f i
output(x̃t) = f i

power(x̃t)⊙g(f i
on(x̃t))+(1−g(f i

on(x̃t)))b.
(11)

Note that Lon is still based on ôit in Hard SGN and Hard
SGN-sp, not g(ôit).

Experiments
Experiment settings
Datasets We evaluate our proposed methods on the two real-
world datasets, REDD (Kolter and Johnson 2011) and UK-
DALE (Kelly and Knottenbelt 2014). The REDD dataset has
the data for six US houses, and the UK-DALE dataset has
the electricity usage data for five UK houses respectively.

In REDD, the aggregate power consumptions were
recorded in every 1 second, and the appliance power con-
sumptions were recorded in every 3 seconds over various
durations. The dataset contains the measurements of the ag-
gregate power consumption and 10-25 types of appliances.
However, we only consider microwave, fridge, dish washer
and washing machine as in the previous work (Zhang et al.
2018). We used the data of house 2–6 as the training set, and
house 1 as the test set.

In UK-DALE, all data were recorded in every 6 seconds
from November 2012 to January 2015. The dataset contains
the main aggregated power consumption and measurements
of 4-54 appliances. We only consider kettle, microwave,
fridge, dish washer and washing machine in our experi-
ments. For evaluation, we used house 1 and 3–5 for training,
and house 2 for testing as in the previous work (Zhang et al.
2018). We only used the last week data that was published
after preprocessing1.

Data Preprocessing Since the UK-DALE data set has
been preprocessed by Jack Kelly (Kelly and Knottenbelt
2015), we used it as it is. For REDD dataset, we prepro-
cessed with the following procedure to handle missing val-
ues. First, we split the sequence so that the duration of miss-
ing values in subsequence is less than 20 seconds. Second,
we filled the missing values in each subsequence by the
backward filling method. Finally, we only used the subse-
quences with more than one-day duration. For both UK-
DALE and REDD data, the aggregate power consumptions
and appliances’ power consumptions were divided by stan-
dard deviations of the aggregate power consumptions.

Neural Net Training Details As a baseline, the perfor-
mance of FHMM was evaluated using FHMM implemen-
tations in NILMTK, an open source toolkit for analysis on
energy disaggregation (Batra et al. 2014). Jack Kelly’s de-
noising autoencoder (DAE) and Zhang’s CNN (Seq2Seq)
were implemented according to the architectures described
in each paper (Kelly and Knottenbelt 2015; Zhang et al.
2018) for evaluations. Our model architecture is shown in
Figure 3. This architecture uses Zhang’s Seq2Seq as the two
subnetworks because neural network architecture itself is
not the main focus of our work. More details of each archi-
tecture can be found in the supplementary document. Our
model has the following hyperparameters. The learning rate
is 1.0 × 10−4, and the batch size is 16. The label for the
on/off classification task is generated using 15 watts as the
threshold according to equation (4). The DNN models are
trained on NVIDIA GTX 1080Ti and implemented using
TensorFlow 1.8 package. He initialization (He et al. 2015)
is used for the weights of all neural network architectures.

1http://jack-kelly.com/files/neuralnilm/NeuralNILM data.zip
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Data was sliced with additional window size w=400 and out-
put sequence length s=64 for REDD, w=200 and s=32 for
UK-DALE, in which the input is a sequence of 43.2 minutes
and the output is a sequence of 3.2 minutes. We used Adam
optimizer (Kingma and Ba 2015) for training.
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Figure 3: SGN architecture used in our experiments.

Evaluation Metrics In this experiment, MAE (Mean Ab-
solute Error) and SAEδ (Signal Aggregate Error per time
δ period) were used to evaluate the performance. MAE is a
general metric used for regression problems, and it shows
how well models perform power consumption estimation in
NILM. The SAEδ represents the average total error over
the time period of δ, which compare the sum of ground truth
and estimation over the time period of δ. We use the time
normalized version of signal aggregate error (SAE). Unlike
the original SAE in previous works (Zhang et al. 2018) that
considers the power consumption of overall period by sum-
ming up, we compare the usage per hour, since this may
be a more important concept regarding energy consumption

behavior control2. Note that SAEδ is normalized using the
time period (an hour), not the ground truth power consump-
tion as the previous works (Zhang et al. 2018). Although it
makes an apple-to-apple comparison difficult among differ-
ent appliances, it can prevent outliers caused by close-to-
zero denominator and division by zero when the appliance
is in the ‘off’ state.

Let yit and ŷit be the ground truth and the estimated power
for appliance i at time t, respectively. The MAE for appli-
ance i is defined as: MAEi = 1

T

∑T
t=1 |yit − ŷit|. SAEδ for

appliance i is defined as: SAEi
δ = 1

Tδ

∑Tδ

τ=1
1
Nδ

|riτ − r̂iτ |,
where Nδ is the number of data points in the time period δ,
Tδ is the total time period in time δ scale, and T = Tδ ×Nδ .
rτ and r̂τ represents the sum of power consumption in a
given period, riτ =

∑Nδ

t=1 y
i
Nδτ+t, and r̂iτ =

∑Nδ

t=1 ŷ
i
Nδτ+t.

In our experiments, Nδ is 1200 for REDD, and 600 for UK-
DALE, which correspond to the number of data points in an
hour.

Experiment results
Table 2 and 3 show the performance of the previous works
and SGN for the REDD and UK-DALE dataset. In the two
tables, the bold font denotes the best performing algorithm
for each appliance, and the shade denotes that SGN has out-
performed the best of the previous works. For MAE, we can
see that the performance is improved for 9 out of 9 cases us-
ing SGN-sp, and 7 out of 9 cases using SGN. For SAE, the
performance is improved for 6 out of 9 cases using either
SGN or SGN-sp. On the average, SGN and SGN-sp show
15-30% lower error performance compared to the state-
of-the-art. These performance improvements were achieved
without fine tuning any of the network architecture, hyper-
parameters, or the weight between Loutput and Lon. Hard
SGNs tend to perform worse than SGNs on the average but
still perform better than the previous works, and significant

2We also use various values of δ to analyze time period sensi-
tivity on evaluation (Figure 7).

Metric Model Dish Fridge Microwave Washing Average Average
washer machine improvement

MAE

FHMM (Batra et al. 2014) 101.30 98.67 87.00 66.76 88.43 -
DAE (Kelly and Knottenbelt 2015) 29.38 76.62 21.31 31.35 39.66 -

Seq2Seq (Zhang et al. 2018) 27.07 26.03 16.57 22.72 23.10 0.00 %

SGN 14.97 23.89 17.52 20.07 19.09 17.34 %
SGN-sp 15.96 22.89 15.98 20.61 18.86 18.36 %

Hard SGN 21.27 24.45 17.38 18.24 20.33 11.97 %
Hard SGN-sp 24.29 22.86 17.16 21.94 21.56 6.67 %

SAEδ

FHMM 93.64 46.73 65.03 58.77 66.04 -
DAE 29.21 20.48 17.86 27.64 23.80 -

Seq2Seq 26.93 11.67 11.43 16.82 16.71 0.00 %

SGN 11.74 10.62 14.84 10.70 11.97 28.34 %
SGN-sp 12.07 12.26 11.31 13.28 12.23 26.81 %

Hard SGN 20.72 14.51 16.53 8.47 12.40 25.77 %
Hard SGN-sp 27.63 10.99 15.52 15.66 13.31 20.37 %

Table 2: Experiment results for REDD data.
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Metric Model Dish Fridge Kettle Microwave Washing Average Average
washer machine improvement

MAE

FHMM 48.25 60.93 38.02 43.63 67.91 51.75 -
DAE 27.42 19.93 12.53 16.77 18.30 18.99 -

Seq2Seq 23.16 16.71 11.07 9.87 11.94 14.55 0.00 %

SGN 15.50 15.79 7.08 6.26 12.31 11.39 21.72 %
SGN-sp 13.49 15.32 5.96 8.64 11.04 10.89 25.15 %

Hard SGN 15.74 16.08 6.27 4.53 12.40 11.00 24.38 %
Hard SGN-sp 15.15 10.93 7.40 19.27 13.31 13.21 9.21 %

SAEδ

FHMM 46.04 51.90 35.41 41.52 64.15 47.80 -
DAE 23.10 5.99 7.78 14.58 14.36 13.16 -

Seq2Seq 17.31 3.74 6.85 8.98 9.90 9.36 0.00 %

SGN 10.03 7.10 4.81 5.99 10.40 7.66 18.09 %
SGN-sp 8.80 7.56 3.99 7.90 10.28 7.71 17.63 %

Hard SGN 10.54 7.21 4.35 4.45 11.18 7.55 19.34 %
Hard SGN-sp 9.04 3.75 5.21 17.52 13.11 9.73 -3.95 %

Table 3: Experiment results for UK-DALE data.

improvements were observed for fridges and microwaves. In
the real world, we do not need to apply a single model to all
the appliances. We can choose from SGN and its variants
depending on the appliances type.

Figure 4 shows three examples of how the classification
subnetwork interacts with the regression subnetwork. In the
figure, ‘SGN before gating’ represents p̂it and ‘SGN after
gating’ represents p̂it · ôit respectively. In the case of the dish
washer, gating mainly works for filtering out small noisy re-
gression estimates when the dish washer is really in the ‘off’
state. In the case of the fridge, the regression subnetwork es-
timates the power consumption of the ‘on’ state even when
the fridge is clearly in ‘off’ state. The classification subnet-
work is fully responsible for deciding whether it is ‘on’ or
‘off’, and the final output after gating turns out to be quite
accurate. In the case of the kettle, regression subnetwork
seems to have noisy outputs for ‘off’ state just as in the dish
washer case. However, the noise is not small valued as in
the dish washer. When other appliances are turned on, the
kettle’s regression subnetwork output seems to be strongly
affected and result in a large valued output. However, again
the classification subnetwork does its job of gating, and the
final output becomes accurate.

Figure 5 shows the histogram of ôit, the output of the clas-
sification subnetwork. Note that the y-axis is in log scale to
properly visualize the large counts around zero and one. Al-
though the main goal is a regression task, a large portion of
ôit values is concentrated near zero and one. This is because
Lon is included in the cost function in addition to Loutput.
Including Lon affects how the regression subnetwork and
classification subnetwork cooperate. To illustrate this point,
we have generated the same figure as in Figure 4(b), but this
time without including Lon. The results are shown in Figure
6. Because Lon is not explicitly included in the cost func-
tion, there is no need to perform the classification task well,
and the subgated network is free to decide what it wants to
do with the two subnetworks. In Figure 6(a), it can be seen
that the classification subnetwork became a scaling factor
where regression subnetwork simply over-estimates for the
‘on’ states. When the ‘on’ probability histogram is compared
as shown in Figure 6(b), it is clear that the classification
subnetwork has failed to do what it was intended to do. By
adding Lon to the cost function, we can prevent the subgated
network from being confused and therefore achieve better
performance. Going back to Figure 5, it can be seen that the
‘on’ probability reflects how the appliances really function.
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Figure 4: Gating examples (UK-DALE).
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Figure 5: Histograms of ‘on’ probability ôit (UK-DALE).
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Figure 6: Gating example of UK-DALE fridge. Depending on the choice of loss function, the classification subnetwork’s
behavior changes.
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Figure 7: SAEδ as a function of δ (REDD).

For the fridge that cycles between ‘on’ and ‘off’, roughly the
same counts can be seen near probability zero and probabil-
ity one. On the other hand, the counts are skewed for dish
washer and kettle that are known to be off most of the time.

δ sensitivity analysis on SAEδ In practice, NILM needs
to be used in different ways. Sometimes each appliance’s en-
ergy usage per hour is needed for the application, but some-
times usage over a day or a month might be needed as well.

Depending on the application’s requirement, SAE’s δ needs
to be chosen appropriately. To understand if SGN works well
for different choices of δ, we have plotted SAEδ as a func-
tion of δ in Figure 7. As expected, the performance becomes
better as δ increases because positive and negative errors can
have a chance to cancel out. SGN is the best performing al-
gorithm for the entire range of δ that was examined.

Conclusions
In this work, we have proposed subtask gated networks
that are effective for the regression problems with on/off
states. For the application of non-intrusive load monitor-
ing, performance was evaluated for REDD and UK-DALE
datasets. Our proposed solution performed 15-30% better
than the state-of-the-art deep learning solution when MAE
and SAEδ were used as the metrics. The results indicate that
combining regression subnetwork and classification subnet-
work is a promising direction for improving the performance
of regression tasks that has on/off state inherently.

Future research may be extended in two possible direc-
tions. The first is to generalize how to reflect the appliance
state information to the model. Our method handles only the
on/off states of appliances, but some appliances have mul-
tiple states. It might be possible to use the information by
creating precise label information beyond on/off states. The
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second is to extend our method to the data of other domains
that have the property similar to on/off. Our method can be
applied to any regression problems where we can generate
an auxiliary class describing discrete states related to the
output.
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