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Abstract 

This paper proposes an approach to strength adjustment for 

MCTS-based game-playing programs. In this approach, we 

use a softmax policy with a strength index   to choose 

moves. Most importantly, we filter low quality moves by 

excluding those that have a lower simulation count than a 

pre-defined threshold ratio of the maximum simulation 

count. We perform a theoretical analysis, reaching the result 

that the adjusted policy is guaranteed to choose moves ex-

ceeding a lower bound in strength by using a threshold ratio. 

The approach is applied to the Go program ELF OpenGo. 

The experiment results show that   is highly correlated to 

the empirical strength; namely, given a threshold ratio 0.1,   

is linearly related to the Elo rating with regression error 

47.95 Elo where       . Meanwhile, the covered 

strength range is about 800 Elo ratings in the interval of   in 

      . With the ease of strength adjustment using  , we 

present two methods to adjust strength and predict oppo-

nents’ strengths dynamically. To our knowledge, this result 

is state-of-the-art in terms of the range of strengths in Elo 

rating while maintaining a controllable relationship between 

the strength and a strength index.  

Motivation  

Artificial intelligence in computer games has made signifi-

cant progress in recent years, especially after DeepMind’s 

AlphaGo (Silver et al. 2016) defeated human Go champi-

ons by a large margin in 2016. DeepMind then followed up 

their success with AlphaGo Zero (Silver et al. 2017b) to 

further improve the playing strength without requiring hu-

man knowledge, resulting in much stronger programs 

against earlier versions of AlphaGo. Both AlphaGo and 

AlphaGo Zero incorporate deep neural networks into Mon-

te Carlo tree search (MCTS) (Browne et al. 2012; Coulom 

2006; Kocsis and Szepesvári 2006), which itself had been a 

major breakthrough that was responsible for more than ten 

years of rapid growth in computer games, particularly 

computer Go, before AlphaGo was announced.  
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Since AlphaGo Zero, many other programs such as 

FineArt (Tencent AI Lab 2018), Leela Zero (Pascutto 

2018), and ELF OpenGo (Tian et al. 2018) have success-

fully reproduced the AlphaGo Zero algorithm. AlphaGo 

Zero’s method was also applied to other games such as 

chess and shogi, reaching strength levels much higher than 

human champions and other top programs (Silver et al. 

2017a).  

Super-human level game playing programs capture the 

imagination and fascination of society at large; for human 

players, these programs pose an interesting challenge and 

offer opportunities for learning (Hunicke and Chapman 

2004; Demediuk et al. 2017; Paulsen and Fürnkranz 2010; 

Sephton, Cowling, and Slaven 2015). However, it is also 

important to fit program difficulty to appropriate levels for 

human players. On the one hand, human players may lose 

interest if the game program is too weak; on the other 

hand, excessive difficulty tends to lead to frustration (Hu-

nicke and Chapman 2004). From our observation, in the 

context of learning with programs, it is difficult to offer 

feedback for human players if they are constantly on the 

losing side. Thus, in order to achieve an overall better 

game experience, and to improve the learning process for 

players, it is imperative to balance program difficulty ac-

cordingly. The fundamental goal is to offer programs with 

a wide variety of strength levels.   

A simple and straightforward method to offer different 

program strengths is to reduce the total thinking time, or 

the total simulation count in MCTS, if MCTS is used. 

However, with this method, the search tree’s relatively 

smaller size leaves the program vulnerable to tactical traps. 

For example, the ladder problem in Go is one of the most 

elementary shapes taught to human players; for programs, 

however, search is often required to handle ladders proper-

ly. It has been shown that when adjusting program strength 

through reduction, simulation count and playing strength 

do not form a linear relationship (Sephton, Cowling, and 

Slaven 2015). In fact, once the number of simulations fall 

below a certain threshold, the program playing strength 

drops catastrophically. 
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Another straightforward approach is to offer one pro-

gram for each strength level, e.g., train one network for 

each difficulty. A good example of this type of strength ad-

justment is Paulsen and Fürnkranz’s (2010) work on train-

ing chess evaluation functions for different strengths. 

However, this approach usually requires large amounts of 

time and effort to tune and test the programs. This is espe-

cially difficult for games like Go, where strength levels 

span a wide range from 30 kyu to professional 9 dan (Hol-

losi and Pahle 2018), about a 3000 Elo rating difference.  

This paper reviews a strength adjustment (SA) approach 

based on the softmax policy and proposes our modification 

in the following section (Strength Adjustment). We apply 

the method to the open source Go program ELF OpenGo 

(abbr. ELF for the rest of this paper) and demonstrate that 

the method can be easily used to adjust the program 

strength, covering a range of over 800 Elo rating. In the 

Strength Analysis section, this paper presents a hypothesis 

and performs theoretical analyses to justify the empirical 

strengths shown in the Strength Adjustment section. Hav-

ing demonstrated that the program strength can be adjusted 

with relative ease, we introduce methods to adjust the 

strength dynamically in the section of Dynamic Strength 

Adjustment. Finally, we provide discussion and summarize 

our contributions in the Conclusion section.  

Strength Adjustment 

In this section, we first review past work on strength ad-

justment, then present our modifications to the method. We 

apply the modified approach to the Go program ELF and 

provide empirical data.  

Past Work 

For strength adjustment, Sephton et al. (2015) presented a 

method for MCTS-based game-playing programs using a 

simple softmax policy as follows. Given strength index  , 

choose moves   with probability   
     

 ⁄ , where    is the 

number of simulations on move   in MCTS. For simplicity 

of discussion in the rest of this paper, let       if    , 

i.e.    is the maximum.  

Conceptually,   is the inverse of the softmax tempera-

ture. When   is higher, the policy tends to choose the move 

with higher simulation counts, which tends to be a higher-

quality move as is the case with MCTS. When   approach-

es infinity, the moves with the highest simulation counts 

are guaranteed to be chosen, and thus policy exhibits the 

same behavior as the original MCTS. When    , all the 

moves are chosen with equal probability, i.e., moves are 

chosen randomly. When   approaches negative infinity, the 

moves with the lowest simulation counts are chosen, i.e. 

the policy tends to choose the lowest quality moves.  

Thus,   can serve as an index of strength. Sephton et al. 

(2015) showed through experiments that   is correlated to 

the empirical strength, but experiment only covered six tri-

als on   (from 1 to 6) for the game Lords of War, and the 

differences of win rates for these values of   are ranged 

from 5% to 24%, equivalent to a range of 100 Elo rating.  

As above, when   is low, the policy tends to choose low 

quality moves. However, in MCTS, many moves are not 

visited during simulation, or in some cases, visited very 

few times only because of the exploration bias. For this 

reason, it is not a good idea to allow the policy to choose 

the lowest-quality moves, which would result in a much 

weaker program or unpredictable behavior.  

In order to avoid choosing the very lowest-quality 

moves, Sephton et al. suggested choosing the first   best 

moves as candidates, where   is a given fixed value. How-

ever, it is still possible to choose a very low-quality move, 

e.g., in the case that only one move is viable while the oth-

ers are extremely bad, the policy is still likely to choose 

bad moves.  

Our Approach 

In our approach, we follow the softmax policy to choose 

moves via the strength index  . However, from our obser-

vation, it is critical to screen the candidate moves. For this 

issue, our approach is to use a threshold ratio     to avoid 

choosing moves with small simulation counts in order to 

ensure the quality of moves. Namely, given a threshold ra-

tio    , we only consider the moves   with           

as candidates. Assuming that the move quality is correlated 

to the simulation count (we discuss this in greater detail in 

the Strength Analysis section), this approach ensures that 

the qualities of the chosen moves are higher than the 

screened moves which do not reach the threshold. At the 

very least, the modified policy is less likely to choose ex-

tremely bad moves, as mentioned in the previous subsec-

tion.  

For a high threshold ratio, more low-quality moves are 

filtered. When      , the move with the highest simula-

tion count is always chosen, behaving the same way as the 

original MCTS. In contrast, for a low threshold ratio, many 

low-quality moves are not filtered. Thus, it is important to 

set a reasonable threshold ratio, where the goal is to filter 

most low-quality moves, while simultaneously allowing 

reasonable moves to be considered.  

In contrast to the previous work (Sephton, Cowling, and 

Slaven 2015), our empirical results in the next subsection 

show that strengths can be adjusted across a wide range 

over 800 Elo rating with the threshold ratio 0.1 and the in-

terval of   in       . Thus, our approach is very suitable 

for games that are considered to have very high depth 

(Cauwet et al. 2015).  

1223



 

 

Empirical Results 

We apply the above approach to the Go program ELF and 

present the experiment results. All the experiments are per-

formed on machines equipped with one GTX 1080Ti GPU, 

one Intel Xeon E5-2683 v3 (14 cores in total), 2.6 GHz, 

128 GB memory, and with Linux. All games are played 

with one second per move, using one GPU and six CPU 

cores. For each benchmark, 250 games are played against a 

baseline, ELF with         and    . Note that we do 

not use the original ELF, equivalent to    , as the base-

line since it is much too strong for some trials, such as 

when     .  

Table 1 (below) shows the win rates and the relative Elo 

rating of the ELF versions with         and with differ-

ent   against the baseline. Note that the shown Elo ratings 

are relative to the original ELF which is set to 0 for sim-

plicity of analysis. Since ELF follows the process of train-

ing AlphaGo Zero with 20 blocks, its real Elo rating is 

supposed to be between 4000 and 5000 (Silver et al. 

2017b).  

 

  Win rate (±errors) Elo rating (±errors) 

∞ 97.6% (±1.9%) 0 (-106, +289) 

2 94.4% (±2.9%) -153 (-78, +133) 

1.5 92.4% (±3.4%) -210 (-70, +107) 

1 91.2% (±3.6%) -237 (-66, +98) 

0.5 71.6% (±5.7%) -483 (-46, +52) 

0 50.0%  -644  

-0.5 35.6% (±6.1%) -747 (-48, +44) 

-1 21.6% (±5.2%) -868 (-59, +49) 

-1.5 13.2% (±4.3%) -971 (-76, +58) 

-2 12.4% (±4.2%) -983 (-79, +59) 

-∞ 7.2% (±3.3%) -1088 (-111, +71) 

Table 1. The win rates (against ELF with z=0) and Elo ratings 

(relative to the original ELF) with respect to   when        . 

 

 

Figure 1. The correlation between   and Elo rating when 

       . 

 

Figure 1 shows the correlation between   and the Elo 

ratings. Interestingly, both are highly correlated with a low 

linear regression error 47.95 Elo, in terms of the Elo rating, 

when   is between -2 to 2. In addition, the range of 

strength is very wide, covering 1088 Elo rating for all   

and 830 for the interval of   in       . 
Furthermore, Figure 2 depicts the correlation between   

and the Elo rating for different threshold ratios, 0, 0.02, 

0.05, 0.1, 0.25, and 0.5. All games are also played against 

the same baseline as above. From the Figure 2, the correla-

tion between Elo ratings and z is also highly correlated to 

    in most cases. A higher value of   usually corresponds 

to higher Elo ratings. 

 

 

Figure 2. Elo rating (relative to ELF) in different threshold ratios 

and strength indices. 

 

 

Figure 3. The number of candidates with respect to    . 

 

We observe that high values of     are not appropriate. 

For example, when        , the Elo rating has no signif-

icant changes across different values of  . An intuitive ex-

planation for this is that with a high threshold ratio, most 

candidate moves are filtered, so the value of   does not 

matter as much. Figure 3 shows that the average number of 

candidates is only 1.4 for        , and 1.9 for     
    . Another effect is that the adjusted strength range is 

narrower, e.g., smaller than 500 Elo rating for         . 

On the other hand, for low threshold ratios, the Elo rat-

ing drops quickly, and the strength for different values of   

show no difference, e.g. when       and     , and 

when          and     .  
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Thus, judging from both Figure 2 and Figure 3, the 

threshold ratios of 0.05 and 0.1 appear to be suitable for 

our needs. For simplicity of analysis, 0.1 will be used as 

the threshold ratio, unless otherwise stated. 

Strength Analysis 

The above empirical results show that the strengths are 

highly correlated to  . In fact, between        and a 

threshold ratio of 0.1,   and the strength show a near linear 

relationship with regression error 47.95 Elo. However, the 

strength or Elo rating should be fixed when   approaches 

  or   . Thus, intuitively, the curve of the Elo rating 

strength according to the   value should be shaped similar 

to a logistic function. Applying logistic regression (Hosmer 

Jr, Lemeshow, and Sturdivant 2013), the curve is close to a 

logistic function with error 26.00 Elo (         , 

       ).  

This section investigates this conjecture of logistic re-

gression from a theoretical perspective. First, we review 

the generalized Bradley-Terry model. Second, we present a 

hypothesis on move strength. Then, from theoretical analy-

sis, we show that the derived strengths are close to the em-

pirical strengths. We calculate the regression error between 

the derived and the empirical strengths to justify the hy-

pothesis.  

Generalized Bradley-Terry Model 

The Bradley-Terry model has been the foundation of vari-

ous ranking systems, including the Elo rating system. The 

model is used to estimate the strengths of players and pre-

dict the win rates among these players. Note that moves 

mentioned in the Past Work Subsection can be viewed as 

players here. Namely, each player   is associated with a 

positive value    representing the strength of  , and the 

probability that   wins over   is           . Obviously, 

the higher    is, the higher the winning rate (implying a 

stronger player). The Elo rating of individual   is      
           (Coulom 2008). For simplicity of discussion 

in this paper, we also define the rating        , whose 

corresponding Elo rating is                   .  

The Bradley-Terry model has also been generalized to 

handle competitions involving more than two players 

(Coulom 2007; Hunter 2004). Namely, the probability that 

  wins among   players, 1, …,  , is formulated as    ∑   
 
 . 

Another generalization is to allow competitions among 

teams, instead of players. The strength and its correspond-

ing rating of a team of   players is estimated as  

     ∏   

 

 
  and      ∑   

 

 
  (1) 

In this paper, we also define the average strength and 

rating of a team of   players to be  

     (∏   

 

 
)

 
 
  and      (

 

 
)∑   

 

 
  (2) 

This is useful when   is not fixed. In addition, consider a 

team that can choose one and only one player to participate 

and choose player   with probability   , where ∑   
 
   . 

Thus, the strength and rating of the team are  

  ∏   
  

 

 
  and   ∑     

 

 
  (3) 

respectively, for the reason as illustrated below. For exam-

ple, let       ∑   
 
 . We can consider the team com-

posed of ∑   
 
  players, among which the number of play-

ers   is   . Thus, the average strength and rating of the 

team are the same as   and   in formula (3), respectively.  

Hypothesis  

As mentioned above, moves with higher simulation counts 

   in MCTS normally tend to have higher quality. Follow-

ing this notion, we present a hypothesis for further theoret-

ical analysis. Assume that given a position the strength of 

move   is proportional to   
 . Here,   denotes a conjec-

tured strength index for moves to be selected in MCTS in 

the previous sections. Namely, let        
 .  Here,   is 

a constant coefficient with respect to the same game posi-

tion, i.e. different positions may have different relative 

strengths, and therefore will have a different value of  .  

The rating of move   is                  . For 

the simplicity of analysis, we use    in the following analy-

sis without loss of generality. If the Elo rating is preferred, 

     can be obtained by a simple conversion, as described 

above.  

Let      and      denote the overall strength and rating 

following the above method for strength adjustment, which 

chooses among all moves   using the softmax policy 

        
      

  ⁄ . From the above Bradley-Terry model 

for team strength, we can derive that  

       ∏   
     

 
  and (4) 

              ∑        
 

  

  ∑                 
 

  

       ∑          
 

  (5) 

In the above formula, the first item in (5) is fixed for this 

position, and therefore it can be removed to obtain relative 

ratings, say, relative to the rating where     (which al-

ways choose the move with the maximum simulation 

counts   ) as follows.  

                     

   ∑                 
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   ∑             
 

 (6) 

where    is the ratio      . Since all moves with the ratio 

less than      are filtered out,       . In addition, since 

   is the maximum among   ,      and      are there-

fore all non-positive. Thus, we obtain  

                   (7) 

An important implication in formula (7) is that the rela-

tive ratings of the chosen moves are at worst          . 

Assume        . The relative ratings of all chosen 

moves are at worst              , no worse than 

move 1 by     . Since   is a constant under this hypothe-

sis, this implies that the strength of any chosen move is at 

worst a fixed value. This ensures the quality of all chosen 

moves.  

Now, let us consider following the above SA method to 

play a game  , containing a sequence of    moves or    

positions to move. Let         and         denote the 

strength and rating of the move made at the  th position (i.e. 

on the  th turn), which can be formulated as follows.  

          ∏   
     

 
  and (8) 

          ∑   
        

   

 
  

          ∑   
          

   

 
  (9) 

where   
   

,   
   

,   
   

 and   
   

 are respectively the strength, 

rating, policy and simulation count of moves   at the  th 

position in the game, and      is the coefficient with respect 

to the position.  

Furthermore, let       and       denote the averaged 

strength and rating as follows. 

        (∏        
 

)

    

  and (10) 

        (
 

  

)∑        
 

  

  (
 

  

)∑ (        ∑   
          

   

 
)

 
  

  ∑       

 
 (

 

  

)∑ ∑   
          

   

  
  (11) 

Note that we evaluate the averaged strength and rating 

as Formula (1), instead of the aggregated values in (2), 

simply because the number of moves in a game is not fixed. 

In the above formula, the first item is fixed, and there-

fore can be omitted when calculating ratings relative to the 

one with    , similarly, as follows.  

    
                    

  (
 

  
)∑ ∑   

      (    
   

)
  

  (12) 

where   
   

   

   
   

   
. Moreover, let the relative rating be 

normalized to be independent of the value   as follows.  

     
           

        

  (
 

  
)∑ ∑   

      (    
   

)
  

  

    [∑   
      (    

   
)

 
]  (13) 

For stochastic analysis, we extend by collecting some 

sets of games, each of which is collected from the games 

under a designated threshold ratio in the above empirical 

experiments. We exclude extreme cases to minimize the 

effect of noise for our analysis. For example, the cases of 

    and      are not included. 

For simplicity of analysis, let us illustrate the case for 

    , denoting the set of games with threshold ratio 0.1, 

which contains about 2000 games. The expected relative 

rating under the set      is  

     
                 

[     
    ]  

         
[  [∑   

      (    

   
)

 
]]  

         
[∑   

      (    

   
)

 
]  (14) 

Figure 4 (below) depicts the solid curve of      
        

calculated from the set      according to formula (14). The 

left y axis indicates the value of      
       . The curve re-

sembles a logistic function. Now, let          denote the 

expected rating, and       be the value  , under the set of 

games,     . Thus, we have 

                             
         (15) 

 

 

Figure 4. The curve of      
        and the empirical data. 

 

Then, we can derive that  

                              
            and (16) 

      
                  

     
        

  (17) 

Since the values          and           are supposed 

to approximate the strength in the empirical experiments, 

they can be replaced by the empirical strengths at     

and     , whose relative Elo ratings are 0 and -1088 as 

shown in Table 1. Thus, the value       is derived to be 
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6.243 according to the above formula. The right y axis in 

Figure 4 follows the y axis in Figure 1. The regression er-

ror to the empirical strengths for   between -2 and 2 is 

about 40.45 Elo, and the regression error to a logistic re-

gression curve is about 10.51 Elo (        ,        ). 

These low errors justify the hypothesis.  

 

 

Data set                             

  4.385 5.369 6.243 6.244 3.292 

Table 2. The conjectured strength indices estimated in different 

data sets. 

 

In our experiments, we also derived the value   for oth-

er sets of games, as shown in Table 2.  From the table, 

       is almost the same as      , while      ,        and 

       are lower. For        and       , our conjecture is 

that the noise incurred from having a low threshold ratio 

are high as the following illustration. In the case of 

        , since the average number of simulation counts 

for the best move is about 259.4 with the one second time 

limit, it is highly likely to include the moves with very low 

simulation counts (the threshold is about            
   ). Since many of these simulations may be generated 

simply because of the exploration bias, these simulations 

may introduce noise and therefore affect the verification of 

our hypothesis.  

As for      , we observe that the average number of 

candidates is 1.4 from Figure 3. Since the number is rela-

tively low, in many cases, the policy chooses only from a 

single candidate move. Therefore, the distribution is insuf-

ficient to justify our hypothesis. As an example, the most 

extreme case is where the threshold ratio is 1, and only the 

moves with the highest simulation counts are chosen, as in 

the original MCTS. The value of   in this case does not af-

fect the policy at all, since there is only one choice. 

Dynamic Strength Adjustment  

As stated in the previous sections, this paper presents a 

flexible strength adjustment method simply by altering the 

value   with an appropriate    , say 0.1. Moreover, the 

strength ratings are approximately linear with respect to   

in the interval [-2, 2]. This allows us to fit the programs 

strength to its opponents’ dynamically, provided the oppo-

nents’ strengths are within [-983, -153], corresponding to 

the range of   in [-2, 2]. This section introduces two types 

of dynamic strength adjustment, inter-game and intra-

game strength adjustment. For the former, strengths are ad-

justed based on previous game results, while for the latter 

strengths are adjusted within each game. We present two 

methods of dynamic strength adjustment (DSA) here only 

to showcase how we can predict opponent strengths and 

adjust accordingly with relative ease; the presented meth-

ods are by no means a comprehensive review of all availa-

ble methods. 

Inter-game Strength Adjustment  

Inter-game strength adjustment is relatively easy. Namely, 

the strength index   of a game is adjusted based on the 

previous game results and the index remains unchanged 

within the game. 

In this section, a simple adjustment method is presented 

and demonstrated to predict the opponent’s strength. The 

prediction can then be used to set   accordingly. The 

strength index   is decreased for every win and increased 

for every loss, both by a small amount   . The initial value 

of   is set to 0. The value    is initialized to        and de-

creased by a discount factor   for each game, capped by a 

lower bound      .  

In our experiments for the method,        is      , ap-

proximately equivalent to 100 in Elo rating based on the 

linear regression in Figure 1, then decreased by a factor of 

       for each game, with           , equivalent to 

8 in Elo rating. In the experiment, 100 games are played 

against each of the five opponents whose strength indices 

are               for a total of 500 games. The exper-

iment is repeated five times and the following experiment 

results are based on the average values of the five times.  

 

 

Figure 5. Strength index estimation for inter-game SA. 

 

Opponent                       

w/o DSA 

WR 

5.6% 

(±2.9%) 

8.8% 

(±3.6%) 
50.0% 

78.4% 

(±5.2%) 

87.6% 

(±4.2%) 

Inter-game 

WR 

43.4% 

(±4.4%) 

46.6% 

(±4.5%) 

52.0% 

(±4.5%) 

50.0% 

(±4.5%) 

54.8% 

(±4.5%) 

Avg.   1.93 0.88 -0.04 -1.06 -1.73 

Table 3. Win rate (WR) and average dynamic strength index 

(Avg. z) against different opponents using inter-game SA. 

 

In Figure 5 each of the five lines indicates the predicted 

  for each opponent. The result shows that our method can 

approximately predict opponents’ strengths and clearly dis-

tinguish five opponents.  Table 3 also shows that the aver-
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aged win rate for each opponent is within 43-54% and the 

averaged predicted   is very close the opponent’s.  

Intra-game Strength Adjustment   

Intra-game strength adjustment is relatively challenging, 

given that the algorithm only has one game to predict the 

opponent’s approximate level of play. Players often play 

inconsistently within the same game, mixing good and bad 

moves. On the one hand, adjusting by large amounts leads 

to high variance of program strength. On the other hand, if 

strengths are adjusted by a small amount, the effects may 

not be sufficiently obvious.  

Our method is as follows. In principle, we still attempt 

to maintain all moves so that the overall win rate is around 

50%. For each move, we first estimate the current win rate 

 , by using the MCTS win rate of the move with the most 

simulation counts. The index   is decreased when   
    and increased when      , both by   . The pro-

gram chooses moves based on the softmax policy proposed 

earlier.  

However, for stability,    is set to be relatively small 

when   is within a range (50%  , 50%  ), where   is a 

user defined value, say 10%. Namely,  

   {

      |     |   

   
|     |

 
    |     |   

 

(18) 
 

(19) 
 

In addition,    decreases linearly from an initial value, say 

0.1, to 0 after a number of moves, say 150 moves. The 

purpose is to cool down the amplitude of changes as games 

progress, since the program should have an idea of its op-

ponent’s strength by that stage in the game. This cool 

down mechanism is important because without it, the pro-

gram will make unreasonable concessions when it is in the 

lead, or ramp up in strength indefinitely when it is behind. 

In the experiment, the above method is used to play 

against the five opponents with strength indices   
               . For each opponent, consider two cas-

es of   , 0.2 and 0.1, where for each case, 100 games are 

played.  

Table 4 presents the experiment results. The results 

show that the average   values over 100 games are close to 

the opponents’ strength indices  , especially when 

      . Note that the predicted   for each game is the 

value   at the end of the game. The standard deviation is 

high as expected. 

The results in Table 4 also show that while all the win 

rates except for      are not around 50%, when com-

pared to the baseline win rates without DSA (as shown in 

the second row), the overall win rates are closer to 50%. 

This shows that intra-game DSA can predict opponents’ 

strengths and even out the games. The reason why the win 

rates are not balanced around 50%, despite the predicted   

value to be more or less accurate, is that the early moves in 

a game influence the outcome significantly, but the pro-

gram has yet to observe its opponents’ strengths sufficient-

ly at that point.  

 

Opponent z = 2 z = 1 z = 0 z = -1 z = -2 

w/o DSA 5.6% 8.8% 50.0% 78.4% 87.6% 

      

     

WR. 29.0% 38.0% 43.0% 64.0% 71.0% 

Avg. z 1.85 0.92 -0.10 -1.39 -1.57 

Std. z 1.82 1.81 1.41 1.73 1.56 

      

     

WR. 15.0% 32.0% 49.0% 73.0% 72.0% 

Avg. z 1.02 0.75 -0.21 -0.66 -0.96 

Std. z 0.94 0.90 0.81 0.84 0.85 

Table 4. Win rate (WR), average z (Avg. z) and standard devia-

tion of z (Std. z) against different opponents using intra-game SA. 

Conclusion 

In this paper, our major contributions are: 

1. We propose an approach to strength adjustment for 

MCTS-based game-playing programs. In this ap-

proach, we follow a softmax policy (Sephton, Cowl-

ing, and Slaven 2015) with a strength index   to 

choose moves. Most importantly, this approach uses a 

threshold ratio     to filter out low-quality moves   
whose simulation counts in MCTS are          .  

2. We apply the approach to the Go program ELF, and 

demonstrate that we can easily adjust the strength. The 

empirical results show the strength covers a range of 

about 830 Elo ratings with a low linear regression er-

ror of 47.95 Elo, with respect to   in the range [-2, 2]. 

To our knowledge, this result is state-of-the-art in 

terms of the range of strengths in Elo rating while 

maintaining a controllable relationship between the 

strength and a strength index. Another advantage is 

that the program is still able to play diverse moves de-

spite its adjusted, weaker strength.  

3. We present an in-depth strength analysis for the above 

empirical results. First, we make the hypothesis that 

given a position, the strength of move   is proportional 

to   
 . From this hypothesis, the strength ratings of 

chosen moves are shown to be at worst a fixed value, 

       , lower than the best move. This justifies 

that the move quality is under control, avoiding excep-

tionally bad moves. In addition, the analysis also 

shows that the derived strengths are also close to the 

empirical strengths with regression error 40.45 Elo, 

and to a logistic function with regression error 10.51 

Elo.  

4. With the ease of strength adjustment using  , we in-

troduce two methods to adjust strength dynamically, 

including inter-game and intra-game strength adjust-

ment. The experiment results show that these methods 
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are able to predict the opponents’ expected strengths, 

though the variances can be high. 

In practice, we have applied our method to ELF OpenGo 

and three versions of the Go program CGI (Wu et al. 

2018), which can cover a strength range over 3000 Elo rat-

ings from beginners to ELF, which is much stronger than 

human champions. Our estimation is that ELF roughly co-

vers the range of Elo ratings [3300, 4300] and the other 

three covers [2600, 3700], [1800, 2800] and [900, 2000]. 

The four versions have been tested on online Go websites 

against human players. Namely, the last two versions were 

tested to play against amateur players on a Go playing 

online site Tygem (Tongyang Online 2018), while the first 

two were used to play against professionals in HaiFong Go 

Association (HaiFong Go Association 2018).  

As mentioned in the introduction, the AlphaZero algo-

rithm has also been successfully applied to other games 

such as chess and shogi, reaching a strength level much 

higher than human champions and other top programs (Sil-

ver et al. 2017a). With our approach, we expect to be able 

to provide a wide range of strength levels for each of these 

games. We expect our approach to not only impact the Go 

community, but also the games community at large. 
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