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Abstract

This paper proposes a novel neural architecture — Attentive
Tensor Product Learning (ATPL) — to represent grammatical
structures of natural language in deep learning models. ATPL
exploits Tensor Product Representations (TPR), a structured
neural-symbolic model developed in cognitive science, to in-
tegrate deep learning with explicit natural language structures
and rules. The key ideas of ATPL are: 1) unsupervised learn-
ing of role-unbinding vectors of words via the TPR-based
deep neural network; 2) the use of attention modules to com-
pute TPR; and 3) the integration of TPR with typical deep
learning architectures including long short-term memory and
feedforward neural networks. The novelty of our approach
lies in its ability to extract the grammatical structure of a sen-
tence by using role-unbinding vectors, which are obtained in
an unsupervised manner. Our ATPL approach is applied to
1) image captioning, 2) part of speech (POS) tagging, and
3) constituency parsing of a natural language sentence. The
experimental results demonstrate the effectiveness of the pro-
posed approach in all these three natural language processing
tasks.

1 Introduction
Deep learning is an important tool in many speech and natu-
ral language processing (NLP) applications (Hinton and oth-
ers 2012; Deng and Liu 2018). Since natural language is rich
in grammatical structures, there has been an increasing inter-
est in learning a vector representation to capture the gram-
matical structures of the natural language descriptions using
deep learning models in recent years (Tai, Socher, and Man-
ning 2015; Kumar et al. 2016; Kong et al. 2017).

In this work, we propose a new architecture, called Atten-
tive Tensor Product Learning (ATPL), to address this repre-
sentation problem by exploiting Tensor Product Represen-
tations (TPR) (Smolensky and Legendre 2006; Smolensky
et al. 2016; Palangi et al. 2017; Huang et al. 2017). TPR
is a structured neural-symbolic model developed in cogni-
tive science over 20 years ago. In the TPR theory, a sen-
tence can be considered as a sequence of roles (i.e., gram-
matical components) where each role is connected to a filler
(i.e., tokens). Given each role associated with a role vector
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rt and each filler associated with a filler vector ft, the TPR
of a sentence can be computed as S =

∑
t ftr

>
t . Comparing

with the popular RNN-based representations of a sentence,
a good property of TPR is that decoding a token of a time
stamp t can be computed directly by providing an unbinding
vector ut. That is, ft = S · ut. Under the TPR theory, en-
coding and decoding a sentence is equivalent to learning the
role vectors rt or unbinding vectors ut at each position t.

We employ the TPR theory to develop a novel attention-
based neural network architecture for learning the unbinding
vectors ut that serve as the core of ATPL. That is, ATPL
employs a form of recurrent neural networks to produce ut
one at a time. In each time, the TPR of the partial prefix of
the sentence up to time t − 1 is leveraged to compute the
attention maps, which are then used to compute the TPR
St as well as the unbinding vector ut at time t. In doing
so, our ATPL can not only be used to generate a sequence
of tokens, but also be used to generate a sequence of roles,
which can in turn interpret the syntactic/semantic structures
of the sentence.

To demonstrate the effectiveness of our ATPL architec-
ture, we apply it to three important NLP tasks: 1) image
captioning; 2) POS tagging; and 3) constituency parsing of
a sentence. The first task showcases our ATPL-based gen-
erator, while the latter two tasks are used to demonstrate
the power of role vectors in interpreting sentences’ syntac-
tic structures. Our evaluation shows that on both image cap-
tioning and POS tagging, our approach can outperform pre-
vious state-of-the-art approaches. In particular, on the con-
stituency parsing task, when the structural segmentation is
given as a ground truth, our ATPL approach can beat the
state-of-the-art by 3.5 to 4.4 points on the Penn TreeBank
dataset. These results demonstrate that our ATPL is highly
effective in capturing the syntactic structures of natural lan-
guage sentences.

The paper is organized as follows. Section 2 discusses re-
lated work. In Section 3, we present the design of ATPL.
Section 4 through Section 6 describe three applications of
ATPL, i.e., image captioner, POS tagger, and constituency
parser, respectively. Section 7 concludes the paper.
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2 Related Work
Our proposed method for image captioning, the first NLP
task we consider in this paper, follows a great deal of recent
caption-generation literature on exploiting end-to-end deep
learning with a CNN image-analysis front end producing a
distributed representation that is then used to drive a natural-
language generation process, typically using RNNs (Mao et
al. 2015; Vinyals et al. 2015b; Karpathy and Fei-Fei 2015).
Our grammatical interpretation of the structural roles of
words in sentences is connected with other work that also in-
corporates deep learning into grammatically-structured net-
works (Tai, Socher, and Manning 2015; Andreas et al. 2015;
Yogatama et al. 2016; Maillard, Clark, and Yogatama 2017).
In these earlier studies, the network itself is not structured
to match the grammatical structure of sentences being pro-
cessed. In our work, the structure is fixed, but it is designed
to support the learning of distributed representations that
incorporate structure internal to the representations them-
selves — filler/role structure.

The second NLP task we consider in this paper is POS
tagging. Methods for automatic POS tagging are our base-
lines. They include unigram tagging, bigram tagging, tag-
ging using Hidden Markov Models (which are generative se-
quence models), maximum entropy Markov models (which
are discriminative sequence models), rule-based tagging,
and tagging using bidirectional maximum entropy Markov
models (Jurafsky and Martin 2017). The celebrated Stanford
POS tagger of (Manning 2017) uses a bidirectional version
of the maximum entropy Markov model called a cyclic de-
pendency network in (Toutanova et al. 2003).

Methods for automatic constituency parsing, the third
NLP task tackled in this paper, include those based on
probabilistic context-free grammars (CFGs) (Jurafsky and
Martin 2017), the shift-reduce method (Zhu et al. 2013),
sequence-to-sequence LSTMs (Vinyals et al. 2015a). Our
constituency parser is similar to the sequence-to-sequence
LSTMs (Vinyals et al. 2015a) since both use LSTM neu-
ral networks to design a constituency parser. Different from
(Vinyals et al. 2015a), our constituency parser uses TPR and
unbinding role vectors to extract features that contain gram-
matical information.

3 Attentive Tensor Product Learning
In this section, we present the ATPL architecture. We will
first briefly revisit the Tensor Product Representation (TPR)
theory, and then introduce several building blocks. In the
end, we explain the ATPL architecture, which is illustrated
in Figure 1.

3.1 Background: Tensor Product Representation
The TPR theory allows computing a vector representation of
a sentence as the summation of its individual tokens while
the order of the tokens is represented implicitly (Smolensky
1990; Huang et al. 2018; Lee et al. 2016). For a sentence
of T words, denoted by x1, · · · , xT , TPR theory considers
the sentence as a sequence of grammatical role slots with
each slot filled with a concrete token xt. The role slot is

often shortened and referred to as a role, while the token xt
referred to as a filler.

The TPR of the sentence can thus be computed as binding
each role with a filler. Mathematically, each role is associ-
ated with a role vector rt ∈ Rd, and a filler with a filler
vector ft ∈ Rd. Then the TPR of the sentence is

S =

T∑
t=1

ft · r>t (1)

where S ∈ Rd×d. Each role is also associated with a dual
unbinding vector ut so that r>t ut = 1 and r>t ut′ = 0, t′ 6= t;
then

ft = Sut (2)

Intuitively, Eq. (2) requires that R>U = I, where R =
[r1; · · · ; rT ], U = [u1; · · · ;uT ], and I is an identity ma-
trix. In a simplified case, i.e., rt is orthogonal to each other
and r>t rt = 1, we can easily derive ut = rt.

Eqs. (1) and (2) provide means to binding or unbinding a
TPR. Through these mechanisms, one can easily construct
an encoder and a decoder to convert between a sentence and
its TPR. All we need to compute is the role vector rt (or its
dual unbinding vector ut) at each time step t.

3.2 Building blocks
Before we start introducing ATPL, we first introduce several
building blocks repeatedly used in our construction.

An attention module over an input vector v is defined as

Attn(v) = σ(Wv + b) (3)

where σ is the sigmoid function, W ∈ Rd1×d2 , b ∈ Rd1 , d2
is the dimension of v, and d1 is the dimension of the out-
put. Intuitively, Attn(·) will output a vector as the attention
heatmap, and d1 is its dimension. W and b are two sets of
parameters. Without specific notices, the sets of parameters
of different attention modules are disjoint to each other.

We refer to a Feed-Forward Neural Network (FFNN)
module as a single fully-connected layer:

FFNN(v) = tanh(Wv + b) (4)

where W and b are the parameter matrix and the parameter
vector with appropriate dimensions respectively, and tanh
is the hyperbolic tangent function.

3.3 ATPL architecture
In this paper, we mainly focus on an ATPL decoder archi-
tecture that can decode a vector representation v into a se-
quence f1, · · · , fT . The architecture is illustrated in Fig. 1.

If we require that the role vectors be orthogonal to each
other, then to decode the filler ft only needs to unbind the
TPR of undecoded words, St:

ft = Stut =
( T∑

i=t

(Wexi)r
>
i

)
ut =Wext (5)

where xt ∈ RV is a one-hot encoding vector of dimension
V and V is the size of the vocabulary;We ∈ Rd×V is a word
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Figure 1: ATPL Architecture.

embedding matrix, the i-th column of which is the embed-
ding vector of the i-th word in the vocabulary. We can use
any algorithm to obtain the word embedding vectors; in this
work, we choose the Stanford GLoVe algorithm with zero
mean (Pennington, Socher, and Manning 2017).

To compute St and ut, ATPL employs two attention mod-
ules controlled by S̃t−1, which is the TPR of the so-far gen-
erated words x1, · · · , xt−1:

S̃t−1 =

t−1∑
i=1

Wexir
>
i

On one hand, St is computed as follows:

qt = v �Attn(ht−1 ⊕ vec(S̃t−1)) (6)
St = FFNN(qt) (7)

where � is the point-wise multiplication, ⊕ concatenates
two vectors, and vec vectorizes a matrix. In this construc-
tion, ht−1 is the hidden state of an external LSTM, which
we will explain later.

The key idea here is that we employ an attention model to
place weights on each dimension of the vector v, so that it
can be used to compute St. Note it has been demonstrated
that attention structures can be used to effectively learn any
function (Vaswani et al. 2017). Our work adopts a similar
idea to compute St from v and S̃t−1.

On the other hand, similarly, ut is computed as follows:

ut = UAttn(ht−1 ⊕ vec(S̃t−1))

where U is a constant normalized Hadamard matrix.
In doing so, ATPL can decode a vector v by recursively

(1) computing St and ut from S̃t−1, (2) computing ft as
Stut, and (3) setting rt = ut and updating S̃t. This proce-
dure continues until the full sentence is generated.

3.4 Learning ATPL for NLP tasks
Note that the role and filler vectors can be learned end-to-end
in various tasks. That is, the gradients of each parameters
in the ATPL module can be computed using standard auto-
matic differentiation mechanisms readily available in major
deep learning frameworks, and thus all gradient-based opti-
miation algorithms can be used to train the ATPL module.

At the same time, one the ATPL module is trained for one
task with a large corpus, we can extract the module for com-
puting role and filler vectors and apply them to train other
tasks.

In the following sections, we will present three applica-
tions of ATPL. First, we will apply ATPL to an image cap-
tioning task (Section 4) and show that by end-to-end train-
ing, ATPL can help improve the performance upon LSTM.

Then, we extract the role vectors trained for the image
captioning task (i.e., using the Coco dataset (COCO 2017)),
and apply it to two traditional NLP tasks, namely POS tagger
(Section 5) and constituency parsing (Section 6), and show
that ATPL can achieve promising results.

4 Task 1: Image Captioning
To showcase our ATPL architecture, we first study its appli-
cation in a widely used image captioning task (Fang et al.
2015; He and Deng 2017). Given an input image I, a stan-
dard encoder-decoder can be employed to convert the image
into an image feature vector v, and then use the ATPL de-
coder to convert it into a sentence. The overall architecture
is dipected in Fig. 2.

We evaluate our approach with several baselines on the
COCO dataset (COCO 2017). The COCO dataset contains
123,287 images, each of which is annotated with at least 5
captions. We use the same pre-defined splits as (Karpathy
and Fei-Fei 2015; Gan et al. 2017): 113,287 images for train-
ing, 5,000 images for validation, and 5,000 images for test-
ing. We use the same vocabulary as that employed in (Gan
et al. 2017), which consists of 8,791 words.

For the CNN of Fig. 2, we used ResNet-152 (He et al.
2016), pretrained on the ImageNet dataset. The image fea-
ture vector v has 2048 dimensions. The model is imple-
mented in TensorFlow (Abadi and others 2015) with the
default settings for random initialization and optimization
by backpropagation. In our ATPL architecture, we choose
d = 32, and the size of the LSTM hidden state to be 512.
The vocabulary size V = 8, 791. ATPL uses tags as in (Gan
et al. 2017).

In comparison, we compare with (Vinyals et al. 2015b)
and the state-of-the-art CNN-LSTM and SCN-LSTM (Gan
et al. 2017). The main evaluation results on the MS COCO
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Figure 2: Architecture of image captioning.

Table 1: Performance of the proposed ATPL model on the COCO dataset.
Methods METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr
NIC (Vinyals et al. 2015b) 0.237 0.666 0.461 0.329 0.277 0.855
CNN-LSTM (Gan et al. 2017) 0.238 0.698 0.525 0.390 0.292 0.889
SCN-LSTM (Gan et al. 2017) 0.257 0.728 0.566 0.433 0.330 1.012
ATPL 0.258 0.733 0.572 0.437 0.335 1.013

dataset are reported in Table 1. The widely-used BLEU (Pa-
pineni et al. 2002), METEOR (Banerjee and Lavie 2005),
and CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015)
metrics are reported in our quantitative evaluation of the per-
formance of the proposed scheme.

We can observe that, our ATPL architecture significantly
outperforms all other baseline approaches across all metrics
being considered. The results clearly attest to the effective-
ness of the ATPL architecture. We attribute the performance
gain of ATPL to the use of TPR in replace of a pure LSTM
decoder, which allows the decoder to learn not only how
to generate the filler sequence but also how to generate the
role sequence so that the decoder can better understand the
grammar of the considered language. Indeed, by manually
inspecting the generated captions from ATPL, none of them
has grammatical mistakes. We attribute this to the fact that
our TPR structure enables training to be more effective and
more efficient in learning the structure through the role vec-
tors.

Note that the focus of this paper is on developing a Tensor
Product Representation (TPR) inspired network to replace
the core layers in an LSTM; therefore, it is directly compara-
ble to an LSTM baseline. So in the experiments, we focus on
comparison to a strong CNN-LSTM baseline. We acknowl-
edge that more recent papers reported better performance on
the task of image captioning. Performance improvements in
these more recent models are mainly due to using better im-
age features such as those obtained by Region-based Convo-
lutional Neural Networks (R-CNN), or using reinforcement
learning (RL) to directly optimize metrics such as CIDEr
to provide a better context vector for caption generation, or
using an ensemble of multiple LSTMs, among others. How-
ever, the LSTM is still playing a core role in these works
and we believe improvement over the core LSTM, in both
performance and interpretability, is still very valuable. De-
ploying these new features and architectures (R-CNN, RL,
and ensemble) with ATPL is our future work.

5 Task 2: POS Tagging
In this section, we study the application of ATPL in the POS
tagging task. Intuitively, given a sentence x1, ..., xT , POS
tagging is to assign a POS tag denoted as zt, for each token
xt. In the following, we first present our model using ATPL
for POS tagging, and then evaluate its performance.

5.1 ATPL POS tagging architecture
Based on TPR theory, the role vector (as well as its dual
unbinding vector) contains the POS tag information of each
word. Hence, we first use ATPL to compute a sequence of
unbinding vectors ut which is of the same length as the input
sentence. Then we take ut and xt as input to a bidirectional
LSTM model to produce a sequence of POS tags.

Our training procedure consists of two steps. In the first
step, we employ an unsupervised learning approach to learn
how to compute ut. Fig. 3 shows a sequence-to-sequence
structure, which uses an LSTM as the encoder, and ATPL
as the decoder; during the training phase of Fig. 3, the input
is a sentence and the expected output is the same sentence
as the input. Then we use the trained system in Fig. 3 to
produce the unbinding vectors ut for a given input sentence
x1, ..., xT .

In the second step, we employ a bidirectional LSTM (B-
LSTM) module to convert the sequence of ut into a sequence
of hidden states h. Then we compute a vector z1,t from each
(xt,ht) pair, which is the POS tag at position t. This proce-
dure is illustrated in Figure 4.

The first step follows ATPL and is straightforward. Below,
we focus on explaining the second step. In particular, given
the input sequence ut, we can compute the hidden states as

−→
h t,
←−
h t = BLSTM(ut,

−→
h t−1,

←−
h t+1) (8)

Then, the POS tag embedding is computed as

z1,t = softmax
(−→
W(xt)

−→
h t +

←−
W(xt)

←−
h t

)
(9)

Here
−→
W(xt) is computed as follows
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Figure 3: Architecture for acquisition of unbinding vectors of a sentence.

Figure 4: Structure of POS tagger.

Table 2: Performance of POS Tagger.

(MANNING 2017) OUR POS TAGGER

WSJ 22 WSJ 23 WSJ 22 WSJ 23
ACCURACY 0.972 0.973 0.973 0.974

−→
W(x) =

−→
Wa · diag(

−→
Wb · xt) ·

−→
Wc (10)

where diag(·) constructs a diagonal matrix from the in-
put vector;

−→
Wa,

−→
Wb,

−→
Wc are matrices of appropriate di-

mensions.
←−
W3,h(xt) is defined in the same manner as

−→
W3,h(xt), though a different set of parameters is used.

Note that z1,t is of dimension P , which is the total number
of POS tags. Clearly, this model can be trained end-to-end
by minimizing a cross-entropy loss.

5.2 Evaluation
To evaluate the effectiveness of our model, we test it using
the Penn TreeBank dataset (Marcus et al. 2017). In partic-
ular, we first train the sequence-to-sequence in Fig. 3 using
the sentences of Wall Street Journal (WSJ) Section 0 through
Section 21 and Section 24 in Penn TreeBank data set (Mar-
cus et al. 2017). Afterwards, we use the same dataset to train
the B-LSTM module in Figure 4.

Once the model gets trained, we test it on WSJ Section
22 and 23 respectively. We compare the accuracy of our ap-
proach against the state-of-the-art Stanford parser (Manning
2017). The results are presented in Table 2. From the table,
we can observe that our approach outperforms the baseline.
This confirms our hypothesis that the unsupervisely trained

unbinding vector ut indeed captures grammatical informa-
tion, so as to be used to effectively predict grammar struc-
tures such as POS tags.

Figure 5: The parse tree of a sentence and its layers.

6 Task 3: Constituency Parsing
In this section, we briefly review the constituency parsing
task, and then present our approach, which contains three
component: segmenter, classifier, and creator of a parse tree.
In the end, we compare our approach against the state-of-
the-art approach in (Vinyals et al. 2015a).

6.1 A brief review of constituency parsing
Constituency parsing converts a natural language into its
parsing tree. Fig. 5 provides an example of the parsing tree
on top of its corresponding sentence. From the tree, we can
label each node into layers, with the first layer (Layer 0)
consisting of all tokens from the original sentence. Layer k
contains all internal nodes whose depth with respect to the
closest leaf that it can reach is k.

In particular, at Layer 1 are all POS tags associated with
each token. In higher layers, each node corresponds to a
substring, a consecutive subsequence, of the sentence. Each
node corresponds to a grammar structure, such as a single
word, a phrase, or a clause, and is associated with a category.
For example, in Penn TreeBank, there are over 70 types of
categories, including (1) clause-level tags such as S (simple
declarative clause), (2) phrase-level tags such as NP (noun
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Figure 6: Structure of the segmenter on Layer 2.

phrase), VP (verb phrase), (3) word-level tags such as NNP
(Proper noun, singular), VBD (Verb, past tense), DT (Deter-
miner), NN (Noun, singular or mass), (4) punctuation marks,
and (5) special symbols such as $.

The task of constituency parsing recovers both the tree-
structure and the category associated with each node. In our
approach to employ ATPL to construct the parsing tree, we
use an encoding z to encode the tree-structure. Our approach
first generates this encoding from the raw sentence, layer-
by-layer, and then predict a category to each internal node.
In the end, an algorithm is used to convert the encoding z
with the categories into the full parsing tree. In the follow-
ing, we present the three sub-routines.

6.2 Segmenting a sentence into a tree-encoding
We first introduce the concept of the encoding z. For each
layer k, we assign a value zk,t to each location t of the in-
put sentence. In the first layer, z1,t simply encodes the POS
tag of input token xi. In a higher level, zk,t is either 0 or
1. Thus the sequence zk,t forms a sequence with alternating
sub-sequences of consecutive 0s and consecutive 1s. Each
of the longest consecutive 0s or consecutive 1s indicate one
internal node at layer k, and the consecutive positions form
the substring of the node. For example, the second layer of
Fig. 5 is encoded as {0, 1, 0, 0}, and the third layer is en-
coded as {0, 1, 1, 1}.

The first component of our ATPL-based parser predicts
zk,t layer-by-layer. Note that the first layer is simply the
POS tags, so we will not repeat it. In the following, we first
explain how to construct the second layer’s encoding z2,t,
and then we show how it can be expanded to construct higher
layer’s encoding zk,t for k ≥ 3.

Constructing the second layer z2,t. We can view z2,t as
a special tag over the POS tag sequence, and thus the same
approach to compute the POS tag can be adapted here to
compute z2,t. This model is illustrated in Fig. 6.

In particular, we can compute the hidden state from the
unbinding vectors from the raw sentence as before:

−→
h 2,t,

←−
h 2,t = BLSTM(ut,

−→
h 2,t−1,

←−
h 2,t+1) (11)

and the output of the attention-based B-LSTM is given as
below

z2,t = σs(
−→
W2(z1,t)

−→
h 2,t +

←−
W2(z1,t)

←−
h 2,t) (12)

where
−→
W2,h(z1,t) and

←−
W2,h(z1,t) are defined in the same

manner as in (10).

Figure 7: Structure of the segmenter on Layer k ≥ 3.

Figure 8: Segmenting Layer k ≥ 3.

Constructing higher layer’s encoding zk,t (k ≥ 3). Now
we move to higher levels. For a layer k ≥ 3, to predict zk,t,
our model takes both the POS tag input z1,t and the (k −
1)-th layer’s encoding zk−1,t. The high-level architecture is
illustrated in Fig. 7.

Let us denote

zk,t = softmax(Jk,t)

the key difference is how to compute Jk,t. Intuitively, Jk,t
is an embedding vector corresponding to the node, whose
substring contains token xt. Assume word xt is in the m-th
substring of Layer k−1, which is denoted by sk−1,m. Then,
the embedding Jk,t can be computed as follows:

Jk,t =
∑

i∈sk−1,m

−→
Wk(z1,i)

−→
h k,i +

←−
Wk(z1,i)

←−
h k,i

|sk−1,m|
(13)

Here,
−→
h k,i and

←−
h k,i are the hidden states of BLSTM run-

ning over the unbinding vectors as before, and
−→
Wk(·) and

←−
Wk(·) are defined in a similar fashion as (10). We use | · | to
indicate the cardinality of a set.

The most interesting part is that Jk,t aggregates all em-
beddings computed from the substring of the previous layer
sk−1,m. Note that the set sk−1,m of indexes can be com-
puted easily from zk−1,t. Note that many different aggrega-
tion functions can be used. In (13), we choose to use the av-
erage function. The process of this calculuation is illustrated
in Fig. 8.

6.3 Classification of substrings
Once the tree structure is computed, we attach a category
to each internal node. We employ a similar approach as pre-
dicting zk,t for k ≥ 3 to predict this category z

(k)
t . Note that,

in this time, the encoding zk,t of the internal node is already
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Table 3: Performance of Constituency Parser.

(VINYALS ET AL. 2015A) OUR PARSER OUR PARSER WITH GROUND-TRUTH zk,t (k ≥ 2)

WSJ 22 WSJ 23 WSJ 22 WSJ 23 WSJ 22 WSJ 23
PRECISION N/A N/A 0.898 0.910 0.952 0.952

RECALL N/A N/A 0.901 0.907 0.973 0.978
F-1 MEASURE 0.928 0.921 0.900 0.908 0.963 0.965

Figure 9: Structure of the classifier on Layer k.

computed. Thus, instead of using the encoding zk−1,t from
the previous layer, we use the encoding of the current layer
zk,t to predict z(k)t directly. This procedure is illustrated in
Fig. 9.

Similar to (13), we have z
(k)
t = softmax(Ek,t), where

Ek,t is computed by (∀t ∈ {t : xt ∈ sk,m})

Ek,t =
∑

i∈sk,m

−→
Wk(z1,i)

−→
h k,i +

←−
Wk(z1,i)

←−
h k,i

|sk,m|
(14)

Here, we slightly overload the variable names. We empha-
size that the parameters

−→
W and

←−
W and the hidden states

−→
h k,i and

←−
h k,i are both independent to the ones used in (14).

Note that the main different between (14) and (13) is that,
the aggregation is operated over the set sk,t, i.e., the sub-
string at layer k, rather than sk−1,t, i.e., the substring at layer
k−1. Also,Ek,t’s dimension is the same as the total number
of categories, while Jk,t’s dimension is 2.

6.4 Creating a parse tree
Once both zk,t and z

(k)
t are constructed, we can create the

parse tree out of them using a linear-time sub-routine. Due
to space limitation, we omit the details.For the example in
Fig. 5, the output is (S(NNP John)(VP(VBD hit)(NP(DT
the)(NN ball)))).

6.5 Evaluation
We now evaluate our constituency parsing approach against
the state-of-the-art approach (Vinyals et al. 2015a) using
WSJ data set in Penn TreeBank. Similar to our setup for POS
tag, we train our model using WSJ Section 0 through Sec-
tion 21 and Section 24, and evaluate it on Section 22 and
23.

Table 3 shows the performance for both (Vinyals et al.
2015a) and our proposed approach. In addition, we also eval-
uate our approach assuming the tree-structure encoding zk,t

is known. In doing so, we can evaluate the performance of
our classification module of the parser. Note, the POS tag is
not provided.

We observe that the F-1 measure of our approach is two
points worse than (Vinyals et al. 2015a); however, when
the ground-truth of zk,t is provided, the F-1 measure be-
comes four points higher than that reported in (Vinyals et
al. 2015a), which is significant. Therefore, we attribute the
somewhat lower performance of our approach to the lack
of our model’s ability in effectively predicting the tree-
encoding zk,t.

7 Conclusion
In this paper, we propose a novel ATPL approach to nat-
ural language generation and related tasks. The model has
a novel architecture motivated by insights derived from the
use of Tensor Product Representations for encoding and pro-
cessing symbolic structure through neural computation. In
our experiments, we first evaluate the proposed model on
the task of image captioning. Compared with widely adopted
LSTM-based models, our proposed ATPL gives significant
improvements on all major metrics including METEOR,
BLEU, and CIDEr. We further observe that the unbinding
vectors contain important grammatical information. This al-
lows us to design an effective POS tagger and constituency
parser with unbinding vectors as input, the other two NLP
tasks evaluated using ATPL. Our findings reported in this
paper demonstrate the effectiveness of the ATPL architec-
ture as well as the underlying TPRs. In the future, we will
explore the use of TPR and ATPL methods in a wider set
of NLP tasks than reported in this paper, and distill further
insight into structured representations of natural language.
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