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Abstract

Talent turnover often costs a large amount of business time,
money and performance. Therefore, employee turnover pre-
diction is critical for proactive talent management. Existing
approaches on turnover prediction are mainly based on profil-
ing of employees and their working environments, while the
important contagious effect of employee turnovers has been
largely ignored. To this end, in this paper, we propose a con-
tagious effect heterogeneous neural network (CEHNN) for
turnover prediction by integrating the employee profiles, the
environmental factors, and more importantly, the influence
of turnover behaviors of co-workers. Moreover, a global at-
tention mechanism is designed to evaluate the heterogeneous
impact on potential turnover behaviors. This attention mech-
anism can improve the interpretability of turnover prediction
and provide actionable insights for talent retention. Finally,
we conduct extensive experiments and case studies on a real-
world dataset from a large company to validate the effective-
ness of the contagious effect for turnover prediction.

Introduction
Talent turnover will affect business performance of com-
panies. When an unexpected turnover request is raised in
a company, significant effort is required to search for a re-
placement, and there is a risk that the operation of the com-
pany will be disrupted if a suitable replacement is not found.
The situation becomes even worse due to the contagious ef-
fect of external talent turnover when a group of employees
influence each other and quit their jobs collectively (Felps
et al. 2009). Indeed, talent plays an important role in daily
business operation, not only because of its abilities and ex-
pertise, but also related to its collective influence on each
other and the whole company. The quit of a talent often costs
a large amount of business time, money, and performance,
and the contagious effect of talent turnover will deconstruct
the organizational structure and cause a dysfunction in the
company. To alleviate the negative impact of talent turnover,
it is critical for an employer to proactively predict potential
turnovers, which in turn allows effective talent retention or
successful talent replacement.
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Previous approaches on turnover analysis focused on the
ease and the desirability of job movement (March and Si-
mon 1958). Specifically, the ease of movement is related
to factors such as job market availability, unemployment
rate, and personal skill level. Factors related to desirability
of movement include job satisfaction, salary growth, pro-
motions, organization’s commitment, etc. A series of work
(Mobley, Horner, and Hollingsworth 1978; Jackofsky and
Peters 1983; Mcevoy and Cascio 1987; Trevor, Gerhart, and
Boudreau 1997) analyzed the relationships of talent turnover
and theses various factors. Later, different psychological
paths that employees would follow when they quit their jobs
were analyzed for modeling turnover behaviors (Lee and
Mitchell 1994; Lee et al. 1996; Lee et al. 1999). These analy-
ses were mainly based on linear statistical models for testing
theoretical hypothesis. Recently, survival analysis has been
extended to predict the timing of turnovers with multiple
sources of information (Li et al. 2017).

All the above research efforts focus on the variables as-
sociated with the turnover employees and their working en-
vironments, while the social influence among them, specifi-
cally the contagious influence of prior turnovers on the fol-
lowing ones, as shown in Figure 1, is rarely explored and
exploited. The contagious influence effect, or simply conta-
gious effect, has a complex nature in several ways:
• The contagious effect varies from people to people and is

shaped by factors such as the positions in the organization
and the connection strength between employees;

• The contagious effect is time variant due to its broadcast-
ing and decaying mechanisms on the social network of
employees in a company;

• A series of prior turnovers may produce a cumulative ef-
fect in the time window for prediction. This effect is even
stronger for larger teams.

Given these challenges, it is a non-trivial endeavor to incor-
porate dynamic contagious effect with comprehensive fac-
tors for effective talent turnover prediction. Indeed, the pro-
filing of employees and their working environments is both
heterogeneous and dynamic in nature. Therefore, the model-
ing framework should be able to process multiple sources of
sequential information with different length, granularity, and
format to effectively predict turnover behaviors and support
proactive talent management.
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Figure 1: An example of contagious effect for employee turnover, where each node is an employee (i.e., blue is normal, red
is a turnover, and yellow is an influenced one), the link between nodes represents the connection (i.e., stronger connection has
bolder line weight).

In addition to providing accurate turnover predictions, it
is also valuable to investigate the importance of various fac-
tors in each turnover’s decision-making process. Quantify-
ing and identifying important decision factors will reveal
actionable insights such as motivations or reasons for the
employees to quit their jobs. Such information is critical to
facilitate employers in identifying unsteady points in their
organizational structures and preventing talent turnovers for
proactive talent retention and management.

To overcome the above difficulties, inspired by the ap-
plication of RNN (recurrent neural network) on classifi-
cation problem (Santos and Gattit 2014) and the attention
mechanism (Bahdanau, Cho, and Bengio 2014; Yang et al.
2017), we build a contagious heterogeneous neural network
(CEHNN) to integrate the peers’ turnover sequence, the en-
vironmental change and static profile information, and add
a global attention across the multiple chains. The attention
mechanism helps to evaluate the contribution of each change
(event) in all the sequences, so we can identify the most in-
fluential factor for the final turnover decision.

Our contribution can be summarized as below:

• We formulate the turnover prediction from a new angle,
developing a new framework CEHNN to capture the con-
tagious effect in the sequential employee turnovers.

• We use the framework CEHNN to process and integrate
the sequential data from various sources with various for-
mats, and design an attention mechanism across multiple
sequences to evaluate the impact of different sequential
factors on employee turnovers.

• We conduct extensive experiments on real-world data to
validate the effectiveness of our framework and validate
the contributing factors with case study.

Related Work
Recent years, there is a rising trend of applying advanced
AI technologies to address talent related business prob-
lems (Zhu et al. 2018; Qin et al. 2018; Xu et al. 2018;
Chen et al. 2017). Regarding the problem of turnover pre-
diction, it is a hot topic that has been studied for years in
human resource management. Previous research efforts gen-
erally fall into two categories. One focuses on analyzing the

relationship of various factors and turnover, with tools of
hypothesis test and linear models, while the other is trying
to formulate the problem as survival analysis problems, and
aims to predict the time to the occurrence of the turnover.

The early research of first category is mainly based on
March and Simon’s work (March and Simon 1958). Gen-
erally they proposed the turnover is determined by the de-
sirability of movement and the ease of movement. The de-
sirability of movement can be characterized by job satisfac-
tion, salary growth, promotions, and organization’s commit-
ment, while the ease of movement can be characterized by
the job market availability, unemployment rate and personal
skill levels etc. The contributions of these factors have been
extensively studied in the following work. Mobley (Mobley,
Horner, and Hollingsworth 1978) quantitatively analyzed
the correlations between job satisfaction, age-tenure, inten-
tion to quit and turnover, and made predictions based on re-
gression analysis. Glenn (Mcevoy and Cascio 1987) found
the turnover is lower among good performers, moderated
by the turnover type, time span and level of unemployment,
while Jackofsky (Jackofsky, Ferris, and Breckenridge 1986)
and Trevor (Trevor, Gerhart, and Boudreau 1997) identi-
fied a curvilinear relationship between job performance and
turnover, stating the turnover is higher for low and high
performers. Trevor also identified the moderating influence
of salary growth and promotions on the curvilinearity. De-
spite of the analysis of the interested factors and turnover,
there also exist some research (Lee and Mitchell 1994;
Lee et al. 1996; Lee et al. 1999) focusing on developing an
unfolding model to describe and compare the psychological
paths that employees take when they quit the jobs, the pro-
cess of quitting from the initiation to the final decision is di-
vided into different stages for discussion. One notable work
is done by Felps, who studied the relation between job em-
beddedness and quitting, and mentioned there was a negative
relationship between co-workers’ job embeddedness and fo-
cal employee turnover (Felps et al. 2009). It indicates a con-
tagious effect when talent turnover happens.

For the research on turnover survival analysis model,
some existing approaches can be directly applied like the
classic Cox proportional hazards model, which (Cox 1992)
defined the hazard function of time and sample covariates.
However it has a strong restriction that the time and covari-
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Employee Co-Worker Role Level Intimacy Start Date End Date Co-Worker Leave Date Leave Date
Alice Bob Manager 1 0.9 2017-01-01 2018-02-01 2018-02-05 2018-04-15
Alice Carl Peer 0 0.6 2017-04-10 2018-03-01 2018-03-10 2018-04-15
Alice David Manager 2 0.2 2017-02-03 2018-04-9 N/A 2018-04-15
Ellen Frank Peer 0 0.4 2017-07-05 2018-01-07 2018-04-01 N/A

Table 1: A toy example of our processed pairwise turnover dataset.

Figure 2: The comparison of the sizes of turnover grouped
by whether they are under prior turnover influence.

Figure 3: The density histogram of the mean of days be-
tween current turnover and prior turnover.

ates are independent and the weights of covariates are shared
by all samples. In Li’s work (Li et al. 2017), he adopted and
extended the multi-task framework of Yan Li (Li et al. 2016),
which treats the prediction of presence of employee at each
time interval as a task, so the weights of the sample covari-
ates varied from time to time.

Data Description
In this section, we explore the data to give a brief introduc-
tion, and more importantly to observe the contagious effect
which inspires us of the way to formulate the research prob-
lem. The original dataset is provided by a high-tech com-
pany in China. It contains all of turnover records from 2016
to 2018, along with the profiles of employee. Both have been
anonymized for privacy protection.

• Profile Data: The profile dataset includes the information

such as anonymized employee ID, entry date, department,
organization level and a year-based metric which charac-
terizes the intimacy between each pair of employee in the
company, generated according to the daily interactions.

• Turnover Data: This dataset includes the anonymized em-
ployee ID and leave date.

For our convenience, we integrated the profile data and
turnover records in a pairwise way. Each integrated record
would be a pair of co-workers (leader/subordinate or peers),
for a period of time. Indirect managers and subordinates
are also counted. For each record, the features include the
anonymized employee’s ID and co-worker’s ID, the role of
co-worker, their relative level, their relation start date and
end date, and leave dates. Table 1 is an example dataset of
the organized turnover records.

Based on the intermediate pairwise turnover dataset, we
conduct further exploration to see how many turnovers hap-
pens under the influence of peers’ or managers’ turnover.
Figure 2 shows the comparison of the size of turnover
grouped by whether they are under a manager’s or peer’s
turnovers influence within one year. We can see about 91%
turnovers are under the influence of prior turnover (about 2%
from managers only, 27% from peers only and 62% from
both). Further we analyze the distribution of the mean of
days between the pairwise turnovers. Figure 3 shows the dis-
tribution of the mean of days between employees’ turnover
and their closest prior manager/peer’s turnover. We can see
there is a decay effect, which indicates the influence would
decrease with time as a trend. The interesting thing is in the
density histogram related to peer, there is an apparent peak,
indicating the influence of prior turnover may need to take
certain amount of time to completely spread out and take
effect, while in the density histogram related to manager,
the distribution is almost decaying from the very beginning.
Besides, in the group of turnover influenced by latest man-
agers’ turnover, the distribution of relative level of managers
are plotted in Figure 4 (a). It can be found that more employ-
ees’ turnovers are under the influence of their direct super-
visors’ turnovers. The number decays as the relative levels
arise. However at a finer granularity, this is not the case, in
Figure 4 (b), we can see the shape of distributions varies by
department, in some of them, the prior managers’ turnovers
are followed by more subsequent turnovers in indirect sub-
ordinates than in direct ones.

Technical Details of CEHNN
In this section, we formulate a heterogeneous sequence clas-
sification problem, and propose the CEHNN (contagious ef-
fect heterogeneous neural network) framework as a solution,
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(a) The density histogram of the relative level of turnover
pair for the whole company

(b) The density histogram of the relative level of turnover
pair for selected department

Figure 4: The density histogram of the relative levels of in-
fluential managers in our data.

followed by discussion of the global attention mechanism in
the heterogeneous neural network.

Problem Formulation
Our primary goal is to predict talent turnovers based on
the sequential or time-variant information from different
sources. Specifically, for the i-th sample, we want to make
binary classifications ŷi at a decision time ti based on static
information Ai and a collection of M information series
{s1i , s2i , · · · , sMi }. All the information smi are collected dur-
ing an observation period [ti −∆tobserve, ti], and each infor-
mation series smi is a sequence {xm

i,1, x
m
i,2, x

m
i,3, · · · }. Since

theses sequences are from different sources, they may vary
in terms of lengths and dimensions.

In the context of turnover prediction, ŷi = 1 if the i-th
employee will quit his/her job in the future prediction pe-
riod [ti, ti +∆tpredict]. Otherwise ŷi = 0. Here we focus on
M = 2 sequential information sources together with static
employee profiles. One sequential information source is the
co-workers’ turnover events ordered by timestamp and de-
noted by sturnover

i . The co-workers includes prior managers
and peers, etc. The other sequential information source is
the dynamic environmental statistics of the employee and

Category Name

Profile Input A

Department
Organization level
Key Staff
Job Category

Sequence Sturnover

Relative level of employe i-j pair
Days between the i-j relation end and observation end
Prior turnover j’s profile
Relation type of employe i-j pair (peer/manager)
Common work days of employe i-j pair
Communication statistics of employe i-j pair

Sequence Senv

Monthly total employee in the department
Monthly total turnover in the department
Monthly total employee at the level
Monthly total turnover at the level
Monthly turnover rate at the level

Table 2: The list of input features.

denoted by senv
i . The profile of employees is treated as the

static information in Ai. Our task is to estimate the proba-
bility P (yi|sturnover

i , senv
i , Ai), so we can make a prediction

based on:

ŷi =

{
1, Pr(yi = 1|sturnover

i , senv
i , Ai) > φ,

0, otherwise.
(1)

where φ is a discrimination threshold of employee turnover,
and is set to 0.5 in our experiments.

Heterogeneous Neural Network
As discussed above, the three input sources are varied in
terms of their length and format, so each needs to be taken
care of before integration for the prediction. As a whole, a
heterogeneous neural network is designed to address this.

For the prior two which are sequential data, we choose the
long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997). As a variant of recurrent neural network,
LSTM is powerful to process sequential data, with the ability
to capture the long and short term dependency and overcome
the exploding and vanishing gradients problems. A single
LSTM cell is composed of an input gate i, a forget gate f ,
and an output gate o, which can be formulated as:

ft = σ(Wfxt + Ufht−1 + bf ),

it = σ(Wixt + Uiht−1 + bi),

ot = σ(Woxt + Uoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc),

ht = ot ◦ tanh(ct),

where {xt}t is a series of input for the LSTM cell,
Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc, bf , bi, bo, bc are parame-
ters to be trained, ct is the cell state, ht is the output of the
cell, σ is the sigmoid function and ◦ is element-wise product.

We use two LSTM cells to process sturnover
i and senv

i re-
spectively. Each element in sturnover

i is a prior co-worker j’s
turnover, including features of employee j’s profile and the
intimacy of the pair i-j’s relation; each element in senv is
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Figure 5: The overview of framework CEHNN for turnover prediction.

a monthly turnover statistics of specific department and or-
ganization level. Table 2 lists the detailed features for each
part. Dropout layers are appended to both LSTM cells to
avoid the overfitting.

For the static profile information Ai, we use a fully con-
nected layer to process it.

Global Attention Mechanism

As mentioned before, we aim to evaluate the contributions of
different factors into the final decision. At this point, we de-
cide to introduce the attention mechanism. Attention mech-
anism for RNN (Bahdanau, Cho, and Bengio 2014) is pro-
posed to be added into the sequence-to-sequence model, to
achieve a word alignment effect, which reflects the impor-
tance of each word in source sentence for each word in the
output sentence. By default, it is feasible to add one step
attention in our framework, since we only have one step out-
put, to each LSTM separately, however such implementation
only helps to evaluate the importance of each event within
a sequence. Alternatively, we decide to extend it to a global
one across multiple sequences. Suppose for each sample we
have M series of output from M LSTM cells, then the global

Name Value
Total population 2,935
Positive samples 1,304
Negative samples 1,631
Dimension of Profile 400
Dimension of Turnover Sequence 419
Dimension of Environmental Sequence 4

Table 3: The statistics of experimental data.

attention can be formulated as:
um
t = tanh(Wmhm

t + bm),

αm
t =

(exp(um
t )⊤uc)∑

t∈
⋃

m Tm
exp(um

t )⊤uc
,

v =
∑

t∈
⋃

m Tm

αm
t (Wmhm

t + bm),

where hm
t is the output of LSTM cell for m-th sequence at

step t, um
t is the hidden representation of hm

t , αm
t is the nor-

malized importance for t-th event in m-th sequence, v is the
representation of the sequence as the aggregated weighted
sum of hidden representation, Tm is the set of steps for m-
th sequence, {Wm}m, {bm}m, uc are parameters to be es-
timated through training. Based on these, the conditional
probability to be estimated become:

Pr(yi = 1|sturnover
i , senv

i , ci) = softmax(Wv + b). (2)
Figure 5 shows the overall structure of our framework.

Experiment
In this section, we will evaluate the effectiveness of our
framework. Specifically we trained and tested the frame-
work CEHNN on a real-world dataset, comparing its per-
formance with several state-of-the-art baselines. Meanwhile
we will discuss the experiment result, as well as to analyze
the attention weights generated through our framework by
case study.

Name Value/Setting
Dimension of Sturnover LSTM 90
Dimension of Senv LSTM 20
Dimension of Profile Dense Layer 20
Dimension of Dense Layer after Attention 35
Dropout Probability 0.5
Attention Size 10

Table 4: The network configuration.
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Method Accuracy Precision Recall F-measure AUC-ROC
Logistic Regression 0.814±0.027 0.808±0.036 0.764±0.055 0.785±0.035 0.869±0.029
SVM 0.709±0.038 0.816±0.064 0.448±0.091 0.577±0.079 0.818±0.029
Random Forest 0.77±0.026 0.812±0.05 0.629±0.05 0.708±0.036 0.86±0.028
Gradient Boosting 0.833±0.03 0.861±0.038 0.744±0.05 0.798±0.039 0.910±0.026
Turnover sequence HMM 0.752±0.101 0.862±0.229 0.568±0.19 0.671±0.046 0.55±0.088
Environmental change HMM 0.656±0.115 0.619±0.178 0.684±0.206 0.638±0.077 0.577±0.032
Turnover sequence RNN 0.853±0.022 0.856±0.025 0.806±0.044 0.83±0.028 0.905±0.025
Environmental change RNN 0.761±0.034 0.79±0.061 0.633±0.07 0.702±0.049 0.804±0.045
CEHNN 0.864±0.018 0.871±0.029 0.816±0.049 0.842±0.024 0.914±0.02

Table 5: The overall performance of different approaches for turnover prediction.

Experimental Setup
Data Pre-processing. We set the observation time span
∆observe for the sequence to be one year and the turnover
prediction period ∆predict to be three months. An employee
who quits the job in the prediction period would be counted
as a positive sample otherwise counted as a negative one.
To isolate the influence in the prediction period, the decision
time t for each sample was chosen with constraint to make
sure there was no prior manager/peer turnover in the predic-
tion period. The statistics of the data is listed in Table 3. We
used 64% for training, 16% for validation, 20% for test.

Model Configuration. The dimension of our input and
network configuration can be found in Table 4. We used the
Adam optimizer(Kingma and Ba 2014) for training. The ob-
jective function is the cross entropy loss function.

Baseline Methods and Evaluation Metrics
We compared our framework with baselines to demonstrate
its effectiveness comprehensively. The baselines selected
fell into three categories, a) popular classification algorithms
without ability to process sequential data, such as Logis-
tic Regression, SVM, Random Forest and Gradient Boost-
ing; b) algorithms able to deal with sequential data natively
such as HMM c) LSTM for turnover sequence only and en-
vironmental change only. For algorithms not designed for
sequential data we concatenated and padded the sequential
data in preprocessing. HMM is unable to process multiple
sequences with varied length, so we trained two HMM mod-
els, one was fed with the turnover sequence data concate-
nated with profile data, the other was fed with the environ-
mental sequential data concatenated with profile data. The
hyper-parameters of all above models were found by grid
search within a predefined range based on experience and
suggested best practice.

Since the problem is a binary classification problem, we
chose accuracy, precision, recall, F-measure and the area
under the curve of receiver operating characteristic (AUC-
ROC) to measure the performance of the framework.

Performance Comparison
The baselines and the framework CEHNN were evaluated
on the turnover dataset, the experimental result is listed in
Table 5. We conducted each algorithm 10 times, each time
we generated a random training/validation/test dataset with

the same proportion. The values listed in the table are the
means with 95% confidence interval. We use bold font to
emphasize the top 1 for each metric.

From the table, we have following observations: first,
overall our framework performs better than others on all
metrics; second, the turnover sequence RNN also achieves
a competent result (the runner-up in accuracy, recall and F-
measure), which demonstrates exploiting the prior turnover
sequence will benefit the future turnover prediction, in con-
trast, the environmental change plays a less important role;
third, the high dimension of concatenated data limits the per-
formance of classical classifiers, but Gradient Boosting still
achieves a competent performance; lastly, HMM performs
poorly on the dataset, we think the reason may be there is a
long dependency which cannot be captured.

Robustness Analysis
To validate the robustness of our framework, we conducted
three experiments: a) we tested it under the values of
∆predict set to 30, 45, 60, 75, 90 days, as the prediction pe-
riod is getting smaller, some positive (turnover) samples
may turn to negative (non-turnover) ones; b) we tested it
under the values of ∆observe set to 3, 6, 9, 12 months; c)
we tested it under the values of ratio = # of positive

# of negative set to
0.5, 0.6, 0.7, 0.8, 0.9.

Figure 6 (a) compares the AUC-ROC values when we ap-
plied all the models to predict turnover for 30, 45, 60, 75, 90
days. In general, the Gradient Boosting, Random forest,
Turnover Sequence RNN and CEHNN outperforms the
others. The Random Forest and Gradient Boosting per-
forms better when the prediction period is short, while the
Turnover Sequence RNN and CEHNN are good at predict-
ing for a longer period, which demonstrates they can exploit
the sequential data better and make a longer prediction than
traditional classifiers.

Figure 6 (b) compares the AUC-ROC values of all the
models on the datasets with different ratios of positive and
negative samples. Similar to Figure 6 (a), the Gradient
Boosting, the Turnover Sequence RNN and CEHNN out-
perform the others. The Gradient Boosting and the Turnover
Sequence RNN is slightly better than CEHNN. We consider
this is due to the size of the dataset. In our original dataset,
the ratio of positive and negative samples is close to 0.8,
when we adjust the ratio to be 0.5, 0.6, 0.7, we actually re-
duce the size of available data, which makes the framework
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(a) AUC under different prediction period

(b) AUC under different pos./neg. ratio

(c) AUC under different observation period

Figure 6: The robustness analysis of different methods.

CEHNN lack of training.
Figure 6 (c) compares the AUC-ROC values of all the

models on dataset with different lengths of observation pe-
riod. In general, it can be observed that as the observation
period increases, the framework CEHNN performs consis-
tently well, which demonstrates its ability to process and ex-
ploit long sequential data. In contrast, the performances of
traditional classifier Gradient Boosting and Random Forest
drop explicitly as observation period increases, for which the
reason might be the increasing high dimension of concate-
nated data make the prediction more challengeable.

Case Study
We conducted two case studies with our framework on the
dataset. One is on the individual level, the other is on the
organizational level. On the individual level, a sample (em-
ployee) was chosen in the dataset and the global weights

(a) Weights for selected sample

(b) Boxplot of aggregated contribution

Figure 7: The visualization of weights from attention.

for it was learned by the CEHNN and plotted in Figure 7
(a). The weights are composed of three parts, the leftmost
is weights of the environmental change, the middle is the
weights of turnover sequence, and the rightmost one is the
weights of profile. It is found for this sample, the largest
weight located in the turnover sequence, so the framework
evaluate the 4th prior turnover as the largest contributing fac-
tor. On the organizational level, we evaluated the CEHNN on
a test set of 587 samples, the weights are summed within en-
vironment change, turnover sequence and profile, as shown
in Figure 7 (b). It is found that for the turnover prediction,
the contributions from the prior turnover sequence, the envi-
ronmental change and profile are approximately 61%, 30%
and 9%.

Conclusion
We propose a contagious effect heterogeneous neural net-
work (CEHNN) for turnover prediction within a period of
future in this paper. The heterogeneous structure endows
the framework the ability to process the sequential/non-
sequential data from different sources together. Specifically
it integrates the static profile information and the environ-
mental change. Moreover, it exploits the contagious effect
in the turnover sequences, formulating and solving the prob-
lem from a new angle. Further a global attention mechanism
is implemented in the framework to detect a global impor-
tance of all involved factors, which gives more interpretabil-
ity and actionable insight to our problem. Our experiment
validate the effectiveness and robustness of the framework,
and shows the value of global attention by case study.
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