
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

A SAT+CAS Approach to Finding Good
Matrices: New Examples and Counterexamples

Curtis Bright
University of Waterloo

Dragomir Ž. Ðoković
University of Waterloo

Ilias Kotsireas
Wilfrid Laurier University

Vijay Ganesh
University of Waterloo

Abstract

We enumerate all circulant good matrices with odd orders di-
visible by 3 up to order 70. As a consequence of this we find
a previously overlooked set of good matrices of order 27 and
a new set of good matrices of order 57. We also find that cir-
culant good matrices do not exist in the orders 51, 63, and 69,
thereby finding three new counterexamples to the conjecture
that such matrices exist in all odd orders. Additionally, we
prove a new relationship between the entries of good matrices
and exploit this relationship in our enumeration algorithm.
Our method applies the SAT+CAS paradigm of combining
computer algebra functionality with modern SAT solvers to
efficiently search large spaces which are specified by both al-
gebraic and logical constraints.

1 Introduction
In 2002, circulant “good” matrices were searched for in all
odd orders n with n < 40 (Georgiou, Koukouvinos, and
Stylianou 2002) and were found to exist in all such orders.
This gave evidence to the conjecture that such matrices actu-
ally exist in all odd orders. The mathematician George Szek-
eres studied circulant good matrices in terms of an equiva-
lent type of object which he termed E-sequences and in his
classic paper (Szekeres 1988) he mentioned this hypothesis
as being worthwhile to study using computers:

. . . it is conceivable that E-sequences exist for all n =
2m + 1, m ≥ 1 and it is worth testing this hypothesis
at least for those orders which are accessible to present
day computers. . .

Unfortunately, this conjecture was recently shown to be false
in (Ðoković and Kotsireas 2018) where it was shown that
the orders n = 41, 47, and 49 are counterexamples, i.e., no
circulant good matrices of orders 41, 47, and 49 exist.

In this paper we find the additional three larger counterex-
amples n = 51, 63, and 69. In addition, we verify the claim
of Ðoković and Kotsireas that there are exactly four inequiv-
alent sets of circulant good matrices of order 45 and deter-
mine that there is a single set of inequivalent circulant good
matrices of order 57. We also find a previously undiscov-
ered set of good matrices of order 27 demonstrating that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Szekeres’ claimed exhaustive search (Szekeres 1988) was
incomplete.

The matrices that are now known as good matrices were
first used in the PhD thesis of Jennifer Seberry Wallis (Wal-
lis 1970); we give their formal definition in Section 2. She
gave a construction using good matrices that enabled the
construction of Hadamard matrices—square matrices with
±1 entries and whose rows are pairwise orthogonal. In her
thesis she gave examples of good matrices in all odd orders
up to 15 as well as order 19 and shortly later gave an ex-
ample in order 23 (Wallis 1971). Subsequently, (Hunt 1972)
ran a complete search in the odd orders up to 21 and gave ex-
amples in order 25, (Szekeres 1988) ran a complete search
up to order 31, (Ðoković 1993) gave examples in orders 33
and 35, (Georgiou, Koukouvinos, and Stylianou 2002) ran a
complete search up to order 39 and most recently (Ðoković
and Kotsireas 2018) ran a complete search up to order 49.
The result of these searches have shown that good matrices
exist in all odd orders up to 39 as well as 43 and 45. Addi-
tionally, (Ðoković 1993) gave a construction showing they
exist in order 127.

In this paper we extend the search to all odd orders divisi-
ble by 3 up to order 69. Note that increasing n by 2 increases
the size of the search space (at least to a first approxima-
tion) by a factor of 16, meaning that the size of the search
space in order 69 is an enormous 240 times larger than the
search space in order 49, the largest order which has pre-
viously been exhaustively searched. There are two primary
reasons our approach is able to scale to such orders:

1. We use a number of theoretical mathematical results to
cut down the search space, including filtering theorems,
recently proven compression theorems, and a new product
theorem given in this paper.

2. We use state-of-the-art programmatic SAT solvers, com-
puter algebra systems, and mathematical libraries to very
efficiently search spaces specified by both logical and al-
gebraic constraints.

This approach of coupling computer algebra systems and
SAT solvers was first proposed in 2015 at the conferences
CADE and ISSAC (Zulkoski, Ganesh, and Czarnecki 2015;
Ábrahám 2015) and has since appeared in papers at the con-
ferences IJCAI, ISSAC, and the journal of automated rea-
soning (Zulkoski, Ganesh, and Czarnecki 2016; Bright et

1435

al. 2018; Zulkoski et al. 2017) and is the aim of the SC2

project (Ábrahám et al. 2016). In particular, the SAT+CAS
method in this paper is an adaption of one presented at
AAAI (Bright, Kotsireas, and Ganesh 2018).

Furthermore, we employ a SAT solver which can learn
clauses programmatically, through a piece of code compiled
with the SAT solver and which makes calls to an exter-
nal mathematical library. This approach permits one to effi-
ciently encode constraints that would be much too cumber-
some to encode with native SAT clauses, as we will see in
Section 3. For example, it is much faster and easier to com-
pute a discrete Fourier transform using a numerical library or
computer algebra system than it would be to encode a DFT
circuit using logical clauses, the format normally accepted
by SAT solvers.

A detailed description of our enumeration algorithm will
be given in Section 4, followed by our results in Section 5.
In particular, we explicitly give two new examples of good
matrices, one in order 27 which has gone undetected since
1988 and one in order 57, an order which had previously
been out of reach of exhaustive search algorithms; the largest
order searched prior to our work was 49. We also provide a
table enumerating the number of sets of good matrices in all
odd orders divisible by 3 up to 69. These counts are given up
to an equivalence which is described, along with the required
background on good matrices, in Section 2.

2 Background
In this section we define good matrices and review the prop-
erties and theorems of good matrices that we use in our enu-
meration algorithm.

To begin, we recall the definitions of symmetric, skew,
and circulant matrices. Let X be a square matrix of order n
with entries xi,j with 0 ≤ i, j < n. We say that X is
symmetric if all entries satisfy xi,j = xj,i, that X is skew
if diagonal entries are 1 and non-diagonal entries satisfy
xi,j = −xj,i, and that X is circulant if all entries satisfy
xi,j = xi−1,j−1 with indices taken mod n as necessary.

Good matrices
Definition 1. Four matrices A, B, C, D ∈ {±1}n×n are
known as good matrices if they have the following proper-
ties.
(a) They are pairwise amicable (XY T is symmetric for
X,Y ∈ {A,B,C,D}).

(b) A is skew and B, C, D are symmetric.
(c) AAT +B2+C2+D2 is the identity matrix scaled by 4n.

The primary reason that good matrices have attracted sus-
tained interest for almost 50 years is because of the follow-
ing theorem of (Wallis 1970) which provides a construction
for skew Hadamard matrices.
Theorem 1. Let A, B, C, D be good matrices of order n.
Then A B C D

−B A D −C
−C −D A B
−D C −B A

is a skew Hadamard matrix of order 4n.

Skew Hadamard matrices are conjectured to exist in all or-
ders 4n with n ≥ 1 and much effort has gone into construct-
ing them in as many orders as possible; the current small-
est unknown order is n = 69 and the previous smallest un-
known order n = 47 was solved ten years ago by (Ðoković
2008).

From a computational perspective the issue with good
matrices is that the search space is too large to effectively
search. The standard remedy for this is to focus on circulant
matrices for which the search can be performed more effec-
tively. For example, in (Awyzio and Seberry 2015) good ma-
trices are defined as in Definition 1 except that condition (a)
is replaced with the strictly stronger condition
(a′) A, B, C, D are circulant.
Technically matrices which satisfy conditions (a′), (b),
and (c) are not good matrices but one can recover good ma-
trices from them simply by reversing the order of the rows of
B, C, and D (thereby making them amicable with A). Since
using (a′) is convenient to state our results we will employ it
for the remainder of this paper.

We often consider good matrices in terms of their first
rows (a0, . . . , an−1), (b0, . . . , bn−1), (c0, . . . , cn−1), and
(d0, . . . , dn−1) which we call their defining rows. Since A
is skew and B, C, and D are symmetric, the defining rows
of a set of good matrices must satisfy a0 = 1 and

ai = −an−i, bi = bn−i, ci = cn−i, di = dn−i

for 1 ≤ i < n/2. Furthermore, we often useA,B, C, andD
to denote the defining rows themselves, in which case we
say that A is a skew sequence and that B, C, and D are
symmetric sequences.

Equivalence operations
The following three invertible operations are well-known
and can be applied to a set of good matrices A, B, C, D
to produce another set of good matrices we consider equiv-
alent to A, B, C, D.

1. Reorder B, C, D in any way.
2. Negate any of B, C, D.
3. Apply an automorphism of Zn = {0, . . . , n − 1} to the

indices of the defining rows of each of A, B, C, and D.
For example, the negation equivalence operation implies

that any set of good matrices is equivalent to one with b0 =
c0 = d0 = 1.

Filtering theorems
The search space for good matrices of order n is enormous.
Even if one takes into account the symmetry properties of
the defining rows and fixes the first entries to be positive,
each defining row contains bn/2c unspecified entries. Since
each unspecified entry can be one of two values, there are a
total of 24bn/2c = 4n−1 possibilities in the search space.

In order to cut down the size of the search space so that we
can run exhaustive searches in larger orders we need filter-
ing theorems. One of the most powerful filtering theorems is
based on the following which gives an alternative character-
ization of good matrices (Ðoković and Kotsireas 2015).

1436

Theorem 2. Let A, B, C, D be sequences of length n with
A skew and B, C, D symmetric. Then A, B, C, D are the
defining rows of a set of good matrices if and only if for all
integers k we have

PSDA(k) + PSDB(k) + PSDC(k) + PSDD(k) = 4n.

Here PSDX(k) :=
∣∣∑n−1

j=0 xjω
jk
∣∣2 with ω := exp(2πi/n)

is the power spectral density of X = [x0, . . . , xn−1].
This is important because of the following well-known

corollary:
Corollary 3. LetA,B, C,D be the defining rows of a set of
good matrices of order n. If S is a subset of {A,B,C,D}
then

∑
X∈S PSDX(k) ≤ 4n for all integers k.

For example, this corollary says that if PSDA(k) > 4n
for some k then A cannot be part of a set of good matrices.
In other words, we can filter A and ignore it in our enumer-
ation method. A second well-known corollary of Theorem 2
comes from setting k = 0 in the statement of the theorem:
Corollary 4. Let A, B, C, D be the defining rows of a set
of good matrices of odd order n. Then

sum(B)2 + sum(C)2 + sum(D)2 = 4n− 1

where sum(X) denotes the sum of entries in X .
Since sum(X) is an integer when X has integer entries

this corollary tells us that every set of good matrices gives a
decomposition of 4n− 1 into a sum of three integer squares
which is a rather restrictive condition. For example, when n
is 69 there are only three ways to write 4n − 1 as a sum of
exactly three squares of nonnegative integers, namely,

12 + 72 + 152, 52 + 52 + 152, and 52 + 92 + 132.

One must also consider decompositions with squares of neg-
ative integers but the negative integers can be found with the
following simple (often unstated) lemma. It gives a criterion
to determine the signs of sum(B), sum(C), and sum(D).
Lemma 5. Let (a0, . . . , an−1), (b0, . . . , bn−1),
(c0, . . . , cn−1), (d0, . . . , dn−1) be the defining rows of
a set of good matrices A, B, C, D of odd order n with
b0 = c0 = d0 = 1. Then

sum(B) ≡ sum(C) ≡ sum(D) ≡ n (mod 4).

Compression
Although the filtering theorems greatly decrease the num-
ber of possibilities for the defining rows of good matrices
there are still typically a large number of possibilities which
are not filtered by Corollaries 3 and 4. An effective way of
shrinking the search space even farther is to apply proper-
ties that “compressions” of good matrices must satisfy. Such
theorems are only applicable in composite orders; we will
assume that the order n is a multiple of 3. To our knowl-
edge this is the first time compression has been used in the
search for good matrices and it allows us to search larger
orders than other methods. For example, (Ðoković and Kot-
sireas 2018) use the aforementioned filtering corollaries but
do not apply compression and are only able to search orders
up to 49.

The 3-compression of a sequence X = (x0, . . . , xn−1) of
length n is the sequence X ′ of length m := n/3 whose kth
entry is xk + xk+m + xk+2m. Since we are concerned with
the case where the entries of X are ±1 the entries of X ′ are
either ±1 or ±3. Compression is useful because (Ðoković
and Kotsireas 2015) showed that Theorem 2 holds for com-
pressions of the defining rows of good matrices.
Theorem 6. Let A, B, C, D be the defining rows of a set of
good matrices of order n and let A′, B′, C ′, D′ be compres-
sions of those rows. Then for all integers k we have

PSDA′(k) + PSDB′(k) + PSDC′(k) + PSDD′(k) = 4n.

A new product theorem
Our study of good matrices uncovered the following rela-
tionship that the entries of good matrices must satisfy. This
is an analog of the product theorem that was proven by John
Williamson for Williamson matrices (Williamson 1944).
Theorem 7. Let (a0, . . . , an−1), (b0, . . . , bn−1),
(c0, . . . , cn−1), (d0, . . . , dn−1) be the defining rows of
a set of good matrices A, B, C, D of odd order n. Then
akbkckdk = −a2k mod nb0c0d0 for all 1 ≤ k < n.

Let x̄ := (1− x)/2, i.e., the mapping x 7→ x̄ is the group
isomorphism between Z∗4 = {±1} and Z2 = {0, 1}. Our
enumeration method uses Theorem 7 in the following form.
Corollary 8. Let (a0, . . . , an−1), (b0, . . . , bn−1),
(c0, . . . , cn−1), (d0, . . . , dn−1) be the defining rows of
a set of good matrices A, B, C, D of odd order n with
b0 = c0 = d0 = 1. Then for 1 ≤ k < n/2 we have in Z2

āk + ā2k + b̄k + c̄k + d̄k = 1

and when n = 3m we have b̄m + c̄m + d̄m = 1.
Proofs of Lemma 5, Theorem 7, and Corollaries 3, 4,

and 8 are published at uwaterloo.ca/mathcheck.

3 The SAT+CAS paradigm
The SAT+CAS paradigm is a new method of solving certain
kinds of computational problems which harnesses the power
of two fields of computer science: satisfiability checking and
symbolic computation. The paradigm is particularly useful
for problems that have a significant search component and a
rich mathematical component.

Briefly, this is due to the fact that modern SAT solvers
have extremely efficient search procedures but lack the do-
main knowledge to effectively deal with rich mathemati-
cal concepts. On the other hand, computer algebra systems
like MAPLE, MATHEMATICA, and SAGEMATH as well as
special-purpose numerical libraries can very effectively deal
with rich mathematics.

The fact that satisfiability checking and symbolic com-
putation had great potential synergy was first pointed out by
Erika Ábrahám in an invited talk at the conference ISSAC in
2015 (Ábrahám 2015). At almost the same time this synergy
was demonstrated by the system MATHCHECK presented
at the conference CADE (Zulkoski, Ganesh, and Czarnecki
2015). The system MATHCHECK coupled a SAT solver with
a computer algebra system and solved open cases of two

1437

conjectures in graph theory and was later extended to solve
open cases in combinatorial conjectures (Zulkoski et al.
2017). Since then, the SC2 project (Ábrahám et al. 2016)
has organized an annual workshop on this topic for the last
three years.

To illustrate the usefulness of the SAT+CAS paradigm in
the search for good matrices specifically, consider Corollar-
ies 3, 4, and 8 from Section 2. These corollaries all state vari-
ous properties that good matrices must satisfy but each prop-
erty arises from a different branch of mathematics. Conse-
quently, each property is best dealt with using systems which
have been optimized to deal with that particular branch:
• Corollary 3 is a statement in Fourier analysis and is best

checked using a system which has been designed to effi-
ciently compute Fourier transforms.

• Corollary 4 (and Lemma 5) are number theoretic state-
ments and possibilities for the values sum(B), sum(C),
and sum(D) can be found by using a system which has
been designed to solve quadratic Diophantine systems.

• Corollary 8 is a statement using arithmetic in Z2 and can
efficiently be encoded directly in a SAT instance.

The programmatic SAT paradigm
A programmatic SAT solver, introduced in (Ganesh et al.
2012), is a new kind of SAT solver which allows solving
satisfiability problems with more expressiveness than the
kinds of problems that can be solved with a standard SAT
solver. Briefly, a programmatic SAT solver will use some
custom code to examine the current partial assignment and if
it cannot be extended into a full assignment (based on some
known theorem from the problem domain) a clause will be
learned encoding that fact. Because one can think of “call-
ing” the programmatic SAT solver with the custom code this
code is known as a “callback” function.

Programmatic SAT solvers are conceptually similar to
SMT (SAT modulo theories) solvers and in some ways could
be considered a “poor man’s SMT”. However, they also dif-
fer from SMT solvers in some key ways:

Simplicity. SMT solvers are necessarily more compli-
cated than SAT solvers because they solve problems in first-
order logic instead of problems in propositional logic. This
increase in complexity is justifiable for many problems but
some problems contain mostly just propositional logic with
a handful of “theory lemmas” that are cumbersome to state
in propositional logic but can be given to a programmatic
SAT solver as necessary to help guide its search.

Flexibility. Typically SMT solvers only support theories
which are fixed in advance; for example, the SMT-LIB stan-
dard (Barrett, Fontaine, and Tinelli 2016) specifies a fixed
number of theories and a common input and output language
for those theories. However, not all problems can naturally
be expressed in those theories; e.g., the current SMT-LIB
standard does not include theories involving Fourier trans-
forms (or transcendental functions or complex numbers). In
contrast, a programmatic SAT solver can learn theory lem-
mas derived using Fourier transforms so long as an appro-
priate CAS or library can be called.

Tailored solving. Programmatic SAT solvers can be tai-
lored to solve specific classes of problems (in addition to us-
ing the same state-of-the-art techniques which make modern
SAT solving so efficient). For example, in this paper we de-
velop a SAT solver tailored to searching for good matrices.
In principle SMT solvers could work in the same way but we
are not aware of any SMT solvers that offer a programmatic
interface like this.

A programmatic SAT encoding of good matrices
We now describe how our programmatic SAT solver encod-
ing of good matrices works in detail. We encode the entries
of the defining rows of a set of good matrices A, B, C, D of
order n using 4n Boolean variables where we let true values
denote 1 and false values denote −1. By abuse of notation
we use the same names for the Boolean variables and the
±1 entries that they represent but it will be clear from the
context if we are referring to a Boolean or integer value.

In fact, using the symmetry constraints from Section 2
we only need to define the 2(n + 1) variables ai, bi, ci, di
that have indices i with 0 ≤ i < n/2. In what follows we
implicitly use this whenever necessary; i.e., any variables
with indices larger than n/2 are used for clarity only.

A programmatic SAT solver includes a callback function
that is run whenever the SAT solver’s usual conflict analy-
sis fails to find a conflict. The callback function examines
the current partial assignment and learns clauses that block
the current assignment (and extensions of the current assign-
ment) from the search in the future.

If x is a variable that appears in the current partial assign-
ment we let xcur denote either the literal x or ¬x, whichever
is true under the current assignment. The callback function
used in our encoding of good matrices works by encoding
the property given in Corollary 3 and its steps are described
in detail below.

1. Let S be a list containing the sequences (a0, . . . , an−1),
(b0, . . . , bn−1), (c0, . . . , cn−1), (d0, . . . , dn−1) that have
all their variables currently assigned.

2. If S is empty then return control to the SAT solver.

3. Let X be the first sequence in S and compute the power
spectral density of X . If PSDX(k) > 4n for some k then
learn a clause blocking the sequenceX from the search in
the future. Explicitly, learn the clause

¬xcur
0 ∨ ¬xcur

1 ∨ · · · ∨ ¬xcur
n−1

and return control to the SAT solver.

4. If S contains at least two sequences then let Y be the sec-
ond sequence in S and compute the power spectral den-
sity of Y . If PSDX(k)+PSDY (k) > 4n for some k then
learn a clause blocking the sequences X and Y from oc-
curring together again in the future. Explicitly, learn the
clause

¬xcur
0 ∨ · · · ∨ ¬xcur

n−1 ∨ ¬ycur
0 ∨ · · · ∨ ¬ycur

n−1

and return control to the SAT solver.

1438

5. If S contains at least three sequences then let Z be the
third sequence in S and compute the power spectral den-
sity of Z. If PSDX(k) + PSDY (k) + PSDZ(k) > 4n
for some k then learn a clause blocking the sequences X ,
Y , and Z from occurring together again in the future and
return control to the SAT solver.

6. If S contains four sequences then we know every entry of
A, B, C, and D. If the relationship in Theorem 2 holds
then record A, B, C, and D as rows that define good ma-
trices. Whether or not the sequences define good matrices
learn a clause blocking these sequences from occurring
together again in the future.

If only a single instance of good matrices is desired then
one can stop searching in Step 6 if a satisfying A, B, C, D
is found. However, we learn a blocking clause and continue
the search because we want to provide an exhaustive search.

The programmatic approach was essential to our algo-
rithm because it allowed us to easily and efficiently apply
Corollary 3 which would otherwise be difficult to apply in a
SAT instance. Corollary 3 was also extremely effective; the
SAT solver was usually able to learn a clause in Step 3 when
enough variables were assigned. This enormously cut down
the search space—the SAT solver could often learn conflicts
with just n variables instead of conflicts with all 4n vari-
ables and in practice this appeared to give us an exponential
speedup in n.

However, using this method alone was not sufficient for
us to derive results beyond order 21 and a more efficient
enumeration method (using the programmatic encoding as a
subroutine) was required to scale to order 69. We describe
this method in the next section.

4 Enumeration algorithm
Although SAT solvers are useful tools for searching large
spaces they have their limits and the main reason that we
were not able to derive any new results only using SAT
solvers is because the search space is too large, even using
the programmatic filtering encoding.

One way that the performance of SAT solvers can be im-
proved on instances with large search spaces is by splitting
the instance into many smaller instances of approximately
equal difficulty. The cube-and-conquer paradigm (Heule,
Kullmann, and Biere 2018) does this and has achieved
some impressive successes such as solving the Boolean
Pythagorean triples problem (Heule, Kullmann, and Marek
2016) and determining the fifth Schur number (Heule 2018).

Our enumeration algorithm will use a similar paradigm to
cube-and-conquer except that instead of splitting the search
space into cubes we split the search space into compressions.
Not only does splitting via compressions increase the per-
formance of the SAT solver it also allows for easy paral-
lelization because instances generated in this way are inde-
pendent. Additionally, we use Theorem 6 to apply filtering
to the compressions which also has the effect of further de-
creasing the size of the search space.

We now describe our algorithm in four steps followed by
some postprocessing. Given an odd order n divisible by 3
our algorithm enumerates all inequivalent circulant good

matrices of order n with positive first entries. Each step is
designed to search through a larger subspace than the previ-
ous step: step 1 finds every possible rowsum of a good ma-
trix, step 2 finds every possible 3-compressed row of a good
matrix, step 3 finds every possible 3-compressed quadruple
of good matrices, and step 4 finds all good matrices up to
equivalence.

Step 1: Find possible rowsums
If A, B, C, D are good matrices then from Corollary 4 and
Lemma 5 the rowsums of the matrices B, C, and D must
satisfy the quadratic Diophantine system

x2 + y2 + z2 = 4n− 1

x ≡ y ≡ z ≡ n (mod 4)

where x, y, and z are the rowsums of B, C, and D.
Many computer algebra systems contain number the-

oretic functions that allow this Diophantine system to
be easily solved. For example, the MATHEMATICA func-
tion PowersRepresentations or the MAPLE script
NSOKS (Riel 2006).

Step 2: Find possible compressed rows
In this step we will generate sets Ssk and Ssy where Ssk will
contain all possible 3-compressions of skew defining rows
and Ssy will contain all possible 3-compressions of symmet-
ric defining rows. These sets will be generated by an essen-
tially brute-force enumeration through all skew or symmet-
ric {±1}-sequences of length n, using Corollaries 3 and 4 to
filter sequences which cannot be a defining row.

Let d := bn/2c. In detail, we do the following:

1. For all X ∈ {±1}d:

(a) Let A be the skew sequence whose first entry is 1
and next d entries are given by X , i.e., A :=
(1, x0, . . . , xd−1,−xd−1, . . . ,−x0).

(b) If PSDA(k) ≤ 4n for all k then add the 3-compression
of A to Ssk.

(c) Let B be the symmetric sequence whose first entry
is 1 and next d entries are given by X , i.e., B :=
(1, x0, . . . , xd−1, xd−1, . . . , x0).

(d) If PSDB(k) ≤ 4n for all k and sum(B) is one of
the solutions x, y, z from step 1 then add the 3-
compression of B to Ssy.

Step 3: Find possible compressed quadruples
In step 2 we generated all possible 3-compressions of the
defining rows of good matrices. However, most quadruples
of possible sequences found in step 2 will violate the re-
lationship in Theorem 6 and can therefore be filtered. In
this step we identify all quadruples of 3-compressions which
can’t be filtered and store them in a set Sq. We do this by
examining all (A′, B′, C ′, D′) in Ssk × S3

sy and adding the
quadruples that satisfy the relationship in Theorem 6 to Sq.

1439

Step 4: Uncompress via programmatic SAT
In step 3 we generated all 3-compressed quadruples
(A′, B′, C ′, D′) that satisfy the relationship in Theorem 6.
Given such a quadruple we need to determine if it is possi-
ble to uncompress the quadruple. In other words, we want
to find all quadruples (A,B,C,D) of defining rows of good
matrices (if any) whose 3-compression is (A′, B′, C ′, D′).
To do this we formulate the uncompression problem as a
programmatic SAT problem.

We already discussed our programmatic encoding of the
constraint saying thatA,B,C,D define rows of good matri-
ces of order n = 3m. The remaining constraints can easily
be expressed in the standard format accepted by SAT solvers
(conjunctive normal form). We now discuss how to encode
the constraint that they are 3-compressions of A′, B′, C ′,
and D′. (For simplicity we only consider the compression
constraints ofA′ = (a′0, . . . , a

′
m−1) but the other constraints

are analogous.)
Consider the entry a′k = ak + ak+m + ak+2m. There are

four possible cases:

1. a′k = 3. In this case ak = ak+m = ak+2m = 1 which is
encoded as the three unit clauses

ak, ak+m, ak+2m.

2. a′k = 1. In this case two of {ak, ak+m, ak+2m} are true
and one is false. This is encoded as the four clauses

¬ak ∨ ¬ak+m ∨ ¬ak+2m,

ak ∨ ak+m, ak ∨ ak+2m, ak+m ∨ ak+2m.

3. a′k = −1. In this case one of {ak, ak+m, ak+2m} is true
and two are false. This is encoded as the four clauses

ak ∨ ak+m ∨ ak+2m,

¬ak ∨ ¬ak+m, ¬ak ∨ ¬ak+2m, ¬ak+m ∨ ¬ak+2m.

4. a′k = −3. In this case ak = ak+m = ak+2m = −1 which
is encoded as the three unit clauses

¬ak, ¬ak+m, ¬ak+2m.

Finally, we discuss how to encode Corollary 8. The sim-
plest case of Corollary 8 tells us that an even number of
{bm, cm, dm} are true. This is encoded as the four clauses

bm ∨ cm ∨ dm, ¬bm ∨ ¬cm ∨ dm,
¬bm ∨ cm ∨ ¬dm, bm ∨ ¬cm ∨ ¬dm.

The general case of Corollary 8 is an XOR constraint of
length 5. While SAT solvers are not good with arbitrary
XOR constraints we found that these constraints were short
enough that they could be effectively encoded as the sixteen
clauses with an even number of negated literals, i.e.,

ak ∨ a2k ∨ bk ∨ ck ∨ dk, . . . , ak ∨¬a2k ∨¬bk ∨¬ck ∨¬dk.

Postprocessing: Remove equivalent good matrices
After all the SAT instances generated in step 4 are solved we
will have a list of all circulant good matrices of order n up
to equivalence. However, some of them may be equivalent to

each other since we have not encoded all of the equivalence
operations of Section 2. In order to provide a list which con-
tains only inequivalent good matrices it is necessary to test
the matrices for equivalence and remove any that are found
to be equivalent to one which has previously been found.

To do this, we define a canonical representative of each
equivalence class of defining rows of good matrices. This
way, to check if two good matrices are equivalent we com-
pute the canonical representative of each and check if they
are equal.

First, consider the first two equivalence operations (re-
order and negate). Given a quadruple of defining rows
(A,B,C,D) we apply the negation operation to set the first
entry of each defining row to be positive. Then we apply the
reorder operation to sort B, C, D in lexicographically in-
creasing order. This gives us a canonical representative of
each equivalence class formed by the first two equivalence
operations which we denote by MA,B,C,D.

Next, consider the third equivalence operation (permute
indices). Let σ be an automorphism of Zn and let σ act on
(A,B,C,D) by permuting the indices of the defining rows.
This operation commutes with the first two operations, so
the lexicographic minimum of the set

S := {Mσ(A,B,C,D) : σ ∈ Aut(Zn) }
is the lexicographic minimum of all quadruples equivalent
to (A,B,C,D) and is therefore canonical. We compute this
by explicitly generating all elements of S and selecting the
lexicographic minimum.

Optimizations
For the benefit of those who would like to implement our
algorithm we now discuss some optimizations that we found
useful.

In the programmatic encoding and in step 2 of our enu-
meration algorithm we need to check if there exists an in-
teger k such that PSDX(k) > 4n for a given sequence X .
We only need to check k with 0 ≤ k < n/2 because the
symmetries of the Fourier transform on real input X im-
ply that PSDX(k) = PSDX(±k mod n). In fact, checking
k = 0 is also unnecessary because PSDX(0) = sum(X)2

and step 1 will filter any sequences X with sum(X)2 > 4n.
Also, when checking the PSD criterion for each k we sort
the elements of S so that the sequences with the largest PSD
values appear first, making it easier to learn short clauses.

In step 3, the matching procedure can be done very
efficiently by a string sorting technique similar to the
method used in (Kotsireas, Koukouvinos, and Pardalos
2010). First we enumerate all (A′, B′) ∈ Ssk × Ssy that
satisfy PSDA′(k) + PSDB′(k) ≤ 4n for all k and all
(C ′, D′) ∈ S2

sy that satisfy PSDC′(k) + PSDD′(k) ≤ 4n
for all k. At this point we form one list that contains strings
that contain the values of PSDA′(k) + PSDB′(k) and an-
other list that contains strings that contain the values of
4n − (PSDC′(k) + PSDD′(k)) and look for strings which
occur in both lists. This can be done by sorting the two lists
and doing a linear scan through the lists to find duplicates.
The fact that PSDs are real numbers can make this tricky,
but we can deal solely with integers by applying the inverse

1440

Fourier transform to the PSD values; this produces integer
values known as PAF values and the relationship given in
Theorem 6 becomes (for 0 < k < n)
PAFA′(k) + PAFB′(k) + PAFC′(k) + PAFD′(k) = 0.

In fact, since this step was not a bottleneck we computed
the PAF values using the slower but more straightforward
relationship PAFX(k) =

∑n−1
j=0 xjxj+k mod n.

In step 4, before calling the SAT solver we partition the
compressed quadruples into equivalence classes using the
reorder and automorphism equivalence operations from Sec-
tion 2 and keep one quadruple from each equivalence class.
If any satisfiable SAT instances are removed by this process
they will have equivalent solutions (also with positive first
entries) in the instance that was kept.

5 Results
In this section we discuss our implementation of our enu-
meration algorithm, the software and hardware we used to
run it, and the results that we achieved. Our code is avail-
able from our website uwaterloo.ca/mathcheck.

Step 1 of our algorithm was done using NSOKS in
MAPLE (Riel 2006). Steps 2 and 3 were done with custom
C++ code and the string sorting was done with the GNU core
utility SORT. Step 4 was done with the programmatic SAT
solver MAPLESAT (Liang et al. 2016) and the PSD values
were computed using the library FFTW (Frigo and John-
son 2005). Because FFTW uses floating point values which
are inherently inaccurate all comparisons were checked to
a tolerance of ε = 10−2 which is small but larger than the
precision of the FFT used. The computations were run on a
cluster of 64-bit Opteron 2.2GHz and Xeon 2.6GHz proces-
sors running CentOS 6.9 and using 500MB of memory. By
far the most computationally expensive step of our algorithm
was running the SAT solver. This accounted for 99.9% of
the total running time, underscoring the importance of using
a state-of-the-art SAT solver such as MAPLESAT. This step
was parallelized across 250 cores and completed in about
two weeks. Despite step 4 being the bottleneck the other
steps were found to be essential could not be removed with-
out significantly increasing the computation time.

The timings for running our implementation in each odd
order divisible by 3 up to order 70 are given in Table 1.
This table also contains the number of SAT instances gen-
erated in each order and the number of inequivalent good
matrices found (denoted by #Gn). Our exhaustive search
in order 27 produced 13 sets of inequivalent good matri-
ces, though Szekeres’ classic paper (Szekeres 1988) con-
tains only 12 sets of such matrices and Seberry reports that
this was checked by at least one other researcher (Seberry
1999). Comparing the matrices generated using our method
with those in his paper shows that Szekeres missed a set of
good matrices. Furthermore, we found a new set of good
matrices of order 57; the two new sets of good matrices pro-
duced by our method are given in Figure 1.

6 Conclusion
In this paper we have demonstrated the applicability of the
SAT+CAS and programmatic SAT paradigms to the prob-

n Time (h) # inst. #Gn
3 0.00 1 1
9 0.00 2 1
15 0.00 11 11
21 0.00 39 10
27 0.00 186 13
33 0.01 840 15
39 0.07 1934 5
45 1.91 19205 4
51 11.35 23611 0
57 233.56 102402 1
63 11115.70 808642 0
69 72366.85 918940 0

Table 1: The running time in hours, number of SAT in-
stances used, and number of inequivalent good matrices
found (#Gn) in each odd order n < 70 divisible by 3.

lem of finding good matrices in combinatorics. This prob-
lem has been well-studied for almost 50 years and the algo-
rithm we’ve developed using SAT solvers coupled with com-
puter algebra systems and mathematical libraries is a practi-
cal method of enumerating circulant good matrices (at least
those with orders divisible by 3). This is evidenced by the
large gap between the prior state-of-the-art and the results
of this paper—prior to this year the largest order enumer-
ated was 39 and the orders up to 49 were only enumerated
this year, while our algorithm was able to enumerate circu-
lant good matrices of order 69. Since the search space grows
exponentially in the order (approximately like 4n) this is a
much larger search space than the order 49 search space.

Additionally, we’ve demonstrated the effectiveness of our
algorithm by constructing two new sets of good matrices,
including one that escaped detection in a 1988 search (Szek-
eres 1988) and a double-check by Koukouvinos in 1999 (Se-
berry 1999). It is surprising that this set of good matrices was
overlooked for so long though the fact that the double-check
also failed to produce it likely dissuaded researchers from
spending more computational resources to triple-check the
same search in order 27.

Unfortunately, the fact that there are no known certificates
for an exhaustive search means that it is difficult to verify
that a search completed successfully. In our case, we relied
on multiple pieces of software including MAPLE, MAPLE-
SAT, FFTW, GNU SORT, and custom-written C++ code. A
bug in any one of these programs could cause a good matrix
to be overlooked. The fact that our code confirms (and even
corrects) the results of previous searches gives some assur-
ance that it is working as intended. However, verification of
our nonexistence results from multiple independent sources
would be ideal.

Acknowledgments
We thank the reviewers for their detailed comments which
improved this paper’s clarity. The computations were made
possible by the high-performance computer clusters admin-
istered by Compute Canada and SHARCNET.

1441

+++++++--+++-+-+---++------ +-+---++--+--+-+-+++-------++--+++++++---+-+-++-++--+++-+
+-++-+---+--++++--+---+-++- +++-+--++---+---+--+-+-++++----++++-+-+--+---+---++--+-++
+-+++---+--+----+--+---+++- ++++---+--+--+--+-+-+----+++--+++----+-+-+--+--+--+---+++
+----++-+---+--+---+-++---- +++-++++++--+-+++-+-++----++--++----++-+-+++-+--++++++-++

Figure 1: The defining rows of new good matrices of order 27 and order 57 where + encodes 1 and - encodes −1.

References
Ábrahám, E.; Abbott, J.; Becker, B.; Bigatti, A. M.; Brain,
M.; Buchberger, B.; Cimatti, A.; Davenport, J. H.; Eng-
land, M.; Fontaine, P.; Forrest, S.; Griggio, A.; Kroening, D.;
Seiler, W. M.; and Sturm, T. 2016. SC2: Satisfiability check-
ing meets symbolic computation. In Intelligent Computer
Mathematics: 9th International Conference, CICM 2016,
Bialystok, Poland, July 25–29, 2016, Proceedings, 28–43.

Ábrahám, E. 2015. Building bridges between symbolic
computation and satisfiability checking. In Proceedings of
the 2015 ACM on International Symposium on Symbolic and
Algebraic Computation, 1–6. New York: ACM.
Awyzio, G., and Seberry, J. 2015. On good matrices and
skew Hadamard matrices. In Colbourn, C. J., ed., Algebraic
Design Theory and Hadamard Matrices, 13–28.
Barrett, C.; Fontaine, P.; and Tinelli, C. 2016. The Satisfia-
bility Modulo Theories Library (SMT-LIB).
Bright, C.; Kotsireas, I.; Heinle, A.; and Ganesh, V. 2018.
Enumeration of complex Golay pairs via programmatic
SAT. In Proceedings of the 2018 ACM International Sym-
posium on Symbolic and Algebraic Computation, 111–118.
Bright, C.; Kotsireas, I.; and Ganesh, V. 2018. A SAT+CAS
method for enumerating Williamson matrices of even order.
In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, Louisiana, USA, Febru-
ary 2–7, 2018, 6573–6580.

Ðoković, D. Ž., and Kotsireas, I. S. 2015. Compression
of periodic complementary sequences and applications. De-
signs, Codes and Cryptography 74(2):365–377.

Ðoković, D. Ž., and Kotsireas, I. S. 2018. Goethals–Seidel
difference families with symmetric or skew base blocks.
Mathematics in Computer Science 12(4):373–388.

Ðoković, D. Ž. 1993. Good matrices of order 33, 35 and
127 exist. J. Combin. Math. Combin. Comput 14:145–152.

Ðoković, D. Ž. 2008. Skew-Hadamard matrices of or-
ders 188 and 388 exist. International Mathematical Forum
3(22):1063–1068.
Frigo, M., and Johnson, S. G. 2005. The design and imple-
mentation of FFTW3. Proceedings of the IEEE 93(2):216–
231.
Ganesh, V.; O’Donnell, C. W.; Soos, M.; Devadas, S.; Ri-
nard, M. C.; and Solar-Lezama, A. 2012. Lynx: A program-
matic SAT solver for the RNA-folding problem. In Interna-
tional Conference on Theory and Applications of Satisfiabil-
ity Testing, 143–156. Springer.
Georgiou, S.; Koukouvinos, C.; and Stylianou, S. 2002. On
good matrices, skew Hadamard matrices and optimal de-
signs. Comput. Statist. Data Anal. 41(1):171–184.

Heule, M. J.; Kullmann, O.; and Biere, A. 2018. Cube-
and-conquer for satisfiability. In Handbook of Parallel Con-
straint Reasoning. 31–59.
Heule, M. J.; Kullmann, O.; and Marek, V. W. 2016. Solving
and verifying the Boolean Pythagorean triples problem via
cube-and-conquer. In International Conference on Theory
and Applications of Satisfiability Testing, 228–245.
Heule, M. J. 2018. Schur number five. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, New Orleans, Louisiana, USA, February 2–7, 2018,
6598–6606.
Hunt, D. C. 1972. Skew-Hadamard matrices of order less
than 100. In Proceedings of the First Australian Conference
on Combinatorial Mathematics, 23–27.
Kotsireas, I. S.; Koukouvinos, C.; and Pardalos, P. M. 2010.
An efficient string sorting algorithm for weighing matrices
of small weight. Optimization Letters 4(1):29–36.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016. Exponential Recency Weighted Average Branching
Heuristic for SAT Solvers. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, 3434–3440.
Riel, J. 2006. NSOKS: A MAPLE script for writing n as a
sum of k squares.
Seberry, J. 1999. Library of good matrices. www.uow.edu.
au/~jennie/good.html.
Szekeres, G. 1988. A note on skew type orthogonal ±1 ma-
trices. In Combinatorics, Colloquia Mathematica Societatis,
Janos Bolyai, volume 52, 489–498.
Wallis, J. S. 1970. Combinatorial matrices. Ph.D. Disserta-
tion, La Trobe University.
Wallis, J. S. 1971. A skew-Hadamard matrix of order 92.
Bulletin of the Australian Mathematical Society 5:203–204.
Williamson, J. 1944. Hadamard’s determinant theorem
and the sum of four squares. Duke Mathematical Journal
11(1):65–81.
Zulkoski, E.; Bright, C.; Heinle, A.; Kotsireas, I. S.; Czar-
necki, K.; and Ganesh, V. 2017. Combining SAT solvers
with computer algebra systems to verify combinatorial con-
jectures. J. Autom. Reasoning 58(3):313–339.
Zulkoski, E.; Ganesh, V.; and Czarnecki, K. 2015. MATH-
CHECK: A math assistant via a combination of computer
algebra systems and SAT solvers. In Felty, A. P., and Mid-
deldorp, A., eds., Automated Deduction - CADE-25, volume
9195 of Lecture Notes in Computer Science. 607–622.
Zulkoski, E.; Ganesh, V.; and Czarnecki, K. 2016. MATH-
CHECK: A math assistant via a combination of computer
algebra systems and SAT solvers. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 4228–4233.

1442

