

Simulation-Based Approach to Efficient Commonsense Reasoning in

Very Large Knowledge Bases

Abhishek Sharma Keith M. Goolsbey ,

Cycorp Inc., 7718 Wood Hollow Drive, Suite 250, Austin, TX 78731
abhishek@cyc.com, goolsbey@cyc.com

Abstract

Cognitive systems must reason with large bodies of general
knowledge to perform complex tasks in the real world.
However, due to the intractability of reasoning in large, ex-
pressive knowledge bases (KBs), many AI systems have
limited reasoning capabilities. Successful cognitive systems
have used a variety of machine learning and axiom selection
methods to improve inference. In this paper, we describe a
search heuristic that uses a Monte-Carlo simulation tech-
nique to choose inference steps. We test the efficacy of this
approach on a very large and expressive KB, Cyc. Experi-
mental results on hundreds of queries show that this method
is highly effective in reducing inference time and improving
question-answering (Q/A) performance.

 Introduction

Deductive reasoning is an important component of many

cognitive systems. Modern cognitive systems need large

bodies of general knowledge to perform complex tasks

(Lenat & Feigenbaum 1991, Forbus et al 2007). However,

efficient reasoning systems can be built only for small-to-

medium sized knowledge bases (KBs). Very large

knowledge bases contain millions of rules and facts about

the world in highly expressive languages. Due to the in-

tractability of reasoning in such systems, even simple que-

ries are timed-out after several minutes. Therefore, re-

searchers believe that resolution-based theorem provers are

overwhelmed when they are expected to work on large

expressive KBs (Hoder & Voronkov 2011).

 The goal query in knowledge-based systems (KBS) is

typically provable from a small number of ground atomic

formulas (GAFs) and rules. However, unoptimized infer-

ence engines can find it difficult to distinguish between a

small set of relevant rules and the millions of irrelevant

ones. Hundreds of thousands of axioms that are irrelevant

for the query can inundate the reasoner with millions of

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

paths. Therefore, to make the search more efficient in such

a KBS, an inference engine is expected to assess the utility

of further expanding each incomplete path. A naïve order-

ing algorithm can cause unproductive backtracking. To

solve this problem, researchers have used two types of

search control knowledge: (i) Axiom/premise selection

heuristics: These heuristics attempt to find the small num-

ber of axioms that are the most relevant for answering a set

of queries, and (ii) Certain researchers have worked on

ordering heuristics for improving the order of rule and

node expansions.

 In the current work, we describe a simulation-based ap-

proach for learning an ordering heuristic for controlling

search in large knowledge-based systems (KBS). The key

idea is to simulate several thousand paths from a node.

New nodes are added to a search tree, and each node con-

tains a value that predicts the expected number of answers

from expanding the tree from that node. The search tree

expansion guides simulations along promising paths, by

selecting the nodes that have the highest potential values.

The algorithm produces a highly selective and asymmetric

search tree that quickly identifies good axiom sequences

for queries. Moreover, the evaluation function is not hand-

crafted: It depends solely on the outcomes of the simulated

paths. This approach has the characteristics of a statistical

anytime algorithm: The quality of evaluation function im-

proves with additional simulations. The evaluation func-

tion is used to order nodes in a search. Experimental results

show that: (i) this approach helps in significantly reducing

inference time and, (ii) by guiding the search towards more

promising parts of the tree, this approach improves the

question-answering performance in time-constrained cog-

nitive systems.

 This paper is organized as follows: We start by discuss-

ing relevant previous work. Our approach to using simula-

tions to learn a search heuristic is explained next. We con-

clude after analyzing the experimental results.

1360

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Related Work

Learning of search control knowledge plays an important

role in the optimization of KBS for at least two reasons:

First, the inference algorithms of KBS (e.g., backward

chaining, tableaux algorithms in description logic (DL)),

typically represent their search space as a graph. Hundreds

of rules can apply to each node in a large KBS, and re-

searchers have shown that the specific order of node and

rule expansion can have a significant effect on efficiency

(Tsarkov & Horrocks 2005). Further still, first-order logic

(FOL) theorem provers have been used as tools for such

reasoning with very expressive languages (e.g., OWL DL,

the Semantic Web Rule Language (SWRL)), where the

language does not correspond to any decidable fragment of

FOL, or where reasoning with the language is beyond the

scope of existing DL algorithms (Tsarkov et al. 2004, Hor-

rocks & Voronkov 2006). Researchers have also examined

the use of machine learning techniques to identify the best

heuristics for problems (Bridge et al. 2014). There has

been work as well on the premise selection algorithms

(Hoder & Voronkov 2011, Sharma & Forbus 2013, Meng

& Paulson 2009, Kaliszyk et al. 2015, Kaliszyk & Urban

2015, Alama et al. 2014). In contrast, we focus on design-

ing ordering heuristics that will enable the system to work

with all axioms. In (Tsarkov & Horrocks 2005), the au-

thors proposed certain rule-ordering heuristics, and expan-

sion ordering heuristics (e.g., a descending order of fre-

quency of usage of symbols). In contrast, we believe that

rule-ordering heuristics should be based on the search

state. In other recent work (Sharma, Witbrock & Goolsbey

2016, Sharma & Goolsbey 2017), researchers have used

different machine learning techniques to improve the effi-

ciency of theorem provers, ore approach is different from

all aforementioned research because none have shown how

Monte Carlo tree search/UCT-based approach can be used

to improve reasoning in a very large and expressive KBS.

The work in other fields (Chaudhuri 1998, Hutter et al.

2014, Brewka et al. 2011) is also less relevant because it

does not address the complexity of reasoning needed for

large and expressive KBS.

Background

We assume familiarity with the Cyc representation lan-

guage (Lenat & Guha 1990). In Cyc, concepts are repre-

sented as collections. For example, “Cat” is the set of cats

and only cats. Concept hierarchies are represented by the

“genls” relation. For example, (genls Telephone Artifact-

Communication) holds. The “isa” relation is used to link

things to any kind of collections of which they are instanc-

es. For instance, (isa MicrosftInc PubliclyHeldCorpora-

tion) holds. For any entity e, Cyc keeps track of the most

specific collections of which it is an instance. This set is

referred to as MostSpecificCollections (e).

 Reasoning with Cyc representation language is difficult

due to the size of the KB and the expressiveness of the

language. The Cyc representation language uses full first-

order logic with higher-order extensions. Some examples

of highly expressive features of its language include: (a)

Cyc has more than 2000 rules with quantification over

predicates, (b) it has 267 relations with variable arities, and

(c) Although first-order logic with three variables is unde-

cidable (Tsarkov et al. 2004), Cyc ahs several thousand

rules with more than three variables. The number of rules

in Cyc with three, four and five variables are 48160, 23813

and 14014 respectively. Moreover, 29716 rules have more

than five variables. In its default inference mode, the Cyc

inference engine uses the following types of rules/facts

during inference: (i) 28,429 role inclusion axioms; (ii)

3,623 inverse role axioms, (iii) 494,405 concepts and 1.1

million concept inclusion axioms; (iv) 814 transitive roles;

(v) 120,547 complex role inclusion axioms; (vi) 77,170

other axioms; (vii) 35,528 binary roles and 10,508 roles

with arities greater than two. The KB has 27.3 million as-

sertions and 1.14 million individuals.

 To efficiency search in such a large KBS, inference en-

gines often use control strategies. They define: (i) set of

support, i.e. the set of important facts about the problem.;

and (ii) the set of usable axioms, i.e. the set of all axioms

outside the set of support. At every inference step, the in-

ference engine has to select an element from the set of usa-

ble axioms and resolve it with an element of the set of sup-

port. To perform efficient search, a heuristic control strate-

gy measures the “weight” of each clause in the set of sup-

port, picks the “best” clause, and adds to the set of support

the immediate consequences of resolving it with the ele-

ments of the usable list (Russell & Norvig 2003). Cyc uses

a set of heuristic modules to identify the best clause from

the set of support. If S is the set of all states, and A is the

set of actions (i.e. inference steps), then a heuristic module

is a tuple hi: (wi., fi) , where fi is a function fi: S ×A R,

which assesses the quality of an inference step, and wi is

the weight of hi. The net score of an inference step is ∑

wifi(s, a) and the inference step with the highest score is

selected. Cyc uses several heuristics including the success

rates of rules, decision trees (Sharma, Witbrock and

Goolsbey 2016), regression-based models (Sharma, Wit-

brock, and Goolsbey 2016) and a large database of useful

rule sequences (Sharma & Goolsbey 2017). We can define

a policy that uses these heuristics:

ΠBASELINE(s)= argmaxa ∑ wifi(s, a) …(1)

In (1), we use all heuristics mentioned above to calculate

the score of an inference step. In its default inference

mode, Cyc uses a policy function π BASELINE (s), to guide

1361

the search. This is used as the “baseline” in the experi-

ments discussed below.

We consider the problem of finding proofs for first-order

formulas in large KBs. The search begins with a root state

so
1
. At each turn, the inference engine selects an action that

is an element of A(s), where s is the current state, and A(s)

is the set of inference steps applicable to the state s. This

sequential sampling of states and actions continues, with-

out backtracking, until the search finishes upon reaching a

terminal state with outcome z. The aim of the reasoner is to

maximize z. A policy π is a function that maps states to

actions. π(s) is defined as maxaQ(s, a) where Q(s, a) is used

to denote the value of selecting action a in state s. It is

simply the expected reward of action a.

Q(s, a) = N(s, a)
-1

* ∑ Ii(s, a) * zi

where N(s, a) is the number of times action a has been se-

lected in state s, N(s) is the total number of times the simu-

laton has passed through state s, zi is the outcome of the i
th

simulation, and Ii(s, a) is 1 if action a was selected in state

s in the i
th

 simulation, and 0 otherwise (Browne et al 2012).

Simulation-Based Learning

The basic premise of this approach is that we can learn to

search for answers in large expressive KBS by taking ran-

dom samples in the search space and these samples could

be used to approximate the true value of choosing an infer-

ence step. Monte Carlo tree search (MCTS) algorithms use

Monte Carlo simulations to evaluate the quality of nodes in

a search tree. The search tree contains a node for each state

s that has been generated during simulations. Each state s

in the tree stores three types of values: N(s), N(s, a) and

Q(s, a) for every action that applies to s. the generation of

search trees is guided by the outcomes of previous explora-

tions, and the estimates become progressively more accu-

rate (Browne et al. 2012, Gelly & Silver 2007).

Figure 1 shows the high-level approach of the simulation

algorithm. The algorithm takes a state and depth cutoff as

input. The state contains information about the query that

has to be answered. The algorithm can be divided into two

distinct phases: (i) a tree policy is used until depth d: Dur-

ing this stage, the algorithm selects actions according to

knowledge contained with the search tree (ii) when the

depth of the node is greater than d, then a default policy is

used to complete the simulation. Finally, the outcome of

the simulation is “backed up” through the selected nodes to

update their statistics.

1 In search problems, an agent needs to find the correct move for each
position encountered during search. Therefore, each node generated in a
search graph is a state, and is represented by a set of features (discussed
below).

Tree policy: In step 2(a) of the algorithm in Figure 1, we

use the UCT algorithm to build a tree over the state space

with the current node as the root node. The execution of

the TreePolicy uses the following mechanism: if there ex-

ists an action in A(s), the set of possible actions in state s,

which has never been selected, the algorithm defaults to

selecting it before any sampled action. Otherwise, the UCT

algorithm selects an action that maximizes the upper confi-

dence interval given by

Figure 1: High-Level Description of the Simulation Algorithm

Q*(s, a) Q(s, a) + c * (log (N(s) / N(s, a))
1/2

 …(2)

The first term in (2), Q(s, a) favors actions that have led to

better outcomes in the past. The second term provides a

balance between exploiting actions that currently appear

sub-optimal but may turn out to be better in the long run

(Gelly & Silver 2011, Bella & Fern 2009, Finnsson &

Bjornsson 2008). When an action is chosen, N(s, a) in-

creases, and all other actions become more likely to be

selected. The value of the exploration parameter c helps is

in biasing the search toward or against exploration. In this

paper, we report results of several experiments that show

how performance changes with c. the tree policy is used to

generate a tree until depth d.

Default policy: our algorithm uses a default policy for ex-

panding nodes that have depth greater than the pre-

specified depth limit. Cyc’s existing mechanism for select-

ing inference steps (discussed above) is used as the default

policy. The default policy is executed for a fixed duration

of time (set to 30 seconds).

Updating Values: In step 2 (c) of the algorithm shown

above, the algorithm reaches a terminal state and observes

the number of answers obtained from the simulation, then

the following updates are made for any state action pair on

the simulation path:

N(s, a) N(s, a) +1

N(s) N(s) +1

Q(s, a) Q(s, a) + N(s, a)
-1

 * [R-Q(s, a)] … (3)

Input: A state s

 A depth cutoff, d

1. Create a root node with states.

2. While within computational budget,
do

a. s’ TreePolicy (s, d)

b. z DefaultPolicy (s’)

c. UpdateValues (s’, z)

1362

Search Space Formulation

We now define a search space that can be used the UCT

algorithm. We used 2,698 features to represent an abstract

state in search space. These features were identified by

selecting the commonly occurring types in the most specif-

ic collections of entities in the KB [defined as

MostSpecificCollections() on page 2]. These features can

be grouped into three types: (i) 2,664 features were used

represent whether a certain argument of the focal literal
2
 is

a sub-type of a given collection
3
; (ii) 33 features were used

to represent whether a certain argument of the focal literal

is an instance of a given collection
4
; and (iii) the depth of

the sub-goal in the tree. Each node in the search space is

described by a vector of 2,698 features. Edges in our

search space correspond to resolution steps that transform

one node into another. Let us consider an example. During

training, an agent might create a root node with query Q1

from the training set
5
.

(relationAllExists parts Nivalenol Carbon) … (Q1)

During the MCTS simulation, the UCT algorithm might

lead the algorithm to choose the inference step A1 shown

below:

(memberOfList ?element ?list) .

(completeAtomicComposition-List ?compound ?list

?coefficients)

(relationAllExists parts ?compound ?element) …(A1)

The selection of inference step A1 will lead to a child state

with the query Q2:

(memberOfList Carbon ?list) AND

(completeAtomicComposition-List Nivalenol ?list

?coefficients) …(Q2)

The Monte Carlo tree search continues for a given number

of simulations, and it learns the relative contribution of

each feature to the likelihood of deriving an answer. The

action value function Q(s, a) is approximated by a partial

tabular representation µ ⸦ S × A, where S and A are the

sets of all states and actions respectively. µ contains the

search tree of all visited states and it is a subset of all

(state, action) pairs. Unfortunately, this tabular representa-

2 In a conjunctive or disjunctive query, the inference engine might decide
to resolve one of the literals in the query. The literal that is resolved is
called the focal literal.
3 An example of the feature for query Q1 would be that second and third
arguments of the focal literal are sub-types of “Trichothecene” and
“NonMetal” respectively.
4 An example of this feature for the query Q1 would be that the first ar-
gument of the focal literal is an instance of TransitiveBinaryPredicate.
5 (relationAllExists parts A B) means that for any instance A1 of A, there
exists an instance B1 of B, such that (parts A1 B1) holds.

tion does not allow for easy generalization between states.

Therefore, we consider a simple k-nearest neighbor algo-

rithm to generalize from similar states. We define the fol-

lowing:

QNN(s, a) = k
-1

∑ Q(s(i), a),

where s(i) is an element of NN(k, s) …(4)

In (4), NN(k, s) denotes the k-nearest neighbor of state s,

where we use the Manhattan distance to compute the dis-

tance between two states.

Given (4), we can define a heuristic module with the fol-

lowing cost and policy function:

fMCTS(s, a) = QNN(s, a) … (5)

πMCTS(s) = argmax a QNN(s, a) … (6)

This heuristic module uses the k-nearest neighbor algo-

rithm on the output of the Monte Carlo tree search algo-

rithm, an to evaluate the quality of inference steps. In the

next section, we use this heuristic module to order infer-

ence steps and discuss its performance.

Experimental Results

The selection of benchmark problems for training models

and evaluating algorithms is a critical aspect of research.

Our decision to select problem instances was based on fol-

lowing principles: (a) Artificially generated problems have

played an important role in the development of SAT algo-

rithms However, the generation of artificial problems has

not received sufficient attention in the commonsense rea-

soning community. Therefore, we focused on the problems

from the real world. These queries were created by the

knowledge engineers and the programmers to test the per-

formance of different applications and the inference en-

gine
6
. Query Q1 discussed above is an example of a query

that is part of our test sets. (b) We believe that heuristics

and algorithms should be tested using the most difficult

problems. The Cyc KB has thousands of queries of various

levels of difficulty. Some queries are quite simple, and can

be answered in a few milliseconds (e.g., (isa BarackObama

Person)). On the other hand, some require generation of a

large search space, and cannot be answered in several

minutes. In this work, we have included problems from the

latter group, and the results from the baseline experiment

show that many queries cannot be answered within 10

minutes. Moreover, the Cyc KB is the largest and most

6 The query parameters (e.g., the number of desired answers) were set by
knowledge engineers and programmers. In most cases, we were expected
to find one answer for a fully bound query (e.g., query Q1 discussed
above).

1363

expressive knowledge base that is amenable to deductive

reasoning
7
. Therefore, our algorithm has been tested on

one of the most difficult reasoning problems.

 We divided the queries into four parts. One of the four

parts was used as a test set, while the queries from the re-

maining three were used for training purposes
8
. This pro-

cess was repeated with each of the four parts to produce

four experiments. In each experiment, we tried to answer

the following questions:

 How does search performance change with the

number of simulations?

 How does search performance change with the

value of c?

The results of these four experiments are shown in Figures

2-5. We compared the performance of πBASELINE(s) and

πMCTS(s) in these experiments. In the results, speedup in

experiment e is defined as:

Speedup(s) = Time(πBASELINE, e)/ Time (πMCTS , e)

where Time (π, e) refers to the time required by the infer-

ence engine to answer queries in the experiment e when it

uses the search policy π. The graphs also show how the

proportion of queries that could be answered changes with

the value of ‘c’ and the number of simulations. The exper-

imental data reported here was collected on a 4-core 3.40

GHz Intel processor with 32 GB of RAM. Due to the large

time requirements of some of these queries, we restricted

the cutoff time for each query to 10 minutes. In Table 1,

we show the parameter values for the best results obtained

for each of the four experiments. For example, in the first

experiment we could answer 46% of 266 queries in the

7 KBs like ConceptNet might have more GAFs than the Cyc KB, but they
do not have axioms for deductive reasoning. Researchers have shown that
Cyc-based problems are 1-3 orders of magnitude larger than other prob-
lems (see Table 1 in Hoder & Voronkov 2011).
8 For example, in experiment 2, query set 2 was used for testing purposes,
whereas queries from sets 1, 3 and 4 formed the training set.

baseline experiment. The best results from the MCTS sim-

ulation was obtained when c was set to 100, and we al-

lowed 400,000 simulations to learn the Q-values. This led

to a speedup of 7.1 and we could answer 92% of all que-

ries.

The results demonstrate the following:

 The search policy learned from MCTS simulation

leads to significant speedup compared to the base-

line.

 Moreover, we see that MCTS-based learning has

also led to significant improvement in the Q/A

performance.

 For small values of simulations (~100k), higher

values of c (i.e., c = 1000) led to the best perfor-

mance. However, the performance asymptotes

soon. And the best performance is obtained for

small to medium values of c (i.e., c = 10 or 100).

Figure 2b: Effect of exploration factor (‘c’) and number

of simulations on Q/A performance in Experiment 1.

Figure 2a: Effect of exploration factor (‘c’) and number

of simulations on search performance (‘Speedup’) in

Experiment 1. Figure 3a: Effect of exploration factor (‘c’) and

number of simulations on search performance

(‘Speedup’) in Experiment 2.

1364

We also divided the queries by “degree of difficulty” as

measured by the time required to answer them by the base-

line version of the inference engine. The speedup and im-

provement in the Q/A performance for the best MCTS set-

tings are shown in Table 2. For example, there were 597

queries that needed between 0 and 100 seconds in the base-

line version. The best speedup obtained from MCTS simu-

lations for these 597 queries was 1.23 and there was no

change in the number of answerable queries.

Figure 3b: Effect of exploration factor (‘c’) and

number of simulations on Q/A performance in Ex-

periment 2.

Figure 4a: Effect of exploration factor (‘c’) and

number of simulations on search performance

(‘Speedup’) in Experiment 3.

Figure 5a: Effect of exploration factor (‘c’) and

number of simulations on search performance

(‘Speedup’) in Experiment 4.

Figure 5b: Effect of exploration factor (‘c’) and

number of simulations on Q/A performance in

Experiment 4.

Figure 4b: Effect of exploration factor (‘c’) and

number of simulations on Q/A performance in

Experiment 3.

1365

Conclusions

Deductive reasoning is an important issue for building

large cognitive systems. To make deductive reasoning

more efficient, in this work, we have proposed a sample-

based search paradigm for learning search control

knowledge. In this approach, we learn from simulated epi-

sodes that can be sampled from the model. Results for

hundreds of queries from a very large and expressive KB

show that this approach can lead to a significant reduction

in inference time. It can also lead to notable improvement

in Q/A performance. These results suggest several areas

for future work: (i) First, we want to test these methods on

a larger set of queries to ensure their generality, (ii) since

feature selection plays an important role in the perfor-

mance of learning algorithms, we will experiment with

other schemes of feature selection, and (iii) we will design

techniques to make Monte Carlo searches more efficient by

including more domain knowledge in the simulation algo-

rithm.

E Π #Q %A C TS S I(%)

1 B 266 46 - - - -

 MCTS 266 92 100 400k 7.1 100

2 B 254 66 - - -

 MCTS 254 94 100 500k 5.4 42

3 B 261 76 - - - -

 MCTS 261 94 100 500k 4.1 24

4 B 241 82 - - -

 MCTS 241 94 10 300k 3.3 14

Table 1: The experiment numbers are shown in the first column

(labeled ‘E’), and the second column shows the search policy that

was used in the experiment: baseline (B) or MCTS. The third

column (labeled #Q) shows the number of queries in each of the

experiments. The proportion of queries answered is shown in the

fourth column. The next column (labeled ‘c’) shows the value of c

that led to these results. The sixth column (labeled ‘TS’) shows

the number of simulations used in the Monte Carlo search. The

column labeled ‘S’ shows the speedup obtained in the experiment.

Finally, the last column (labeled I(%) shows the improvement in

the number of queries answered w.r.t. to the baseline).

Table 2: Column 1 shows the time requirement for the query in

baseline version. The second column shows the number of queries

in the group. The third column shows the speedup w.r.t. to the

baseline. And the fourth column (labeled I(%)) shows the percent

improvement in the number of queries that were answered.

Acknowledgements

We thank Doug Lenat and Saket Joshi for many helpful

discussions and suggestions.

References

Engelmore, R., and Morgan, A. eds. 1986. Blackboard Systems.
Reading, Mass.: Addison-Wesley.

Alama, J.; Heskes, T; Kuhlwein, D.; Tsivivadze, E.; and Urban, J.
2014. Premise Selection for Mathematics by Corpus Analysis and
Kernel Methods. Journal of Automated Reasoning, 52(2): 191-
213.

Balla, R. and Fern, A. 2009. UCT for Tactical Assault Planning in
Real-Time Strategy Games. Proceedings of the IJCAI, 40-45.

Brewka, G.; Eiter, T.; and Truszcynski, M. 2011. Answer Set
Programming at a Glance. Communications of the ACM, 54(12),
91-103.

Bridge, J. P.; Holden, S.; and Paulson, I. 2014. Machine Learning
for First-Order Theorem Proving. Journal of Automated Reason-
ing, 53(2), 141-272.

Browne, C.; Powle, E., Whitehouse, D., Lucas, S., Cowling, P.
2012. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and Games. 4(1), 1-
55.

Cohen, P. 1998. The DARPA High Performance Knowledge
Bases Project. AI Magazine, 19(4), 25-48.

Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases, Com-
putational Intelligence, 14(3), 318-334.

Chaudhuri, S. 1998. An Overview of Query Optimization in Rela-
tional Systems, Proceedings of PODS, 34-43.

Finnsson, H.; and Bjornsson, Y. 2008. Simulation-Based Ap-
proach to General Game Playing. Proceedings of AAAI, 259-264.

Forbus, K. D.; Riesbeck, C.; Birnbaum, L.; Livingston, K.; Shar-
ma, A.; Ureel, L. 2007. Integrating Natural Language, Knowledge
Representation and Reasoning and Analogical Processing to
Learn By Reading. Proceedings of the AAAI, 1542-1547.

Gelly, S.; and Silver, D. 2011. Monte Carlo Tree Search and Rap-
id Action Value Estimation in Computer Go. Artificial Intelli-
gence, 175, 1856-1875.

Gelly, S.; and Silver, D. 2007. Combining Online and Offline
Knowledge in UCT, Proceedings of the ICML, 273-280.

Hoder, K.; and Voronkov, A. 2011. Sine qua non for Large Theo-
ry Reasoning. Proc. of CADE, 299-314.

Horrocks.I.; and Voronkov, A. 2006. Reasoning Support for Ex-
pressive Ontology Languages Using A Theorem Prover. Founda-
tions of Information and Knowledge Systems. 201-218.

Hutter, F.;, and Leyton-Brown, K. 2014. Algorithmic Runtime
Prediction: Methods and Evaluation. Artificial Intelligence, 206,
79-111.

Kaliszyk, C.; Urban, J.; and Vyskocil. J. 2015. Efficient Semantic
Features for Automated Reasoning Over Large Theories. Pro-
ceedings of the IJCAI, 3084-3900.

Time(sec.) #Q S I(%)

0-100 597 1.23 0

101-200 50 3.33 -2

201-300 38 13.79 0

301-400 9 11.79 0

401-500 1 18.2 0

>500 327 6.44 14600

1366

Kaliszyk, C.; and Urban, J. 2015. Learning Assisted Theorem
Proving with Millions of Axioms. Journal of Symbolic Computa-
tion, 69, 109-128.

Lenat, D. B.;, Feigenbaum, E. 1991. On the Thresholds of
Knowledge. Artificial Intelligence, 47 (1-3), 185-250.

Lenat, D. B.; and Guha, R. 1990. Building Knowledge-based
Systems: Representation and Inference in the Cyc Project. Addi-
son Wesley.

Matuszek, C.; Witbrock, M.; Shah, P.; and Lenat, D. 2005.
Searching for Common Sense: Populating Cyc from the Web.
Proceedings of the AAAI, 1430-1435.

Matuszek, C.; Cabral, J.; Witbrock, M.; DeOliveira, J.. 2006. An
Introduction to the Syntax and Conent of Cyc. AAAI Spring Sym-
posium, 44-49.

Meng, J.; and Paulson, C. 2009. Lightweight Relevance Filtering
for Machine Generated Resolution Problems. Journal of Applied
Logic, 7(1), 41-57.

Robles, D.; Rohlfshagen, P.; and Lucas, S. 2011. Learning Non-
Random Moves for Playing Othello: Improving Monte Carlo Tree
Search. Proceedings of IEEE Conference on Computational Intel-
ligence and Games. 10-16.

Russell, S.; and Norvig, P. 2003. Artificial Intelligence: A Mod-
ern Approach. Pearson Education.

Sharma, A.; and Forbus, K. D. 2013. Automatic Extraction of
Efficient Axiom Sets from Large Knowledge Bases. Proceedings
of AAAI, 1248-1254.

Sharma, A.; Witbrock, M.; and Goolsbey, K. M. 2016. Control-
ling Search in Very Large Knowledge Bases: A Machine Learn-
ing Approach. Advances in Cognitive Systems, 200-216.

Sharma, A.; and Goolsbey, K. M. 2017. Identifying Useful Infer-
ence Paths in Large Commonsense Knowledge Bases By Retro-
grade Analysis. Proceedings of AAAI, 4437-4443.

Tsarkov, D.; and Horrocks, I. 2005. Ordering Heuristics for De-
scription Logic Reasoning. Proceedings of IJCAI, 609-614.

Tsarkov, D., Riazanov, A., Bechofer, S.; and Horrocks, I. 2004.
Using Vampire to Reason with OWL. Proceedings of the Seman-
tic Web-ISWC, 471-485.

1367

