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Abstract

Continuous-valued deep convolutional networks (DNNs) can
be converted into accurate rate-coding based spike neural net-
works (SNNs). However, the substantial computational and
energy costs, which is caused by multiple spikes, limit their
use in mobile and embedded applications. And recent works
have shown that the newly emerged temporal-coding based
SNNs converted from DNNs can reduce the computational
load effectively. In this paper, we propose a novel method
to convert DNNs to temporal-coding SNNs, called TDSNN.
Combined with the characteristic of the leaky integrate-and-
fire (LIF) neural model, we put forward a new coding princi-
ple Reverse Coding and design a novel Ticking Neuron mech-
anism. According to our evaluation, our proposed method
achieves 42% total operations reduction on average in large
networks comparing with DNNs with no more than 0.5% ac-
curacy loss. The evaluation shows that TDSNN may prove
to be one of the key enablers to make the adoption of SNNs
widespread.

Introduction
SNNs are considered to be the third generation of neural net-
works which are more powerful on processing of both spa-
tial and temporal information (Maass 1997). However, it is
difficult to train an SNN directly. A series of works have
tuned the backpropagation algorithms to fit for the SNN
models (Bohte, Kok, and Han 2000; Lee, Delbruck, and
Pfeiffer 2016). Although they achieve satisfactory results
in simple tasks like MNIST (Lecun et al. 1998), the train-
ing methods can hardly be scaled into deep SNN models
to solve more complex tasks like ImageNet (Russakovsky
et al. 2014). Meanwhile, the researches on the biological
training methods also meet the same problem. These works
have put many existing brain mechanisms into the modeling
of SNN including spike timing dependent plasticity (STDP)
and long-term potentiation or depression, short-term facilita-
tion or depression, hetero-synaptic plasticity, etc. Recently,
Zhang et al. (Zhang et al. 2018) proposed a novel multi-
layer SNN model which applies biological mechanisms and
achieves 98.52% on MNIST dataset, but its performance is
unknown when applied on larger datasets.
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Unlike SNNs, deep neural networks (DNNs) have been
able to perform the state-of-the-art results on many complex
tasks such as image recognition (Krizhevsky, Sutskever, and
Hinton 2012; Krizhevsky 2009; Simonyan and Zisserman
2014; He et al. 2015), speech recognition (Abdel-Hamid et
al. 2012; Sainath et al. 2013; Hinton et al. 2012), natural lan-
guage processing (Kim 2014; Severyn and Moschitti 2015)
and so on. But heavy computation load promotes researchers
to find more efficient approach to deploy them in mobiles or
embedded systems. This inspires the SNN researchers that
a fully-trained DNN might be slightly tuned to be directly
converted to a SNN without complicated training proce-
dure. Beginning with the work of (Perezcarrasco et al. 2013),
where DNN units were translated into biologically inspired
spiking units with leaks and refractory periods, continu-
ous efforts have been made to realize this idea. After a se-
ries of success in transferring deep networks like Lenet and
VGG-16 (Cao, Chen, and Khosla 2015; Diehl et al. 2015;
Rueckauer et al. 2017), now the rate-coding based SNN
can achieve state-of-the-art performance with minor accu-
racy loss even in the conversion of complicated layers like
Max-Pool, BatchNorm and SoftMax.

However, weak points in rate-coding based SNN are obvi-
ous. Firstly, the rate-coding based SNN could become more
accurate with the increasement of the simulation duration
and the average firing rate of its neurons. But it may lose po-
tential performance advantage over the DNNs as the firing
rates increase (Rueckauer and Liu 2018). Secondly, part of
the accuracy loss in the conversion occurs at the parameter
determination procedure. In rate-coding based SNN, deter-
mination of important parameters like firing threshold seri-
ously affect the final accuracy while non deterministic meth-
ods have been proposed to eliminate the loss.

This poses challenges to researchers to find conversion
methods based on another coding scheme—temporal cod-
ing. Neurons based on temporal-coding make full use of the
spike time to complete the transmission of information, and
the number of spikes is significantly reduced. Also, tempo-
ral coding has been proved to be efficient in computing even
in biological brains (Van and Thorpe 2001). The temporal-
coding based neurons apply a so-called time-to-first-spike
(TTFS) scheme and each neuron fires at most once dur-
ing the forward inference (Thorpe, Delorme, and Rullen
2001). Obviously, temporal-coding based SNN is more com-
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putationally efficient than rate-coding based SNN. Recently
Rueckauer and Liu (Rueckauer and Liu 2018) proposed a
conversion method using sparse temporal coding, but it is
only suitable for shallow neural network models.

In this paper, we put forward a novel conversion method
called TDSNN, transferring DNNs to temporal-coding SNNs
with only trivial accuracy loss. We also propose a new en-
coding scheme Reverse Coding along with a novel Tick-
ing Neuron mechanism. We address three challenges during
the process of converting as follows. Firstly, we maintain
the coding consistency in the entire network after mapping.
Secondly, we eliminate the conversion error from DNNs to
SNNs. Thirdly, we maintain accuracy in SNN with spike-
once neurons. The details will be discussed later in the Re-
verse Coding part. According to our evaluation, we achieve
42% total operations reduction on average in large net-
works comparing with DNNs with no more than 0.5% ac-
curacy loss. The experimental results show that our method
is an efficient and high-performance conversion method for
temporal-coding based SNN.

Background
In this section, we will introduce two common neural mod-
els. One is integrate-and-fire(IF) model, the other is leaky
integrate-and-fire (LIF) model.

Integrate-and-fire (IF) model
We introduce integrate-and-fire(IF) model at first, which is
widely used in previous rate-coding based conversion ap-
proaches. In IF models, each neuron will accumulate po-
tential from input current and fire a spike when its poten-
tial reaches the threshold. Although successful conversions
have been made from DNN neurons with ReLU activations
to IF neurons, the process of the transformation still ex-
ists unsatisfactory problems. For example, it is difficult to
accurately determine thresholds in these conversion meth-
ods. Although Diehl et al. (Diehl et al. 2015) has proposed
data-based and model-based threshold determination meth-
ods, the converted SNN still suffers unstable accuracy loss
comparing with the re-trained DNN model. What’s worse,
IF neurons implement no time-dependent memory. Once a
neuron receives a below-threshold action potential at some
time, it will keep retaining that voltage until it fires. Obvi-
ously, it is not in line with the neural behavior in neural sci-
ence.

Leaky Integrate-and-fire (LIF) model
To better model neural behavior in the spike-threshold
model, researchers in neural science field proposed a sim-
plified model—Leaky Integrate-and-fire (LIF) model (Koch
and Segev 1998), which is derived from the famous
Hodgkin–Huxley model (Hodgkin and Huxley 1990). Gen-
erally, it is defined as following:

I(t)− V (t)

R
= C · dV (t)

dt
, (1)

where R is a leaky constant, C is the membrane capacitance,
V (t) is the membrane potential and I(t) is considered as the
input stimulus.

Considering that the inputs are instantaneous currents that
are generated from discrete-time neural spikes in an SNN
model, the equation (1) turns to:

V (t)

L
+

dV (t)

dt
=

∑
i

ωi · Ii(t), (2)

where ωi denote the synapse strength of the connections
in SNN, L is the leak-related constant. If there exists no
continuous spikes, the neuron potential will decay as time
goes by. The LIF model processes the time information by
adding a leaky term, reflecting the diffusion of ions that oc-
curs through the membrane when some equilibrium is not
reached in the cell. If no spike occurs during the time inter-
val from t1 to t2, the potential of the LIF neuron will change
as following:

V (t2) = V (t1) · exp(−
t2 − t1

L
). (3)

And if no no spike occurs in this neuron, the final potential
accumulation P at time Til will be:

P (Til) =
∑
i

ωi · exp(−
Til − ti

L
). (4)

This implies that the pre-synaptic neuron’s potential con-
tribution to post-synaptic neurons is positively correlated
with the firing time of pre-synaptic spike. This nonlinear
characteristic has never been put good use in previous con-
version methods. We make full use of these features to build
a conversion method for temporal-coding SNN.

Theoretical Analysis
In this section, we present details of our conversion method.
We first introduce the Reverse Coding guideline and ticking
neuron mechanism, respectively. Then, we analyze theoreti-
cally on all the requirements of conversion method, includ-
ing temporal-coding function and important parameters.

Reverse Coding
There has been massive number of influential works in the
practice of encoding input into a single spike before our
work. For example, Van et al. (Van and Thorpe 2001) pro-
posed a rank order based encoding scheme, in which the in-
puts are encoded into specific spiking order. The potential
contribution of later-spike neurons will be punished with a
delay factor so that the ones fire earlier will contribute a
major part of potential accumulation to post-synaptic neu-
rons. Combined with LIF neurons, this coding method has
been proven to achieve a Gaussian-difference-filtering ef-
fect, which is helpful for extracting features. But these
guidelines failed to serve well when considering the con-
version of DNN to SNN.

Unlike these works in which significant inputs are en-
coded into earlier spike times, we follow an opposite cod-
ing guideline based on characteristics of LIF neurons and
we name it Reverse Coding:

The stronger the input stimulus is, the later the corre-
sponding neuron fires a spike.
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This is consistent with the characteristics of leaky-IF neu-
rons, where post-synaptic neurons will assert most impres-
sive contribution to the recent-spike neurons.

Determining the principle of coding schemes moves one
step closer to build a conversion method for SNN with
temporal-coding. Following Reverse Coding, we still need to
tackle the following challenges to build a conversion method
for SNN with temporal-coding:
• How to maintain coding consistency in the entire net-

work after mapping. Even if the input of the first layer
is encoded according to Reverse Coding, there is no guar-
antee that the neurons in the subsequent layers will also
spike exactly in the same way.

• How to eliminate the conversion error from DNNs to
SNNs. A bunch of parameters(threshold, spike frequency,
presentation time etc.) need to be determined in previous
rate-coding based conversion methods and it still lacks
strict theoretical evidence to minimize the error caused
by parameter selection.

• How to maintain accuracy in SNN with spike-once
neurons. This requires the converted SNN makes full use
of the nonlinear characteristics of neuron model and also
the adjustments in DNN should be well designed.

Next, we will tackle these challenges by introducing the
Ticking Neuron mechanism below.

Ticking Neuron Mechanism
Converting the weights of DNN into that of SNN directly is
the most straightforward way, which also occurred in previ-
ous rate-coding based conversion methods. However, since
none inhibitory mechanisms are applied, the post-synaptic
neurons would spike at any time once their potentials exceed
the threshold. In such case, it would be difficult to control the
spiking moment and spike times along with the appropriate
threshold. What’s worse, those neurons in SNN, whose cor-
responding neuron output in DNN is large, may issue spikes
at an earlier time. It violates the Reverse Coding principle
we introduced above.

To address the challenges above, we propose an auxil-
iary neuron called ticking neuron and a corresponding spike
processing mechanism. As it shows in figure 1, the post-
synaptic neurons will be inhibited to fire once the process
begins, reflecting a common refractory period in SNN. The
inhibition will last until time Til(Til must be large enough
to cover all the pre-synaptic spikes, at least it could be the
firing time of the neuron firing the last spike). During that
time interval, each of the pre-synaptic neurons will only
fire one spike following Reverse Coding. The ticking neuron
will record the time Til and update its connections’ weight
ωtick to f(Til) (which means ωtick is only dependent on Til

and if Til is a pre-determined constant it could also be pre-
determined). After that, ticking neuron begins to issue spikes
at each time step until each of the post-synaptic neurons has
fired one spike. Those neurons has already fired one spike
will be inhibited to fire(could be considered as being in a
very long self-inhibitory period).

To make the LIF neuron whose corresponding neuron in
DNN outputs a large value fire at a later time point, the orig-

Ticking Neuron 

Pre-synaptic
Neurons 

Post-synaptic
Neurons 

T_il

Wtick

T_il

Figure 1: A Layer with a ticking neuron in SNN.

inal weights in DNN layers need to be negated. According
to equation (4), for those LIF neurons whose correspond-
ing output value in DNN is negative, they will spike im-
mediately once the inhibition is released. While for those
post-synaptic neurons whose corresponding output in DNN
is positive, their potential will be at a negative point when all
the pre-synaptic neurons fires. After that, the ticking neuron
begins to fire, increasing their potential until reach the given
threshold. Clearly, the larger the output in DNN, the later the
corresponding neurons in SNN will fire a spike.

Why ticking neuron is necessary? Because it guarantees
that all of the neurons can fire spikes. Supposing that if we
remove the neuron, those post-synaptic neurons with a nega-
tive potential will slowly approach the reset potential. It will
never fire a spike unless a threshold below reset potential is
set for it, which is not consistent with existing SNN findings
and neural science evidence.

Now all that is required is the strict calculations of spike
timing to achieve a lossless conversion.

Mapping Synapse-based Layer
Synapse-based layers refer to those layers with connections
of exact weight in the DNN, including convolutional layers
(CONV), inner-product layers (IP), pooling layers (POOL),
etc. These layers are the fundamental layers of DNN and
also the most computationally intensive layers. We will
show how to convert these layers to corresponding layers
in SNN applied with mechanisms mentioned above.

Supposing that the firing threshold of post-synaptic neu-
ron is θ, the last firing time of pre-synaptic neurons is Til

and the current below threshold potential is P . Clearly, the
spike timing To (considering the output layer’s inhibition is
released at time 0) of the post-synaptic neuron is the mini-
mum positive integer that obeys the following equation:

To∑
t=0

ωtick · exp(−
To − t

L
) + P · exp(−To

L
) ≥ θ, (5)

where L is the leaky constant described before. Solving this
equation, we obtain:

To = ⌈L · ln( (−P ) · (1− exp(−1/L)) + ωtick

ωtick − θ · (1− exp(−1/L))
)⌉. (6)
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In order to reduce the number of parameters to be de-
termined, the above equation can be simplified by setting
θ = 0. Finally, the equation (6) turns out to be:

To = ⌈L · ln( (−P ) · (1− exp(−1/L))

ωtick
+ 1)⌉. (7)

Note that the output positive value of DNN neurons A will
be mapped into a much smaller negative potential P due to
the leaky effect of leaky-IF neurons, which is:

− P = A · exp(−Til

L
). (8)

Combining equation (7) with equation (8), we will get the
connection weight of ticking neuron is as following:

ωtick = (1− exp(− 1

L
)) · exp(−Til

L
). (9)

This is in line with the constraints we mentioned in the previ-
ous section that ωtick is only dependent on Til. If Til is a pre-
determined large constant, ωtick becomes a constant too. If
Til is set as the last firing time of pre-synaptic neurons, then
ωtick dynamically updated. Also, the temporal-coding func-
tion T (x) will be obtained by combining equation (7)(8)(9):

T (x) = ⌈L · ln(x+ 1)⌉. (10)

Correspondingly, a new activate function is needed to be de-
ployed right before these synapse-based layers:

G(x) =

{
exp( 1

L · ⌈L · ln(x+ 1)⌉) x ≥ 0,
1 x < 0.

(11)

Note that negative input stimulus is avoided in our work
just like other conversion methods did, as negative neurons
are neither necessary nor in line with existing neural science.

Bias term was explicitly excluded in most of the rate-
coding based conversion methods. Rueckauer et al. (Rueck-
auer et al. 2017) proposed the bias with an external spike
input of constant rate proportional to the DNN bias. In
temporal-coding SNN, determining the firing timing for bias
neuron is easy. Here the bias neuron is considered as an in-
put with a numerical value of 1, thus it will be encoded into
a spike timing according to equation (10). The connection
weights of bias neurons will also be negated after re-training
of DNN.

Applied the mechanisms and coding functions above, the
synapse-based layers in DNN can be accurately mapped to
spike-time-based ones in SNN.

Mapping Max-Pool
Max-Pool layer is a commonly used down-sampling layer
in DNN, replacing it with Average-Pool will inevitably de-
crease the DNN accuracy. But it is non-trivial to compute
maxima with spiking neurons in SNN. In the rate-coding
based SNN (Rueckauer et al. 2017), the authors proposed a
simple mechanism for spiking max-pooling, in which output
units contain gating functions that only let spikes from the
maximally firing neuron pass, while discarding spikes from
other neurons. Their methods prove to be efficient in rate-
coding based SNN but can not be applied here in temporal-
coding SNN.

Here we show how the lossless mapping of the Max-Pool
layer can be done assuming that the weight of the ticking
neuron ωtick and the weights −ωk in the SNN max-pool
kernel (the weights in this layer are also negative). Suppos-
ing that the size of the pooling kernel is N (usually equals
KX ·KY , which stands for the kernel width in x and y di-
rection respectively), firing threshold of post-synaptic neu-
rons is 0, and the weights of the mapped kernel are equally
distributed.

To determine the weights of ωtick and ωk, two extreme sce-
narios should be considered. One is that post-synaptic neu-
rons will accumulate a strong negative potential if all the
pre-synaptic neurons in the kernel fire at time Tm (Tm ≤
Til). The other is that post-synaptic neurons will accumulate
a weaker negative potential if there is only one pre-synaptic
neurons fires at time Tm. It must be guaranteed that in both
extreme cases, the spike timing To of a post-synaptic neuron
equals Tm.

Taking the potential firing time of post-synaptic neurons
in both cases into the equation (7), we obtain the equa-
tions 12 and derive the constraints shown as 13, where
CL = (1− exp(−1/L)) is a constant.

⎧⎪⎪⎨⎪⎪⎩
L · ln(

ωk · (1 + (N − 1) · exp(−Tm
L

))

ωtick/CL
+ 1) > Tm − 1

L · ln(N · ωk

ωtick
· CL + 1) < Tm

(12)

⎧⎪⎪⎨⎪⎪⎩
ωtick

ωk
>

CL ·N
exp(Tm

L )− 1

ωtick

ωk
<

CL · (1 + (N − 1) · exp(−Tm

L ))

exp(Tm−1
L )− 1

(13)

Notice that ωtick
ωk

is only dependent on Tm. If Tm = 1, only
the left side of the above inequality is needed. Considering
that the inequality holds if the left side is smaller than the
right side, the constraints on L when Tm > 1 is obtained:

N

exp(Tm/L− 1)
<

1 + (N − 1) · exp(−Tm/L)

exp((Tm − 1)/L)− 1
(14)

Because ωk, L and N are predetermined, ωtick is only de-
pendent on the presentation time Til of pre-synaptic neu-
rons. As a result, the lossless mapping of the Max-Pool layer
can be done by selecting parameters according to equations
(13)(14).

However solving such constraints for various N and L
would be complicated and the existence of solutions needs to
be determined under many circumstances. Here we present
a simplified solution for mapping Max-Pool layer under our
mechanism. By setting the firing threshold θ = N , ωk = 1
and canceling the use of ticking neuron and leaky effect, the
firing moment of the output neuron is equal to the spiking
moment of the latest firing neuron in the input kernel. In this
way, Max-Pool is realized in SNN with Reverse Coding.
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Network Conversion
In the section, we will introduce the specific conversion
methods and the forward propagation procedure for the con-
verted SNN based on the theoretical analysis.

DNN Adjustment and Re-training
As shown in figure 2, fetching weights from a fitted DNN
model consists of following steps. Same as the previous rate-
coding based conversion methods, a minor adjustment on the
original DNN network is needed.

CONV IPReLU POOL ReLU

CONV IPReLU POOL ReLU

CNN G(x) G(x)

SNNCONV SNNIPSNNPOOLSNN

training+adjust 

training 

CNN

Figure 2: Conversion procedure.

Firstly, ReLU activations are deployed right after all the
synapse-based layers, which is a classic structure in clas-
sic network models such as Alexnet, VGG-16. The adjusted
network is trained through commonly used techniques for
DNN training.

Secondly, the activation function G(x) (see equation (11))
derived from the temporal-coding function is put right be-
fore the synapse-based layers. Retraining the network until
the network’s loss converges.

Finally, weights of synapse-based layers will be negated
(except for the output layer, as it produces a float value for
final decision). Those layers with no weights such as Max-
Pool layer will be converted to a SNN layer with weighted
connections. The determination of ωk and ωtick have already
been provided in the last section.

Forward Propagation of SNN
The structure of each layer in the converted SNN is orga-
nized as Figure 1. According to the previous theoretical anal-
ysis, the entire computing procedure is quite different from
previous temporal-coding or rate-coding SNNs. So we pro-
pose a new propagation algorithm of each layer in the con-
verted SNN, described in Algorithm 1.

Each layer in the converted SNN will follow this algo-
rithm to process spikes. The operation of the entire SNN
network can be seen as that inhibition period and active pe-
riod alternately appear in a pipeline, as shown in the figure
3. The active period of current layer is also the inhibitory
period of the next layer. For the last layer of the network,
we only accumulate the potential of the output neurons. The

Algorithm 1 Layer propagation in SNN
Require: pre-synaptic neurons that only spike once, inhibi-

tion time is Til, a ticking neuron functions after Til with
weights ωtick connected to all the post-synaptic neurons.

Ensure: post-synaptic neurons only spike once.
1: Inhibitory Period. Post-synaptic neurons accumulate

potential according to pre-synaptic spikes. All of them
are inhibited to fire until Til.

2: Determine Parameters. Update weights ωtick of the
ticking neuron according to Til and equation (9)(13).

3: Active Period. The ticking neuron fires at each time
step, increasing potential of post-synaptic neurons.
Then the post-synaptic neurons fire according to the LIF
neural model.

winner is the neurons with the largest potential, representing
the final result.

Inhibitory Period Active Period

Inhibitory Period Active Period

Inhibitory Period Active Period

Layer i

Layer i+1

Layer i+2

Figure 3: Propagation pipeline.

Evaluation
Accuracy
We select three representative DNN models as bench-
marks in this paper, including Lenet (Lecun et al. 1998),
Alexnet (Krizhevsky, Sutskever, and Hinton 2012) and
VGG-16 (Simonyan and Zisserman 2014), see Table 1. The
three DNN models are designed for two different datasets:
Lenet is for MNIST, Alexnet and VGG-16 are for ImageNet.
Particularly, MNIST consists of 60,000 individual images
(28 × 28 grayscale) of handwritten digits (0-9) for training
and 10000 digits for testing. ImageNet ILSVRC-2012 in-
cludes large images in 1000 classes and is split into three
sets: training set (1.3M images), validation set (50K im-
ages), and testing set (100K images). The classification per-
formance is evaluated using two measures: the top-1 and
top-5 error. The former reflects the error rate of the clas-
sification and the latter is often used as the criterion for final
evaluation.

Comparing our SNN with original DNN, the accuracy
loss is trivial in Lenet and Alexnet (0.12% to 0.46%/0.5%).
This illustrates that using the new activation function (11)
does not have a dramatic impact on network accuracy.
And it’s unexpected that an accuracy increasement of
1.69%/0.83% is obtained in VGG-16. We attribute this phe-
nomenon to the newly proposed activation function and this
proves that it might to some extent enhance the robustness
of the original network and the effectiveness of preventing
over-fitting.
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Dataset Network depth DNN err. (%) Previous SNN err. (%) Our SNN err. (%)
Lenet [MNIST] 11 0.84 0.56 (Rueckauer et al. 2017) 0.92

Alexnet [ImageNet] 20 42.84/19.67 48.2/23.8 (Hunsberger 2018) 43.3/20.17
VGG-16 [ImageNet] 38 30.82/10.72 50.39/18.37 (Rueckauer et al. 2017) 29.13/9.89

Table 1: Accuracy results.

Dataset DNNmult DNNadd SNNmult SNNadd
DNNmult

SNNmult

DNNadd

SNNadd

DNNtotal

SNNtotal

Lenet [MNIST] 2239k 2235k 1920k 3194k 1.17× 0.7× 0.875×
Alexnet [ImageNet] 357M 357M 39M 377M 9.15× 0.95× 1.72×
VGG-16 [ImageNet] 14765M 14757M 1496M 15505M 9.87× 0.95× 1.74×

Table 2: Evaluation on the number of operations.

The experiment results also show that our methods out-
perform the previous SNN architecture especially in large
networks. The error rate of our SNN in Lenet is 0.36% larger
and this is trivial compared with the accuracy gap in com-
plex tasks. When processing complex tasks, our methods
achieves a significant improvement in accuracy of SNN, as
Alexnet (4.9%/3.63%) and VGG-16 (21.26%/8.48%). This
proves that limiting the firing number of each neuron to only
one spike will not reduce the accuracy of the SNN. Applying
the proposed ticking neuron mechanism, the performance
of temporal-coding based SNN is much better than those
rate-coding based SNNs. All the conversion results on three
benchmarks show that temporal-coding based SNN now is
able to achieve competitive accuracy comparing with either
DNN or rate-coding based SNN.

Computation Cost
To evaluate the number of operations in the networks dur-
ing the entire forward propagation, We separately evaluate
the amount of operations for addition and multiplication in
layers, including CONV, POOL and IP. In addition to the
existing multiplication and addition operations in vector dot
products or potential accumulations, we also put those com-
parison operations into account. Each comparison operation
in the POOL layer is treated as an addition operation and
the leak of LIF neurons at each time step is considered as a
multiplication operation.

The comparison of operations between DNN and our
SNN (L = 5, which is the one with highest accuracy)
is shown in Table 2. Obviously, SNN reduces the multi-
plication operations on all three benchmarks but also in-
creases the number of add operations. The amount of mul-
tiplications in DNN is 1.17×/9.15×/9.87× that of SNN in
Lenet/Alexnet/VGG-16. This is because the number of mul-
tiplication in SNN is only related to the total presentation
time and it will not increase with the number of pre-synaptic
neurons, so the reduction of multiplications will be more
significant in larger networks. But for addition operations,
SNN brings additional operations due to the ticking neuron
with high spike frequency, resulting in that the addition op-
erations in DNN is 0.7×/0.95×/0.95× that in SNN in the
three benchmarks. Combining the multiplications and addi-
tion operations, we obtain the results on total operations. For
smaller network, such as Lenet, the total number of opera-

tions in SNN is 1.14× that of DNN. The reason is that the
number of pre-synaptic neurons is so small that the increase-
ment of operations brought by the tikcing neurons becomes
significant. For larger networks, such as Alexnet and VGG-
16, the computation benefits are obvious. SNN reduces the
number of total operations by 41.9%/42.6%, which proves
that our SNN can obtain significant computation reduction
in larger networks.

Leaky Constant L
Our conversion is a much simpler and more convenient way
comparing with other rate-coding based SNNs. The previ-
ous rate-coding based SNN conversion methods need to de-
termine various important parameters, including the maxi-
mum spike frequency, spiking thresholds of each layer, etc.
To determine these parameters causes huge labour and un-
stable performance of the converted SNN. However, in our
approach, all the parameters are carefully selected accord-
ing to the theoretical analysis before. Among them, the leak
constant L is our primary concern.

●

●
● ● ●
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100

1 2 3 4 5

leaky constant L

ac
cu
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cy

(%
) dataset

● Alexnet(top1)
Alexnet(top5)
Lenet
VGG−16(top1)
VGG−16(top5)

Figure 4: Effects of leaky constant L on accuracy.

As the output of equation (10), the exact firing time will
increase along with the leaky constant becoming larger.
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Therefore, a large L will increase the presentation time Til

of each layer and mapping input stimulus into more concise
spike timing, which brings better performance. Choosing a
small L may narrow the presentation time, resulting in di-
vergent loss in the DNN with the adjusted architecture. The
presentation time will also affect the computation overhead
of the converted SNN as the ticking neuron fires constantly.

We evaluate the value of leaky constant L effect on
the accuracy, shown in the figure 4. We find that, for
the Lenet, when the L changes from 1 to 5, the accu-
racy has little change, just from 98.47% to 99.08%. This
is because in simple tasks as MNIST dataset, the network
could stand much more degraded input values. However,
for the Alexnet and VGG-16, there is a significant change
with the increasement of L. When L changes from 1 to 5,
the accuracy of Alexnet changes from 42.08%/66.96% to
56.7%79.83% and VGG-16 changes from 0%/0%(training
failure) to 70.87%/90.11%. The adjusted DNN can not con-
verge when L is small enough as it shows in VGG-16, re-
sulting in a collapse of the entire network.
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Figure 5: Effects of leaky constant L on DNNOps

SNNOps
in Alexnet.

Correspondingly, the effects of leaky constant L on the
computation cost are evaluated, as shown in Figure 5. The
number of addition, multiplication and total operations all
increase with a larger L. When L changes from 1 to 5, the
computation reductions change from 48.4% to 41.7%. This
is consistent with our previous analysis that with the L in-
creases, the increasements of presentation time will only in-
crease the number of operations brought by ticking neuron.

Discussion
Considering deploying temporal-coding based SNN in SNN
hardwares, even if the proposed temporal-coding based SNN
can already be fully deployed on a SNN chip or platform, it
may be not necessary to completely map the entire network

to complete a task. In fact, only the compute-intensive lay-
ers in SNN need to be deployed, those layers require less
vector productions such as max-pool could be calculated
in other components of a chip or processing units. What’s
more, some biological mechanisms could be abandoned to
accelerate computation.

Note that ticking neuron plays a role to excite post-
synaptic neurons biologically, resulting in an interpretable
SNN model. However, according to the evaluation in the last
section, the deployment of ticking neuron will in some ex-
tent enlarge the computation cost. Thus to accelerate com-
puting and reducing memory cost, it could be removed when
deploying SNN layers in a hardware. This also allows the
trained DNN weight model to be directly converted to a
SNN weight model without the need of negated processing
and determinations for other parameters such as ωtick and
ωk.

SNNCONV SNNCONV

SNNPOOL

Spike
Timing Potential

Potential

Encoding
Function

Spike Timing

Deployed in SNN hardware

Compound Encoding Function

Figure 6: Deploy compute-intensive layers in SNN hard-
ware.

Operations DNN SNN
Addition (M − 1) ·N (M − 1) ·N

Multiplication M ·N N · To

Table 3: Computation cost comparison between DNN and
SNN deployed in hardware theoretically.

For example, as it shows in figure 6, the CONV lay-
ers will be computed in a SNN hardware and those post-
synaptic neurons will accumulate potential and inhibited to
fire. Those layers between two synapse-based layers includ-
ing activations will be considered as a compound coding
function encoding the accumulated potential into spike tim-
ing for the next synapse-based layer and the selected en-
coding function is equation (10). After calculation, only the
spike timing of the pre-synaptic neurons in the next synapse-
based layers need to be stored in on-chip memory. This de-
ployment method has a larger potential to reduce computing
than the proposed SNN on SNN hardwares though a large
part of interesting biological mechanisms are discarded.

Conclusion
In this paper, we propose a new conversion method along
with a novel coding principle called Reverse Coding and a
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novel Ticking Neuron mechanism. Our methods can con-
vert DNNs to temporal-coding SNNs with little accuracy
loss and the converted temporal-coding SNNs are consistent
with biological models. Based on our experiments, the pre-
sented SNNs could significantly reduce computation cost,
and they are potentially alternative cost-saving models when
deployed in SNN hardwares.
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