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A Nonconvex Projection Method for Robust PCA
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Abstract

Robust principal component analysis (RPCA) is a well-studied
problem whose goal is to decompose a matrix into the sum of
low-rank and sparse components. In this paper, we propose
a nonconvex feasibility reformulation of RPCA problem and
apply an alternating projection method to solve it. To the best
of our knowledge, this is the first paper proposing a method
that solves RPCA problem without considering any objective
function, convex relaxation, or surrogate convex constraints.
We demonstrate through extensive numerical experiments on a
variety of applications, including shadow removal, background
estimation, face detection, and galaxy evolution, that our ap-
proach matches and often significantly outperforms current
state-of-the-art in various ways.

Principal component analysis (PCA) (Jolliffee 2002) ad-
dresses the problem of best approximation of a matrix
A ∈ Rm×n by a matrix of rank r:

X∗ = arg min
X∈Rm×n

rank(X)≤r

∥A−X∥2F , (1)

where ∥ · ∥F denotes the Frobenius norm of matrices. The
solution to (1) is given by

X∗ = Hr(A)
def
= UΣrV

T , (2)

where A has singular value decompositions A = UΣV T ,
and Σr(A) is the diagonal matrix obtained from Σ by hard-
thresholding that keeps the r largest singular values only and
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replaces the other singular values by 0. In many real-world
problems, if sparse large errors or outliers are present in the
data matrix, PCA fails to deal with it. Therefore, it is natural
to consider a robust matrix decomposition model in which
we wish to decompose A into the sum of a low-rank matrix L
and an error matrix S: A = L+ S. However, without further
assumptions, the problem is ill-posed. We assume that the
error matrix S is sparse and that it allows its entries to have
arbitrarily large magnitudes. That is, given A, we consider
the problem of finding a low rank matrix L and a sparse
matrix S such that

A = L+ S. (3)

In this context, the celebrated principal component pursuit
(PCP) formulation of the problem uses the ℓ0 norm (cardinal-
ity) to address the sparsity constraint and (3). Therefore, PCP
is the constrained minimization problem (Candès et al. 2011;
Chandrasekaran et al. 2011):

min
L,S

rank(L) + λ∥S∥ℓ0 subject to A = L+ S, (4)

where λ > 0 is a balancing parameter. Since both rank(L)
and ∥S∥ℓ0 are non-convex, one often replaces the rank func-
tion by the (convex) nuclear norm and ℓ0 by the (convex)
ℓ1 norm. This replacement leads to the immensely popular
robust principal component analysis (RPCA) (Wright et al.
2009; Lin, Chen, and Ma 2010; Candès et al. 2011), which
can be seen as a convex relaxation of (4):

min
L,S

∥L∥∗ + λ∥S∥ℓ1 subject to A = L+ S, (5)

where ∥ · ∥∗ denotes the nuclear norm (sum of the singular
values) of matrices. Under some reasonable assumptions on
the low-rank and sparse components, (Chandrasekaran et al.
2011; Candès et al. 2011) showed that (4) can be provably
solved via (5). A vast literature is dedicated to solving the
RPCA problem, and among them the exact and inexact aug-
mented Lagrangian method of multipliers (Lin, Chen, and
Ma 2010), accelerated proximal gradient method (Wright et
al. 2009), alternating direction method (Yuan and Yang 2013),
alternating projection with intermediate denoising (Netrapalli
et al. 2014), dual approach (Lin et al. 2009), and SpaRCS
(Waters, Sankaranarayanan, and Baraniuk 2011) are a few
popular ones. Recently, Yi et al. (Yi et al. 2016), Zhang and
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Yang (Zhang and Yang 2017) proposed a manifold optimiza-
tion to solve RPCA. We refer the reader to (Bouwmans and
Zahzah 2014) for a comprehensive review of the RPCA al-
gorithms. However, besides formulation (5), other tractable
reformulations of (4) exist as well. For instance, by relaxing
the equality constraint in (4) and moving it to the objective
as a penalty, together with adding explicit constraints on
the target rank r and target sparsity s leads to the following
formulation (Zhou and Tao 2011):

minL,S ∥A− L− S∥2F
subject to rank(L) ≤ r and ∥S∥0 ≤ s. (6)

One can extend the above model to the case of partially
observed data that leads to the robust matrix completion
(RMC) problem (Chen et al. 2011; Tao and Yang 2011;
Cherapanamjeri, Gupta, and Jain 2017):

minL,S ∥PΩ(A− L− S)∥2F
subject to rank(L) ≤ r and ∥PΩ(S)∥0 ≤ s′, (7)

where Ω ⊆ [m]× [n] is the set of observed data entries, and
PΩ is the restriction operator defined by

(PΩ[X])ij =

{
Xij (i, j) ∈ Ω

0 otherwise.

We note that with some modifications, problem (6) is con-
tained in the larger class of problem presented by (7). We
also refer to some recent work on RMC problem or outlier
based PCA in (Cherapanamjeri, Jain, and Netrapalli 2017;
Cherapanamjeri, Gupta, and Jain 2017). An extended model
of (5) can also be referred to as a more general problem as
in (Tao and Yang 2011) (see problem (1.2) in (Tao and Yang
2011)). More specifically, when Ω = [m]× [n], that is, the
whole matrix is observed, then (7) is (6). One can also think
of the matrix completion (MC) problem as a special case of
(7) (Candès and Plan 2009; Jain, Netrapalli, and Sanghavi
2013; Cai, Candès, and Shen 2010; Jain and Netrapalli 2015;
Candès and Recht 2009; Keshavan, Montanari, and Oh 2010;
Candès and Tao 2010; Mareček, Richtárik, and Takáč 2017).
For MC problems, S = 0. Therefore, (7) is a generalization
of two fundamental problems: RPCA and RMC.

Contributions. We solved the RPCA and RMC problems
by addressing the original decomposition problem (3) di-
rectly, without introducing any optimization objective or sur-
rogate constraints. This is a novel approach because we aim
to find a point at the intersection of three sets, two of which
are non-convex. We formulate both RPCA and RMC as set
feasibility problems and propose alternating projection algo-
rithm to solve them. This leads to Algorithm 2 and 3. Our
approach is described in the next section. We also propose a
convergence analysis of our algorithm.

Our feasibility approach does not require one to use the
hard to interpret parameters (such as λ) and surrogate func-
tions (such as the nuclear norm, or ℓ1 norm) which makes
our approach unique compared to existing models. Instead,
we rely on two direct parameters: the target rank r and the
desired level of sparsity s. By performing extensive numeri-
cal experiments on both synthetic and real datasets, we show
that our approach can match or outperform state-of-the-art

methods in solving the RPCA and RMC problems. More
precisely, when the sparsity level is low, our feasibility ap-
proach can viably reconstruct any target low rank, which
the RPCA algorithms can not. Moreover, our approach can
tolerate denser outliers than can the state-of-the-art RPCA
algorithms when the original matrix has a low-rank structure
(see details in the experiment section). These attributes make
our approach attractive to solve many real-world problems
because our performance matches or outperforms that of
state-of-the-art RPCA algorithms in solution quality, and do
this in comparable or less time.

Nonconvex Feasibility and Alternating
Projections

Set feasibility problem aims to find a point in the intersection
of a collection of closed sets, that is:

Find x ∈ X where X def
= ∩m

i Xi ̸= ∅, (8)

for closed sets Xi. Usually, sets Xis are assumed to be simple
and easy to project on. A special case of the above setting for
convex sets Xi is the convex feasibility problem and is already
well studied. In particular, a very efficient convex feasibility
algorithm is known as the alternating projection algorithm
(Kaczmarz 1937; Bauschke and Borwein 1996), in which
each iteration picks one set Xi and projects the current iterate
on it. There are two main methods to choosing the sets Xi –
traditional cyclic method and randomized method (Strohmer
and Vershynin 2009; Gower and Richtárik 2015; Necoara,
Richtárik, and Patrascu 2018), and in general, randomized
method is faster and not vulnerable to adversarial set order.

We also note that the alternating projection algorithm for
convex feasibility problem does not converge in general to
the projection of the starting point onto X , but rather finds
a close-to feasible point in X , except the case when Xis
are affine spaces. However, once an exact projection onto
X is desired, Dykstra’s algorithm (Boyle and Dykstra 1986)
should be applied.

Algorithm 1: Alternating projection method for set fea-
sibility

1 Input :Πi(·) – Projector onto Xi for each
i ∈ {1, . . .m}, starting point x0

2 for k = 0, 1, . . . do
3 Choose via some rule i (e.g., cyclically or randomly)
4 xk+1 = Πi(xk)

end
5 Output :xk+1

On the other hand, for general nonconvex sets Xi, pro-
jection algorithms might not converge. In some special
settings, some forms of convergence (for example, local
convergence) can be guaranteed even without convexity
(Lewis and Malick 2008; Lewis, Luke, and Malick 2009;
Hesse and Luke 2013; Drusvyatskiy, Ioffe, and Lewis 2015;
Pang 2015).

1469



Set feasibility for RPCA
In this scope, we define α-sparsity as it appears in the last
convex constraint X3. We do it so that our approach is directly
comparable to the approaches from (Yi et al. 2016; Zhang
and Yang 2017). However, we note that the ℓ0-ball constraint
can be applied as well.

Definition 1 (α-sparsity). A matrix S ∈ Rm×n is consid-
ered to be α-sparse if each row and column of S contains at
most αn and αm nonzero entries, respectively. That is, the
cardinality of the support set of each row and column of the
matrix S do not exceed αn and αm, respectively. Formally,
we write

∥S(i,.)∥0 ≤ αn and ∥S(.,j)∥0 ≤ αm for all i ∈ [m], j ∈ [n],

where ith row and jth column of S are S(i,.) and S(.,j),
respectively.

Now we consider the following reformulation of RPCA:

Find M
def
= [L, S] ∈ X def

= ∩3
i=1Xi ̸= ∅, (9)

where

X1
def
= {M |L+ S = A} (10)

X2
def
= {M | rank(L) ≤ r}

X3
def
= {M | ∥S(i,.)∥0 ≤ αn and ∥S(.,j)∥0 ≤ αm

for all i ∈ [m], j ∈ [n].}

Clearly, X1 is convex, but X2 and X3 are not. Neverthe-
less, the algorithm we propose – alternating Frobenius norm
projection on Xi performs well to solve RPCA in practice.
To validate the robustness of our algorithm, we compare our
method to other state-of-the-art RPCA approaches on vari-
ous practical problems. We also study the local convergence
properties and show that despite the non-convex nature of the
problem, the algorithms we propose often behave surprisingly
well.

The Algorithm
Denote Πi to be projector onto Xi. Note that Π2 does not
include S and projection onto Π3 does not include L. Con-
sequently, Π2Π3 is a projector onto X2 ∩ X3. Because our
goal is to find a point at the intersection of two sets, we
shall employ a cyclic projection method (note that random-
ized method does not make sense). Indeed, steps 4 and 5 of
Algorithm 2 perform projection onto X1, step 6 performs
projection onto X2, and finally, step 7 performs projection
onto X3. Later in this section we describe the exact imple-
mentation and prove correctness the steps mentioned above.
Lastly, we propose a similar algorithm to solve the RMC
problem (7) in Appendix (Algorithm 3). Finally, we provide
a local convergence of Algorithm 2, which depends on the
local geometry of the optimal point, and is mostly linear,
which we prove later.

Projection on the linear constraint. The next lemma pro-
vides an explicit formula for the projection onto X1, which
corresponds to steps 4 and 5 of Algorithm 2.

Algorithm 2: Alternating projection method for RPCA
1 Input :A ∈ Rm×n (the given matrix), rank r,

sparsity level α ∈ (0, 1]
2 Initialize :L0, S0

3 for k = 0, 1, . . . do
4 L̃ = 1

2 (Lk − Sk +A)

5 S̃ = 1
2 (Sk − Lk +A)

6 Lk+1 = Hr(L̃)

7 Sk+1 = Tα(S̃)
end

8 Output :Lk+1, Sk+1

Lemma 1. Solutions to

min
L,S

∥L− L0∥2F + ∥S − S0∥2F subject to L+ S = A

is L∗ = 1
2 (L0 − S0 +A) and S∗ = 1

2 (S0 − L0 +A).

Projection on the low rank constraint. Consider L(r) to
be the projection of L onto the rank r constraint, that is,

L(r) = argmin
L′

∥L′ − L∥F subject to rank(L′) ≤ r.

It is known that L(r) can be computed as r-SVD of L.
Fast r-SVD solvers has improved greatly in recent years
(Halko, Martinsson, and Tropp 2011; Musco and Musco
2015; Shamir 2015; A.-Zhu and Li 2016). Unfortunately, the
most recent approaches (Shamir 2015; A.-Zhu and Li 2016)
were not applied in our setting because they are inefficient;
they need to compute LL⊤ (or L⊤L), which is expensive.
Instead, we use block Krylov approach from (Musco and
Musco 2015). For completeness, we quote the algorithm in
Appendix. Regarding the computational complexity, it was
shown that block Krylov SVD outputs Z satisfying ∥L −
ZZ⊤L∥F ≤ (1 + ϵ̃)∥L− L(r)∥F in

O
(
∥L∥0

r log n√
ϵ̃

+
mr2 log2 n

ϵ̃
+

r3 log3 n

ϵ̃3/2

)
flops. Therefore, projection on the low-rank constraint is not
an issue for relatively small rank r.

Projection on sparsity constraint. Projection onto X3

simply keeps the α-fraction of the largest elements in ab-
solute value in each row and column and set the rest to zero.
One can use a global hard-thresholding operator that consid-
ers ℓ0 constraint on the entire matrix. Instead, we proposed
an operator Tα(·). Indeed, Tα(·) does not perform an explicit
Euclidean projection onto X3. Instead, it performs a projec-
tion onto a certain subset of X3 and this is clear from the
definition (11) (the subset is defined through support Ωα).
Formally, we define:

Tα[S]
def
= PΩα

(S) ∈ Rm×n : (i, j) ∈ Ωαif

|Sij | ≥ |S(αn)
(i,.) | and |Sij | ≥ |S(αm)

(.,j) |, (11)
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Figure 1: Phase transition diagram for RPCA F, iEALM, APG, and GoDec with respect to rank and error sparsity. Here,
ρr = rank(L)/m and α is the sparsity measure. We have (ρr, α) ∈ (0.025, 1] × (0, 1) with r = 5 : 5 : 200 and α =
linspace(0, 0.99, 40). We perform 10 runs of each algorithm.
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Figure 2: Phase transition diagram for Relative error for RMC problems: (a) |ΩC | = 0.5(m.n), (b) |ΩC | = 0.75(m.n),
(c) |ΩC | = 0.9(m.n). Here, ρr = rank(L)/m and α is the sparsity measure. We have (ρr, α) ∈ (0.025, 1] × (0, 1) with
r = 5 : 25 : 200 and α = linspace(0, 0.99, 8).

where S
(αn)
(i,.) and S

(αm)
(.,j) denote the α fraction of largest en-

tries of S along the ith row and jth column, respectively. This
allows us to inexpensively compute an approximate projec-
tion onto X3 which works well in practice. Remarkably, this
does not affect our theoretical results (which are formulated
for exact projection onto X3) in any way. We note that the
operator Tα(·) is similar to that defined in (Yi et al. 2016;
Zhang and Yang 2017). Projection on sparsity constraint (11)
can be implemented in O(nd) time: for each row and each
column we find αn-th largest element (or αd) and simul-
taneously (for other rows/columns) mask the rest. In our
experiments, we use fast implementation of n-th element
computation from (Li 2013).
Remark 1. One may use the Douglas-Rachford operator split-
ting method (Artacho, Borwein, and Tam 2016) as an alter-
native to the nonconvex projections. We leave this for future
research.

Convergence Analysis
In this section, we establish a local convergence analysis of
our algorithm by using the basic properties of the alternating
projection algorithm (Lewis and Malick 2008). A similar
analysis was done for GoDec (Zhou and Tao 2011), although
Algorithm 2 is vastly different compare to GoDec (we report
detailed comparison of these algorithms in Appendix).

Recall that Algorithm 1 performs an alternating projection
of [L, S] on the sets X1 and X∩

def
= X2 ∩ X3 defined in (10).

Before stating the convergence theorem, let us define a (local)
angle between sets.
Definition 2. Let a point p be in the intersection of set bound-
aries ∂K and ∂L. Define c(K,L, p) be the cosine of an angle
between sets K and L at point a p as:

c(K,L, p)
def
= cos∠(∂K⊤|p, ∂L⊤|p),

where ∂K⊤|p denotes a tangent space of set boundary ∂K
at p and ∠ returns the angle between subspaces given as
arguments. As a consequence, we have 0 ≤ c(K,L, p) ≤ 1.

Let us also define dX1∩X∩(x) to be an Euclidean distance
of a point x to the set X1 ∩ X∩.
Theorem 3. (Lewis and Malick 2008) Suppose that [L̄ S̄] ∈
∂(X1 ∩ X∩). Given any constant c ∈ R such that c >
c(X1,X∩, [L̄ S̄]) there is a starting point [L0 S0] close
to [L̄ S̄] such that the iterates Lk, Sk of Algorithm 2 satisfy

dX1∩X∩([Lk Sk]) < ckdX1∩X∩([L0 S0]).

Remark 2. From Theorem 3 it is clear that the smaller
c(X1,X∩, [L̄ S̄]) produces a faster convergence, while
c(X1,X∩, [L̄ S̄]) = 1 can stop the convergence, as described
in Example 2 in Appendix.
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BG+FG Ours RPCA GD iEALM Ours FG RPCA GD FG iEALM FGAPG APG FG

Figure 3: Background and foreground separation on Stuttgart dataset Basic video. Except RPCA GD and our method, all other
methods fail to remove the static foreground object.

Image:550

BG+FG
(subsampled)

Ours RPCA GD     GRASTA Ours FG RPCA GD FG GRASTA FG

Figure 4: Background and foreground separation on Stuttgart dataset Basic video. We used 90% sample. GRASTA forms a
fragmentary background and exhausts around 540 frames to form a stable video. We also note that RPCA GD has more false
positives in the foreground.

Remark 3. Theorem 3 is stated for Algorithm 2, however,
one can easily obtain an equivalent result for Algorithm 3 as
well.
Remark 4. Considering the nuclear norm relaxation instead
of low rank constraint and ℓ1 norm relaxation instead of
sparsity constraint, the set X∩ becomes convex, and thus the
whole problem becomes convex as well. Therefore, Algo-
rithms 2 and 3 converge globally.

For completeness, we also derive the exact form of tangent
spaces of X1,X∩ mentioned in Definition 2. Suppose that
rank(L̄) = r, and S̄ is a matrix of maximal sparsity, that is,
S̄ ∈ X3 while S̄ + S′ ̸∈ X3 s.t. ∥S′∥ = 1 and ∥S̄ + S′∥0 =
∥S̄∥0+1. The tangent spaces of ∂X1 and ∂X∩ at point [L̄ S̄]
are given by

∂X⊤
1 |[L̄ S̄] = X1

∂X⊤
∩ |[L̄ S̄] = ∂X⊤

2 |L̄ × ∂X⊤
3 |S̄ ,

where

∂X⊤
2 |L̄ = {L̃| L̃ = L̄+ ŨΣ̃Ṽ ⊤, Ũ⊤Ũ = Ṽ ⊤Ṽ = I,

Ū⊤Ũ = 0, V̄ ⊤Ṽ = 0, Σ̃ = diag Σ̃}
∂X⊤

3 |S̄ = {S̃| S̃ = S̄ + S′, S′
i,j = 0 ∀(i, j) s.t. S̄i,j = 0}.

Later in Appendix, we also empirically show that:

1. Convergence speed is not significantly influenced by start-
ing point.

2. Convergence is usually fastest for small true sparsity level
α and small true rank r, which is the situation in many
practical applications.

3. Convergence of Algorithm 3 is slower for medium sized
number of observable entries, that is, when |Ω| ≈ 0.5(m ·
n), and faster for smaller and bigger sizes.

4. If sparsity and rank levels (α and r) are set to be smaller
than their true values at the optimum incorrectly, Algo-
rithm 2 does not converge (as in this case, ∩Xi might not
exist). Moreover, the performance of the algorithm is sen-
sitive to the choice of r, and this is particularly so if we
underestimate the true value (see Figure 8 in Appendix).
Finally, in Appendix we give two examples for the convex

version of the problem (9) with the same block structure; in
them, the alternating projection algorithm either converges
extremely fast or does not even converge linearly.

Numerical experiments
To explore the strengths and flexibility of our feasibility ap-
proach, we performed numerical experiments. First, we work
with synthetic data and subsequently apply our method to
four real-world problems.

Results on synthetic data
To perform our numerical simulations, first, we construct
the test matrix A. We follow the seminal work of Wright
et al. (Wright et al. 2009) to design our experiment. To this
end, we construct A as a low-rank matrix, L, corrupted by
sparse large noise, S, with arbitrary large entries such that
A = L+ S. We generate L as a product of two independent
full-rank matrices of size m × r whose elements are inde-
pendent and identically distributed (i.i.d.) N (0, 1) random
variables and rank(L) = r. We generate S as a noise matrix
whose elements are sparsely supported by using the operator
(11) and lie in the range [−500, 500]. We fix m = 200 and
define ρr = rank(L)/m where rank(L) varies. We choose
the sparsity level α ∈ (0, 1). For each pair of (ρr, α) we ap-
ply iEALM, APG, GoDec, and our algorithm to recover the
pair (L̂, Ŝ) such that Â = L̂+ Ŝ be the recovered matrix. For
both APG and iEALM, we set λ = 1/

√
m and for iEALM

we use µ = 1.25/∥A∥2 and ρ = 1.5, where ∥A∥2 is the
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spectral norm (maximum singular value) of A. For GoDec
we set q = 2. If the recovered matrix pair (L̂, Ŝ) satisfies
the relative error ∥L−L̂∥F+∥S−Ŝ∥F

∥A∥F
< 0.01 then we consider

the construction is viable. In Figure 1 we show the fraction
of perfect recovery, where white denotes success and black
denotes failure. As mentioned in (Wright et al. 2009), the suc-
cess of APG is approximately below the line ρr + α = 0.35.
as that of APG; and GoDec only recovers the matrices with
low sparsity level. To conclude, when the sparsity level α is
low, our feasibility approach can provide a feasible recon-
struction for any ρr. We note that for low sparsity level, the
RPCA algorithms can only provide a feasible reconstruction
for ρr ≤ 0.4. On the other hand, for low ρr, our feasibility
approach can tolerate sparsity level approximately up to 63%.
In contrast, RPCA algorithms can tolerate sparsity up to 50%
for low ρr. Therefore, taken together, we can argue that our
method can be proved useful to solve real-world problems
when one wants to recover a moderately sparse matrix having
any inherent low-rank structure present in it or in case of a
low-rank matrix corrupted by dense outliers of arbitrary large
magnitudes.

Results on synthetic data: RMC problem
We used a similar technique as that used in the previous
section to generate the test matrix A. We fixed m = 200
and denote ρr and α same as previously. We randomly se-
lect the set of observable entries in A. We compare our
method against the RPCA gradient descent (RPCA GD)
by Yi et al. (Yi et al. 2016) and use the relative error for
the low-rank component recovered as performance mea-
sure, that is, if ∥L − L̂∥F /∥L∥F < ϵ̃ then we consider
the construction is viable. Note that L is the original low-
rank matrix and that L̂ is the low-rank matrix recovered. For
|ΩC | = 0.5(m.n), 0.75(m.n), and 0.9(m.n) we consider
ϵ̃ = 0.2, 0.6, and 1, respectively. In Figure 2, for the phase
transition diagram white denotes success and black denotes
failure. From Figure 2 we observe that irrespective of the
cardinalities of the set of the observed entries, our feasibil-
ity approach outperforms RPCA GD. Interestingly, as the
cardinality of the set of the observable entries, that is, |Ω|
decreases, the performance of our feasibility approach im-
proves (see Figure 2c). We compare these two methods with
respect to the root mean square error (RMSE) (reported in
Appendix).

Applications to real-world problem
In this section we demonstrate the robustness of our feasibil-
ity approach to solving four classic real-world problems: (i)
background and foreground estimation from fully and par-
tially observed data, (ii) shadow removal from face images
captured under varying illumination and camera position, (iii)
inlier subspace detection, (iv) processing astronomical data.

Background and foreground estimation from fully ob-
served data. In the past decade, one of the most prevalent
approaches used to solve background estimation problem has
been treated by most approaches as a low-rank and sparse ma-
trix decomposition problem (Bouwmans et al. 2017; Sobral

and Vacavant 2014; Dutta et al. 2017; Mateos and Gian-
nakis 2012; Wang et al. 2012; He, Balzano, and Szlam 2012;
Xu et al. 2013; Dutta 2016; Dutta, Li, and Richtárik 2017;
Dutta, Li, and Richtárik 2018; Dutta and Li 2017). In the
case of a sequence of n video frames whose each frame is
mapped into a vector ai ∈ Rm, i = 1, 2, ..., n, the data ma-
trix A ∈ Rm×n in the collection of all the frame vectors is
expected to be split into L+S. This idea led researchers to in-
troduce RPCA (Candès et al. 2011; Lin, Chen, and Ma 2010;
Wright et al. 2009) in which they consider the background
frames, L, to have a low-rank structure and the foreground, S,
to be sparse. The convex relaxation of the problem is (5). For
simulations, we used the Basic sequence of the Stuttgart
artificial dataset (Brutzer, Höferlin, and Heidemann 2012).
Also, we compare our methods against inexact augmented
Lagrange methods of multiplier (iEALM) of Lin et al. (Lin,
Chen, and Ma 2010), accelerated proximal gradient (APG)
of Wright et al. (Wright et al. 2009), and RPCA GD. We
downsampled the video frames to a resolution of 144× 176
and for iEALM we use µ = 1.25/∥A∥2 and ρ = 1.5. For
both APG and iEALM we set λ = 1/

√
max{m,n}. For

RPCA GD and our method we use target rank r = 2, sparsity
α = 0.1. The threshold ϵ for all methods are kept to 2×10−4.
The qualitative analysis of the background and foreground
recovered on the sample frame of the Basic sequence in
Figure 3 suggests that our method and RPC GD recover a
visually better quality background and foreground than can
the other methods. We also note that RPCA GD recovers a
foreground with more false positives than can our method
and iEALM and APG cannot remove the static foreground
object.

Background and foreground estimation from partially
observed data. We randomly select the set of observ-
able entries in the data matrix A and tested our algorithm
against Grassmannian Robust Adaptive Subspace Track-
ing Algorithm (GRASTA) (He, Balzano, and Szlam 2012)
and RPCA GD. In Figure 4, we demonstrate the perfor-
mance on the Basic sequence of the Stuttgart dataset with
|Ω| = 0.9(m.n). The parameters for our algorithm and
RPCA GD are set as the same as those used in the previ-
ous section. For GRATSA we set the parameters the same as
those mentioned in the authors’ website1. Our comparison
of the performance by different algorithms on a subsampled
frame in Figure 4 shows that RPCA GD and our approach
can reconstruct the background the best. However, when com-
pared with the foreground ground truth, our method has a
better quantitative measure because RPCA GD has a higher
number of false positives in the foreground (see Figure 6).
Next, we define the metric ϵ–proximity, that is, dϵ(X,Y ).

ϵ-proximity metric. Let X = (X1, . . . , Xn) and y =
(Y1, . . . , Yn) be two video sequences (reconstructed fore-
ground and ground truth foreground), where Xi, Yi ∈ Rm

are vectors corresponding to frame i, each containing m pix-
els. We scale all pixel values to [0, 1]. To compare the video

1https://sites.google.com/site/hejunzz/grasta
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Figure 5: Shadow and specularities removal from face images captured under varying illumination and camera position. Our
feasibility approach provides comparable reconstruction to that of iEALM and APG.
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Figure 6: Quantitative comparison of foreground recovered
by RPCA F and RPCA GD on Basic video, frame size
144× 176 with observable entries: (a) |Ω| = 0.9(m.n), (b)
|Ω| = 0.8(m.n). The performance of RPCA GD drops sig-
nificantly as |Ω| decreases. In contrast, the performance of
RPCA F stays stable irrespective of the size of |Ω|. See Ap-
pendix for description of the metric dϵ(X,Y ).

sequences, we define an ϵ–proximity of X and Y as

dϵ(X,Y )
def
=

1

nm

n∑
i=1

m∑
k=1

dϵ(Xik, Yik),

where

dϵ(u, v)
def
=

{
1 |u− v| ≤ ϵ,

0 otherwise,

and ϵ ∈ [0, 1] is a threshold. Clearly, 0 ≤ dϵ(X,Y ) ≤ 1, ϵ ↦→
dϵ(X,Y ) is increasing, and d1(X,Y ) = 1. If dϵ(X,Y ) = α,
then α× 100% of pixels in the recovered video are within ϵ
distance, in absolute value, from the ground truth. We used
ϵ–proximity to plot results in Figure 6 and more quantitative
results by using different |Ω| in Appendix.

Removal of shadows. The images of a face exposed to
a wide variety of lighting conditions can be approximated
accurately by a low-dimensional linear subspace. More
specifically, the images under distant, isotropic lighting lie
close to a 9-dimensional linear subspace which is known
as the harmonic plane (Basri and Jacobs 2003). We used
the Extended Yale Face Database for our experi-
ments (Georghiades, Belhumeur, and Kriegman 2001). We

compared iEALM, APG, and RPCA GD against our al-
gorithm. We downsampled each image to a resolution of
120 × 160 and use 63 images of a subject in each test. For
APG and iEALM, the same parameters as those used previ-
ously were set. For RPCA GD and our method, we set the
target rank r = 9 and sparsity level α = 0.1. The qualitative
analysis on the recovered images shows that image recon-
struction obtained by our feasibility approach is comparable
to that by iEALM and APG (see Figure 5). In contrast, the
visual quality of the images of a face reconstructed by RPCA
GD are poor.

Further experiments. Due to the limitation of the space,
we show many of our experimental results in Appendix. First,
on synthetic data, we empirically validate the sensitivity of
Algorithm 2 with respect to the initialization, the choices of r,
and sparsity level α; and the effect of the cardinality of Ω for
Algorithm 3. Next, for quantitative experiments on partially
observed background estimation, we incorporate more results
for different values of |Ω| by using the ϵ–proximity metric.
Finally, we perform experiments on inlier face detection and
galaxy evolution and show the qualitative and quantitative
results.

Conclusion
In this paper, we proposed a simplistic and novel approach to
solving the classic RPCP and RMC problems. We considered
an alternating projection algorithm based on the set feasi-
bility approach to solve these problems in their crude form,
without considering any further heuristics, such as loss func-
tions, convex and surrogate constraints. Also, we proposed a
convergence analysis of our method; we also investigated the
convergence through numerical simulations on synthetic and
real-world data and extensively compared with the current
state-of-the-art methods. Our feasibility approach can open
a new direction of potential research on online algorithms
based on RPCA framework (Rodriguez and Wohlberg 2016;
He, Balzano, and Szlam 2012; Xu et al. 2013) that are vastly
used in key areas, including video analysis, segmentation,
subspace detection.
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