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Abstract

An important family of problems in climate science focus
on finding predictive relationships between various climate
variables. In this paper, we consider the problem of predict-
ing monthly deseasonalized land temperature at different lo-
cations worldwide based on sea surface temperature (SST).
Contrary to popular belief on the trade-off between (a) sim-
ple interpretable but inaccurate models and (b) complex ac-
curate but uninterpretable models, we introduce a weighted
Lasso model for the problem which yields interpretable re-
sults while being highly accurate. Covariate weights in the
regularization of weighted Lasso are pre-determined, and
proportional to the spatial distance of the covariate (sea sur-
face location) from the target (land location). We establish fi-
nite sample estimation error bounds for weighted Lasso, and
illustrate its superior empirical performance and interpretabil-
ity over complex models such as deep neural networks (Deep
nets) and gradient boosted trees (GBT). We also present a de-
tailed empirical analysis of what went wrong with Deep nets
here, which may serve as a helpful guideline for application
of Deep nets to small sample scientific problems.

Introduction
Over the past decade climate datasets with improved spa-
tial resolutions have become available. While such datasets
come from a mix of real observations and physics based
models, recent years have seen considerable interest in ap-
plying machine learning techniques for predictive modeling
of climate variables of interest. Such models have the po-
tential to aid a better understanding of the impact of climate
change and attribution of observed events as well as guide
decision/policy making in a variety of domains such as agri-
cultural planning, water resource management, and extreme
weather events (O’Brien et al. 2006).

We consider one such problem in climate science of
identifying predictive relationships between ocean sea sur-
face temperature (SST) and land temperature (Steinhaeuser,
Chawla, and Ganguly 2011a). Recent work has shown
sparse modeling techniques like Lasso (Chatterjee et al.
2012) tend to better capture predictive relationships between
SST and land climate compared to more traditional meth-
ods like principal component regression (PCR) (Francis
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and Renwick 1998), shallow neural networks (Steinhaeuser,
Chawla, and Ganguly 2011b), etc. From a climate science
perspective, parsimony in variable selection leads to more
interpretable models helping climate scientists gain a better
understanding of the underlying relationships between cli-
mate variables. Still, there are difficulties in explaining the
relationships due to the variable selection inconsistency of
Lasso and the high spatial correlation among SST variables.

In this paper, inspired by the adaptive Lasso (Zou 2006),
we propose a weighted ℓ1 regularized model suitable for
spatial problems since it encourages the estimator to pick
spatially contiguous SST covariates. The weighted ℓ1 reg-
ularizer penalizes different components of regression co-
efficients θ differently and is mathematically defined by
R(θ) =

∑p
i=1 wi|θi|, where wi is the weight for component

i. Lower the weight, lower is the penalization on the corre-
sponding covariates and consequently more are the chances
they will be nonzero. Note that, adaptive Lasso is weighted
Lasso, where the weights are chosen to be inversely pro-
portional to the estimated coefficients from estimator like
ordinary least squares (OLS). For the problem we consider,
we propose the weights on ocean locations are directly pro-
portional to their distance from the land location thus pe-
nalizing faraway ocean regions more, which is consistent
with domain knowledge in climate science. We show that
the weighted Lasso, in contrast to Lasso, gives more inter-
pretable results which conform to the observations of nearby
ocean locations having the most effect on land temperature.

We perform extensive comparison of the weighted Lasso
with baselines on data from 3 different Earth System Models
(ESMs) (Taylor, Stouffer, and Meehl 2012). First, compar-
isons between weighted Lasso and Lasso shows that they
achieve similar predictive performance, but weighted Lasso
is considerably more interpretable in terms of variable se-
lection. Second, somewhat surprisingly, we illustrate that
weighted Lasso persistently outperforms Deep nets which
form the state-of-the-art in many other application areas
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016;
LeCun, Bengio, and Hinton 2015); weighted Lasso is also il-
lustrated to have superior performance over gradient boosted
trees (Chen and Guestrin 2016) and PCR (Jolliffe 2011). We
also present a detailed analysis of the poor performance of
Deep nets and report results on a variety of settings such as
number of layers, number of hidden units, mini-batch size,
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regularization type, etc. The key factor limiting the perfor-
mance is sample size. Deep nets overfit the training set lead-
ing to poor validation/test performance. The results empha-
size the need for caution and further work on Deep nets for
small sample (scientific) problems.

Our main contributions in this paper are as follows:
1. We suggest the weighted Lasso estimator, which incorpo-

rates domain knowledge for finding relationships in spa-
tial data. We also derive non-asymptotic parameter esti-
mation error bounds for the weighted Lasso estimator.

2. We show that weighted Lasso achieves high prediction ac-
curacy and consistent variable selection for land climate
prediction using SST compared to other latest state-of-
the-art machine learning methods like Deep nets and gra-
dient boosted trees.

3. We perform extensive experiments with Deep nets and
show that Deep nets easily overfit the training data with-
out sufficient samples.
Organization of the paper: We start with a discussion

on related work. We then give finite sample estimation error
bounds for weighted Lasso. We subsequently present exper-
imental results comparing the weighted Lasso with baseline
methods along with in-depth results on Deep nets.

Related work
We briefly review the statistical models used in the climate
sciences to discover predictive relationships between cli-
mate variables. Most statistical models perform some form
of dimensionality reduction due to the large spatial datasets
and relatively fewer data samples. A popular method is prin-
cipal component regression (PCR) (Olivieri 2018), which
has been used for temperature and precipitation prediction
in New Zealand (Francis and Renwick 1998). In (Hsieh and
Tang 1998), principal component analysis (PCA) is used to
compress large spatial fields followed by fitting a neural net-
work on the compressed dataset. In (Steinhaeuser, Chawla,
and Ganguly 2011a) clustering is used for dimension reduc-
tion followed by various regression methods, such as lin-
ear regression, support vector regression, regression trees, to
predict land temperature and precipitation from global SST
field. In contrast (Chatterjee et al. 2012) model the same
problem in (Steinhaeuser, Chawla, and Ganguly 2011a) as a
high-dimensional sparse regression problem where the land
climate is the dependent variable, SST field are the inde-
pendent variables and a sparsity promoting regularizer cap-
tures the constraint that land temperature is influenced by
only a few ocean locations. More recently a spectral nonlin-
ear dimensionality reduction method is used in (DelSole and
Banerjee 2017) to capture the relationship between summer
Texas area temperature and Pacific SST.

Geostatistical methods, like kriging (Goovaerts 1999) and
its variations have been applied for spatial interpolation of
climate variables (Aalto et al. 2013). However, such meth-
ods usually only perform well within a defined local neigh-
borhood (Walter et al. 2001). Morevover the success of such
methods relies on proper choice of kernels and hyperparam-
eters which is statistically and computationally challenging
in high-dimensional datasets.

There is increasing interest in exploring the application of
Deep nets in climate applications inspired by their success
in domains like image processing (He et al. 2016), speech
recognition (LeCun, Bengio, and Hinton 2015), etc. Recent
work explore the use of Deep nets for prediction of the
Oceanic Niño Index (ONI) (McDermott and Wikle 2017)
and for statistical downscaling of climate variables (Vandal
et al. 2017), although there is currently lacking an under-
standing or comprehensive study on the generalization per-
formance of Deep nets on small sample size datasets rou-
tinely found in climate science applications.

Estimation Error Bound for Weighted Lasso
For land climate prediction using SST, the spatial informa-
tion can be considered while designing the predictive mod-
els. Since land temperature is known to be mostly influenced
by nearby ocean locations, we propose a modification of the
weighted ℓ1 regularizer used in weighted Lasso. It penalizes
differently for temperature at each ocean location based on
their distance from land target region.

In this section, we provide the non-asymptotic estimation
error bound for the following weighted Lasso estimator in a
general setting,

θ̂ = argmin
θ∈Rp

1

2n
∥y −Xθ∥22 + λ

p∑
i=1

wi|θi| (1)

where, for our application, y ∈ Rn is the land temperature,
X ∈ Rn×p are SST at p ocean locations, θ ∈ Rp are re-
gression coefficients, θi is the ith coefficient in θ, wi is the
positive weight corresponding to θi, and λ is penalty param-
eter. The weights can be assigned in a data-dependent way
or chosen intelligently using prior knowledge. For example,
in our application, the weights wi, 1 ≤ i ≤ p are assigned
to be proportional to the distance of the ocean location from
the land location.

The weighted Lasso estimator is equivalent to the adap-
tive Lasso estimator (Zou 2006), except for the procedure
used to define the weights wi, 1 ≤ i ≤ p. While prior work
has focused on analysis of the adaptive Lasso estimator in
the asymptotic setting (Zou 2006; Huang, Ma, and Zhang
2008), we derive results for the weighted Lasso estimator in
the non-asymptotic setting. The results can also be suitably
extended to the adaptive Lasso estimator.
Assumptions: Consider data generated according to the lin-
ear model yi = ⟨xi, θ

∗⟩+ ϵi, 1 ≤ i ≤ n and θ∗ is estimated
using the weighted Lasso estimator. The rows of the design
matrix X ∈ Rn×p are independent sub-Gaussian random
vectors with sub-Gaussian norm bounded by L and covari-
ance matrix Σ = E[xix

T
i ]. The noise ϵi ∈ R, 1 ≤ i ≤ n is

mean-zero i.i.d. sub-gaussian noise with sub-Gaussian norm
less than 1. Assume the following,
1. The true parameter θ∗ is s-sparse. Let w↑ denote the
weight vector with elements in ascending order. We assume
that the weights corresponding to the s non-zero elements in
θ∗ are among the smallest m weights w↑

1:m in w. Also, let
θ̂ = θ∗ +∆ = θ∗ +M(∆) +M⊥(∆), where ∆ = θ̂ − θ∗

is the error vector, M is the subspace, to which the m ele-
ments in θ∗ corresponding to the weights w↑

1:m belongs, and
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Table 1: Description of the Earth System Models used in the experiments.

Model name Origin Reference
CMCC-
CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) (Fogli et al. 2009)

INM-CM4 Institute for Numerical Mathematics (Russia) (Volodin, Dianskii, and Gusev 2010)

MIROC5-
r1i1p1

Atmosphere and Ocean Research Institute,
National Institute for Environmental Studies,

Japan Agency for Marine-Earth Science and Technology,
University of Tokyo (Japan)

(Watanabe et al. 2010)

M⊥ is the orthogonal subspace.
2. When penalty parameter λ satisfies

λ ≥ c′ ∗ max

{ √
m

√
n∥w↑

1:m∥2
,

√
log p√
nw̃min

}
, (2)

where c′ > 0 is a constant,and w̃min is the minimum element
in M⊥(w↑), the error set is

Er = {∆ ∈ Rp|R(M⊥(∆)) ≤ β∥w↑
1:m∥2∥M(∆)∥2} ,

(3)
where β > 1 is a constant and R(θ) =

∑p
i=1 wi|θi|. The re-

stricted eigenvalue (RE) condition (Bickel, Ritov, and Tsy-
bakov 2009) is assumed to be satisfied.
Theorem 1. Under the above assumptions, the following
bound holds on the error vector ∆ = θ̂− θ∗ with high prob-
ability for some positive constant c,

∥∆∥2 ≤ c√
n

(
√
m+

∥w↑
1:m∥2

√
log p

w̃min

)
. (4)

Remark 1. For Lasso wi = 1, 1 ≤ i ≤ p. Hence in the
context of the above result we recover the non-asymptotic
estimation error of Lasso (Chandrasekaran et al. 2012;
Negahban et al. 2012; Bickel, Ritov, and Tsybakov 2009) by
substituting m = s, ∥w↑

1:m∥2 =
√
s and w̃min = 1.

Remark 2. If the s lowest weights in w↑ correspond to
the non-zero weights in θ∗ then we note that m = s and
∥w↑

1:s∥2/w̃min ≤
√
s thus giving an improvement over the

corresponding bound for Lasso.

Remark 3. If we end up assigning the largest weights to
the non-zero elements in θ∗ then m = p and we recover the
bound ∥∆∥2 ≤

√
p/n which is equivalent to performing

ordinary least squares on the dataset.

The weighted Lasso problem can be numerically opti-
mized by converting it to a Lasso problem by rescaling the
data with the weights (Zou 2006).

Land Temperature Prediction
We analyze relationships between land temperature and
SST in Earth system model (ESM) data. ESMs are numer-
ical models representing physical processes in the ocean,
cryosphere and land surface with data generated using simu-
lations with different initial conditions (Taylor, Stouffer, and
Meehl 2012; Pachauri et al. 2014).

We use data from the historical runs of 3 ESMs (see Table
1) included as part of the core set of experiments in CMIP5
(Taylor, Stouffer, and Meehl 2012). The historical runs of
CMIP5 ESMs try to replicate observed climate conditions
from 1850-2005 closely, capturing effects from changes in
atmospheric CO2 due to both anthropogenic and volcanic
influences, solar forcing, land use, etc. Each monthly ESM
dataset has SST data over a 2.5◦ × 2.5◦ resolution grid of
earth and corresponding monthly surface temperature over
land locations. In effect for each ESM we have 1872 data
points with 5881 ocean locations. Brazil, Peru, and South-
east Asia are selected as the 3 land target regions to study
in this paper as they are known to have diverse geological
properties (Steinhaeuser, Chawla, and Ganguly 2011b).

Experiment Setting
We divide the data into 10 training sets by applying a moving
window of 100 years with a stride of 5 years. The 10 years
subsequent to the end of the training set are used for testing.
We deseasonalize each training-test set combination sepa-
rately by z-scoring each month data with the corresponding
monthly mean and standard deviation. Note that both train
and test sets are z-scored using monthly means and standard
deviations computed from the training set. We compare the
performance of weighted Lasso against the following base-
line methods:

1. ℓ1 penalized least squares (Lasso) (Tibshirani 1996): This
is equivalent to setting all weights in weighted Lasso
equal to 1.

2. Principal Component Regression (PCR) (Jolliffe 2011):
A popular method in climate science where principal
components computed from training data are considered
as covariates for ordinary least square regression on re-
sponse variables.

3. Gradient Boosted Trees (GBT) (Chen and Guestrin
2016): An ensemble method which uses decision tree as
its weak learner. GBTs are implemented in Python using
xgboost package (Chen and Guestrin 2016).

4. Deep neural networks (Deep nets) (LeCun, Bengio, and
Hinton 2015) Multilayer perceptrons with many hid-
den layers and CNNs. All networks are implemented in
Python using Keras package (Chollet 2015).
The models are evaluated quantitatively on test sets based

on two metrics: (a) the root mean square error (RMSE), de-
fined as RMSE =

√∑n
i=1(ŷi − yi)2/n; (b) the coefficient

of the determination (R2), given by R2 = 1 −
∑n

i=1(yi −
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Table 2: Comparison of RMSE on test sets for land climate prediction of Brazil, Peru and South-east Asia using weighted Lasso
and other baseline methods. Average RMSE ± standard error on test sets are shown. The minimum average RMSE for each
target region is shown as bold. Weighted Lasso achieves overall best performance. Furthermore, linear model weighted Lasso
and Lasso both outperform Deep nets and GBT.

Model Location Weighted Lasso Lasso PCR Deep nets GBT

C
M

C
C

-C
E

SM

Brazil 0.6580± 0.0344 0.6681± 0.0317 0.8629± 0.0654 0.8151± 0.0364 0.7354± 0.0377

Peru 0.6901± 0.0269 0.7120± 0.0214 0.8541± 0.0560 0.8476± 0.0283 0.7400± 0.0251

SE Asia 0.5217± 0.0103 0.5284± 0.0109 0.7252± 0.0544 0.7424± 0.0153 0.5774± 0.0171

IN
M

-C
M

4 Brazil 0.7641± 0.0173 0.7753± 0.0161 1.2030± 0.0637 0.9144± 0.0304 0.8707± 0.0193

Peru 0.7127± 0.0144 0.7202± 0.0101 1.1879± 0.0654 0.8785± 0.0228 0.8164± 0.0184

SE Asia 0.7719± 0.0171 0.7742± 0.0174 1.2751± 0.0645 0.9986± 0.0290 0.8970± 0.0218

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.5395± 0.0258 0.5614± 0.0266 0.7214± 0.0566 0.6822± 0.0263 0.6005± 0.0279

Peru 0.5441± 0.0331 0.5764± 0.0350 0.7654± 0.0581 0.6979± 0.0227 0.5953± 0.0262

SE Asia 0.5092± 0.0154 0.5308± 0.0164 0.8139± 0.0712 0.7500± 0.0187 0.5758± 0.0098

Table 3: Comparison of R2 on test sets for land climate prediction of Brazil, Peru and South-east Asia using weighted Lasso
and other baseline methods. Average R2 ± standard error on test sets is shown. The maximum average R2 for each target region
is shown as bold. Weighted Lasso achieves overall best predictive performance. Furthermore, linear model weighted Lasso and
Lasso both outperform Deep nets and GBT.

Model Location Weighted Lasso Lasso PCR Deep nets GBT

C
M

C
C

-C
E

SM

Brazil 0.4887± 0.0555 0.4697± 0.0595 0.1372± 0.0982 0.2292± 0.0633 0.3706± 0.0587

Peru 0.4044± 0.0357 0.3655± 0.0333 0.1004± 0.0704 0.1018± 0.0476 0.3168± 0.0336

SE Asia 0.6963± 0.0205 0.6901± 0.0188 0.4086± 0.0763 0.3763± 0.0509 0.6312± 0.0222

IN
M

-C
M

4 Brazil 0.1855± 0.0342 0.1616± 0.0340 −1.098± 0.2387 −0.1650± 0.0639 −0.0629± 0.0550

Peru 0.3457± 0.0324 0.3334± 0.0258 −0.8853± 0.2447 −0.0034± 0.0680 0.1372± 0.0498

SE Asia 0.3131± 0.0262 0.3091± 0.0266 −0.8827± 0.1583 −0.1498± 0.0568 0.0727± 0.0372

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.7615± 0.0369 0.7413± 0.0390 0.5878± 0.0616 0.6263± 0.0423 0.7146± 0.0330

Peru 0.7609± 0.0300 0.7331± 0.0326 0.5120± 0.0843 0.5964± 0.0503 0.7186± 0.0256

SE Asia 0.7436± 0.0298 0.7224± 0.0309 0.2949± 0.1448 0.4584± 0.0409 0.6794± 0.0260

ŷi)
2/
∑n

i=1(yi − ȳ)2, where for the i-th data point, yi is
the true normalized land temperature for a target region
and ŷi is the corresponding estimated value. ȳ is the av-
erage value for all n data points. The hyperparameters for
weighted Lasso (regularization parameter), Lasso (regular-
ization parameter), PCR (number of principal components
for regression) and GBT (learning rate and maximum depth
of tree) are selected by validation set. Specifically, in each
training set we select the first 80 years to train the model
and use the next 20 years as a validation set. The hyperpa-
rameters giving best performance on the validation set are
chosen. We then refit the predictive models on the full train-
ing set using the chosen hyperparameters. For GBT, we fix
the number of trees to 100, and perform a grid-search to find
the optimal learning rate and maximum depth of tree. For all
models the optimal value of learning rate on the validation
set varies between 0.05 and 0.07 and the optimal maximum
tree depth is found to be 3. For Deep nets we experiment
with various combinations of: (a) the number of hidden lay-
ers, (b) the number of hidden units in each layer, (c) differ-
ent mini-batch size when training using the Adam optimiza-
tion algorithm (Kingma and Ba 2014), and (d) ℓ1, ℓ2 and

no regularization. Each network uses Relu (Nair and Hin-
ton 2010) as activation function. The maximum number of
epochs for training is set as 150. We also use early-stopping
by examining validation set error. In almost all cases, an 8
hidden layer Deep nets with ℓ1 regularization on the weights
gave the best performance on the validation set. We report
results with mini batch size set to 32. We also run experi-
ments with transfer learning (Yosinski et al. 2014) for Con-
volutional Neural Networks (CNN) (Lecun et al. 1998) by
training only the last two layers of the Resnet-50 (He et
al. 2016) which is pre-trained on ImageNet (Russakovsky
et al. 2015). Resnet-50 is found to have worse performance
in comparison to Deep nets and hence, in the interest of
brevity and space, we exclude it from the comparison. More
details on the performance of Resnet-50 can be found in
Table 6.

Experimental Results
We compare different baseline methods against weighted
Lasso using average RMSE and R2 over test sets. We also
show an in-depth analysis of the performance of Deep nets
for our application.
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(a) Variable-selection map of weighted Lasso using CMCC-CESM (b) Variable-selection map of Lasso using CMCC-CESM

(c) Variable-selection map of weighted Lasso using INM-CM4 (d) Variable-selection map of Lasso using INM-CM4

(e) Variable-selection map of weighted Lasso using MIROC5 (f) Variable-selection map of Lasso using MIROC5

Figure 1: Comparison of variable selection by Lasso and weighted Lasso for Brazil temperature prediction. The plot shows
the probability that each ocean location is selected in the 10 runs for each ESM model. In contrast to Lasso, weighted Lasso
chooses more ocean locations closer to Brazil and achieves more consistent variable selection.

Prediction Accuracy Table 2 and Table 3 report the aver-
age RMSE, R2, and their standard errors. Weighted Lasso
achieves better average predictive accuracy compared to
other baseline methods across all 3 ESMs. The p-values of
2-sample K-S test (Daniel 1978) for RMSE on test sets are
shown in Table 4. Weighted Lasso is significantly better than
PCR, Deep nets and GBT (p < 0.05) in most cases (21 out
of 27). While the prediction accuracy of weighted Lasso is
not significantly better than Lasso, we show that weighted
Lasso consistently chooses a subset of variables of which
ocean locations are close to the land target region, which is
more interpretable in climate science perspective.
Variable selection Weighted Lasso and Lasso introduce
sparsity in variable selection. During the training phase, an
ocean location is considered selected, if it has a correspond-
ing non-zero coefficients. The behavior of weighted Lasso
(and Lasso respectively) is similar for land climate predic-
tion across 3 land target regions. We analyze the ocean loca-
tions selected by Lasso and weighted Lasso for Brazil tem-

perature prediction for all ESM models as an example. Fig-
ure 1 plots for each ESM model the number of times each
location is selected across the 10 runs. We make two obser-
vations from the plots: (a) weighted Lasso assigns non-zero
weights to ocean location close to Brazil consistent with
domain knowledge, and (b) variable selection in weighted
Lasso is more stable compared to Lasso in the sense that
the same locations are picked in all 10 datasets. However,
Lasso has few variables which are consistently chosen in all
predictive models for the same land target region. Also, the
frequently selected variables using Lasso are distributed at
arbitrary locations, which is not interpretable in climate sci-
ence perspective. We also compare the weights from a unit
from the first layer in Deep nets in Figure 2. Deep nets as-
sign non-zero weights for all ocean locations even with ℓ1
regularization.
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(a) Weights from Deep nets without regularization.

(b) Weights from Deep nets with ℓ1 regularization.

Figure 2: Comparison of regression coefficients of a unit
from Deep nets with and without ℓ1 regularization for Brazil.
All weights are normalized to [−1, 1] by dividing the largest
value among absolute weights.

Deep nets: What happened?
In this section, we analyze various facets of the performance
of Deep nets. The performance of Deep nets is influenced
by the number of hidden layers, number of hidden units,
mini-batch size, regularization etc. We analyze the impact
of each of these on the performance of Deep nets by vary-
ing one of the parameters while keeping the others fixed. We
also demonstrate that Deep nets overfit the training data and
hence do not generalize well on the test set.
Overfitting Figure 3 shows the training and validation set
RMSE after each epoch for a 8 layer Deep nets with 32 hid-
den units trained for temperature prediction over Brazil. The

Table 4: The p-values from 2-sample KS-test on RMSE of
test sets of weighted Lasso against other baseline methods
are shown. The p-values less than 0.05 are shown in bold.
The performance of weighted Lasso is significantly better
than non-linear baseline methods for most of target regions.

Model Location Lasso PCR Deep nets GBT

C
M

C
C

-C
E

SM

Brazil 0.9747 0.1108 0.0310 0.1108
Peru 0.6750 0.3128 0.0068 0.3128

SE Asia 0.6750 0.0001 0.0000 0.0068

IN
M

-C
M

4 Brazil 0.6750 0.0001 0.0012 0.0012
Peru 0.9747 0.0000 0.0000 0.0068

SE Asia 0.9747 0.0000 0.0001 0.0068

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.9747 0.0339 0.0120 0.1473
Peru 0.6750 0.1108 0.0120 0.3743

SE Asia 0.6750 0.0000 0.0000 0.0120

Figure 3: An example of model overfitting during the train-
ing phase for Deep nets. Deep nets are trained for 150
epochs. The blue curve and orange curve indicate the RMSE
of the training and validation set for Deep nets. There is a
clear gap between the training and validation RMSE. The
RMSE of weighted Lasso on both training (green line) and
validation (red line) sets are also shown for comparison.

Deep nets training error stabilizes after about 20 epochs and
is lower than the RMSE of linear models. In contrast the
validation set error of the Deep nets is much higher which
indicates that Deep nets overfit the noise in the training set
and hence can not generalize well over the unseen test set.
Effect of number of hidden units Figure 4 plots the test
RMSEs for temperature prediction over Brazil as we alter
the number of hidden units in each layer. The RMSE slightly
decreases as the number of hidden units increases from 1 to
64 for both shallow networks with 1 hidden layer, and Deep
nets with 8 hidden layers.

Figure 4: Average RMSE on test sets vs number of hidden
units for Brazil temperature prediction with CMCC-CESM.
The shaded zone indicates the lower and upper confidence
intervals (95%) around the predicted mean. For both 1-
Layer and 8-Layer network configuration, the RMSE tends
to slightly decrease with increasing number of hidden units.
Shallow vs Deep Structure Figure 5 compares Deep nets
with 1 hidden layer against Deep nets with 8 hidden layers
on test set prediction over Brazil. Having more layers gives
better test set RMSE.
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Table 5: Comparison of RMSE on test sets of regularized Deep nets and weighted Lasso. Average test RMSE ± standard error
are shown. Deep nets with ℓ1 regularization has smaller test set RMSE than ℓ2 and ℓ1 + ℓ2 regularization.

Model Location Weighted Lasso Deep nets Deep nets with ℓ1 Deep nets with ℓ2 Deep nets with ℓ1 + ℓ2
C

M
C

C
-C

E
SM

Brazil 0.6580± 0.0344 0.8151± 0.0364 0.6931± 0.0260 0.8458± 0.0744 1.0635± 0.1308

Peru 0.6901± 0.0269 0.8476± 0.0283 0.7499± 0.0210 0.9099± 0.0374 1.2099± 0.0453

SE Asia 0.5217± 0.0103 0.7424± 0.0153 0.5656± 0.0063 0.6869± 0.0215 0.8992± 0.0324

IN
M

-C
M

4 Brazil 0.7641± 0.0173 0.9144± 0.0304 0.8453± 0.0185 0.7334± 0.0403 1.0992± 0.1232

Peru 0.7127± 0.0144 0.8785± 0.0228 0.7815± 0.0119 0.7193± 0.0390 1.1686± 0.0964

SE Asia 0.7719± 0.0171 0.9986± 0.0290 0.8585± 0.0204 0.7891± 0.0600 1.2414± 0.1042
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1 Brazil 0.5395± 0.0258 0.6822± 0.0263 0.5919± 0.0160 0.9884± 0.0278 1.2544± 0.0477

Peru 0.5441± 0.0331 0.6979± 0.0227 0.5848± 0.0358 0.8781± 0.0177 1.5395± 0.1526

SE Asia 0.5092± 0.0154 0.7500± 0.0187 0.5616± 0.0194 0.9887± 0.0458 1.3306± 0.0949

Figure 5: The comparison of predicted land temperatures
in Brazil with CMCC-CESM over a 10 year period (1950-
1960) between a shallow and a deep network structure. The
deep structure predictions are better than a shallow network.

Table 6: Comparison of the best RMSEs among weighted
Lasso, Deep nets, and Resnet-50 using data from CMCC-
CESM. Resnet-50 shows worse predictive accuracy com-
pared to other methods.

Location Weighted Lasso Deep nets Resnet-50
Brazil 0.6513± 0.0635 0.8151± 0.0364 1.2972± 0.4109

Peru 0.6944± 0.0444 0.8476± 0.0283 1.3739± 0.3211

SE Asia 0.5162± 0.0213 0.7424± 0.0153 1.4760± 0.4227

Effect of mini-batch size Mini-batch size while training is
believed to have a strong impact on Deep nets performance
(Bengio 2012; Masters and Luschi 2018). We analyze the
effect on average test RMSE of mini-batch size for temper-
ature prediction over all three land locations (Figure 6). The
RMSE are highest with small batch sizes, steadily decreas-
ing with increasing batch size.
Effect of Regularization We explore 3 regularization
schemes, ℓ1, ℓ2 and ℓ1 + ℓ2. Table 5 shows the compari-
son on the test RMSE values of weighted Lasso and Deep
nets before and after applying ℓ1, and ℓ2 regularization. ℓ1
regularization seems to give better performance over other
regularization schemes including no regularization.

Conclusions
In this paper, we propose a weighted Lasso scheme for pre-
diction on spatial climate data in order to encode the in-

Figure 6: Average test RMSE vs mini batch size over Brazil,
Peru, and SE Asia for ESM model CMCC. Mini batch size
of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 as well as full batch
size are used on a 8 hidden layer network. The average
RMSE on test sets decreases as batch size increases.

herent spatial information in such datasets. Also, the non-
asymptotic estimation error bound for weighted Lasso is
given. The proposed method is evaluated on a task to pre-
dict temperature for 3 distinct land target regions using SST
from the historical runs of 3 ESMs. The weights are set to be
proportional to the geographical distance between the ocean
location of each predictor and the target land region, con-
straining the estimator to pick spatially nearby ocean loca-
tions. Weighted Lasso not only achieves better prediction ac-
curacy compared to other linear and non-linear models, in-
cluding PCR, GBT and Deep nets across all ESMs, but also
selects stable predictors consistent with domain knowledge.

We also conduct a comprehensive analysis of Deep nets
on high-dimensional climate datasets with small sample
size. Empirical results show that linear models outperform
the non-linear models and thus are more suitable for climate
problems where the number of samples is limited.
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