
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Solving Integer Quadratic
Programming via Explicit and Structural Restrictions

Eduard Eiben,1 Robert Ganian,2 Dušan Knop,3 Sebastian Ordyniak4

1Department of Informatics, University of Bergen, Norway
2Algorithms and Complexity group, Vienna University of Technology, Austria

3Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
4Algorithms group, University of Sheffield, UK

eduard.eiben@uib.no, rganian@gmail.com, dusan.knop@gmail.com, sordyniak@gmail.com

Abstract

We study the parameterized complexity of Integer Quadratic
Programming under two kinds of restrictions: explicit restric-
tions on the domain or coefficients, and structural restric-
tions on variable interactions. We argue that both kinds of
restrictions are necessary to achieve tractability for Integer
Quadratic Programming, and obtain four new algorithms for
the problem that are tuned to possible explicit restrictions
of instances that we may wish to solve. The presented algo-
rithms are exact, deterministic, and complemented by appro-
priate lower bounds.

Introduction
Integer Quadratic Programming (IQP) is a powerful
paradigm for solving computationally intractable optimiza-
tion problems. Indeed, the use of IQP encodings has found
numerous applications in artificial intelligence for settings
which are not well-suited to the simpler Integer Linear Pro-
gramming (ILP) paradigm, with examples including En-
ergy Disaggregation (Shaloudegi et al. 2016), Game The-
ory (Aziz et al. 2018; Iwashita et al. 2016) and Match-
ing (Wang and Ling 2016).

In spite of the close connection between the prob-
lems, IQP—i.e., the task of maximizing a quadratic func-
tion over integer variables subject to linear constraints—
is known to be a substantially more difficult problem than
ILP. For instance, while maximizing a linear function over
unconstrained integer variables is a trivial task, already
this initial problem becomes NP-hard when we consider
quadratic functions—even if the domains of the variables are
Boolean (Murty and Kabadi 1987). It is a major open prob-
lem whether there exists a polynomial time algorithm for
IQP over a constant number of variables, i.e., whether one
can generalize Lenstra’s celebrated result (Lenstra, Jr. 1983)
on ILP to the quadratic setting. Until recently, the problem
was not even known to be in NP (Del Pia, Dey, and Moli-
naro 2017) and the first polynomial-time algorithm for IQP
over two variables was given in 2014 (Del Pia and Weisman-
tel 2014). In 2015, Lokshtanov made substantial progress in
this direction by obtaining an analogue of Lenstra’s algo-
rithm for IQP when additionally restricting the coefficients

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that occur in the instance (Lokshtanov 2015)1. It is impor-
tant to note that the above results consider the total number
of variables which occur in the instance, i.e., including vari-
ables which do not occur in the objective function.

The aim of this work is to obtain an understanding of the
fine-grained complexity of IQP, and notably to map the con-
ditions under which this notoriously difficult problem be-
comes tractable. In principle, there are two prominent kinds
of properties which could potentially be exploited to solve
IQP efficiently:
1. Explicit properties of the instance, notably bounding the

domain and/or the coefficients;
2. Structural properties of the instance, aimed at capturing

the interactions between variables and/or constraints.
So far, the tractability of IQP has been explored primar-

ily through the lens of the explicit properties listed above,
but we are not aware of many results which would ex-
ploit the latter, structural properties. This contrasts with
the recent developments for ILP, which saw the introduc-
tion of several new algorithms and lower bounds that take
into account the specific properties of variable-variable and
variable-constraint interactions in instances (Ganian, Ordy-
niak, and Ramanujan 2017; Dvořák et al. 2017; Ganian and
Ordyniak 2018; Eiben et al. 2018; Jansen and Kratsch 2015;
Koutecký, Levin, and Onn 2018). In all of these works,
the authors captured the way variables interacted with each
other via constraints through suitably defined graph repre-
sentations, and the primary research question was to identify
natural properties of these graphs (formalized via a struc-
tural parameter—an integer k) which allow an instance of
size n to be solved in time f(k) ·nO(1) for some computable
function k. Note that this goal represents a stronger and more
fine-grained notion of tractability than merely polynomial-
time solvability for each fixed value of k; in particular, al-
gorithms with running time of this form are called fixed-
parameter algorithms and are central to the parameterized
complexity paradigm (Cygan et al. 2013; Niedermeier 2006;
Flum and Grohe 2006; Downey and Fellows 2013).

1We remark that Lokshtanov’s paper is, as of this time, only
a preprint. That being said, the result is well known by now
and considered to be correct, and has already been accepted and
used in published papers by leading researchers (Aziz et al. 2018;
Crampton et al. 2017)

1477

Our Results. In this work, we initiate the study of IQP
through the lens of structural parameters that capture inter-
actions between variables. Our results include new fixed-
parameter algorithms and matching lower bounds for IQP
instances under a varied and comprehensive set of condi-
tions.

Before describing our main results, we note that
on their own, neither structural parameters (such
as the treewidth (Robertson and Seymour 1983) or
treedepth (Nešetřil and de Mendez 2012) of graph repre-
sentations for IQP instances) nor explicit restrictions (the
domain and/or the coefficients) can lead to natural and
interesting tractable classes of IQP instances. To argue the
former case, it suffices to refer to the lower bounds that are
known already for ILP instances—even in that simpler set-
ting, structural parameters must always be accompanied by
explicit restrictions of either the domain or the coefficients.

As for the latter, consider the following. On one hand, IQP
(as well as ILP) remains NP-hard even when all coefficients
in the instance are 1 and all domains are Boolean (Ganian
and Ordyniak 2018) and even when there is no objective
function. On the other hand, IQP is known to remain NP-
hard even when there are no constraints and all the domains
of all variables are Boolean. In our first result, we strengthen
the latter lower bound to the case where all domains and
coefficients are bounded by a constant.

The above lower bounds (and especially the latter one)
have critical implications for our endeavor. Indeed, they
clearly show that any structural parameters which we hope
to use to efficiently solve IQP must restrict both the ob-
jective function and the constraints; in contrast, for ILP
it is often sufficient to use structural parameters merely
for restricting the constraints (Ganian, Ordyniak, and Ra-
manujan 2017; Dvořák et al. 2017; Eiben et al. 2018;
Jansen and Kratsch 2015; Koutecký, Levin, and Onn 2018).
With this insight, we can now proceed to a high-level de-
scription of our results, divided into four settings based on
explicit restrictions of instances (a quick glance of our re-
sults is also presented in Table 1).

Setting 1: Bounded Coefficients. Our main result for this
setting is a fixed-parameter algorithm for IQP parameter-
ized by (a) the maximum coefficient, (b) the arity of the ob-
jective function, and (c) the treedepth of the primal graph
representation of the instance. This result can be seen as a
generalization of the aforementioned algorithm of Loksh-
tanov (Lokshtanov 2015) to instances with a large number
of variables that do not occur in the objective function. At
the same time, it also extends the recent fixed-parameter
algorithm for ILP parameterized by (a) and (c) (Koutecký,
Levin, and Onn 2018) to IQP (at the cost of requiring pa-
rameterization by (b)). The result is complement by lower
bounds which show that neither (a) nor (b) can be dropped,
and (c) cannot be weakened to the less restrictive parameter
treewidth.

Setting 2: Bounded Domain. For this setting, we introduce
the mixed primal graph—a novel graph representation for
IQP instances which captures variable-variable interactions
that occur via the constraints and also through the objective

function. Our main result is then a fixed-parameter algorithm
not only for IQP, but even for the more general Integer Pro-
gramming problem which allows arbitrary polynomials in
constraints and the objective function. The algorithm is pa-
rameterized by the treewidth of the mixed primal graph and
the maximum domain; as before, we show that neither of
these two parameters can be dropped in order to maintain
tractability.
Setting 3: Hybrid Restrictions. Next, we consider IQP in-
stances where some variables have bounded coefficients (as
in setting 1), while the rest have bounded domain (as in set-
ting 2). Such instances cannot be handled by either of the
algorithms presented above. We will show that structural re-
strictions can still help us obtain rigorous fixed-parameter
algorithms. To do so, we introduce and use the hybrid pri-
mal graph, a representation which also captures “indirect”
variable dependencies enabled by the combined presence of
high-domain and high-coefficient variables. Our result for
this setting is then a fixed-parameter algorithm for IQP pa-
rameterized by the treewidth of this graph plus the bounds
in the hybrid restrictions.
Setting 4: Unary IQP. In our final setting, we turn to
the case where neither the coefficients nor the domain are
bounded by a parameter, but the whole instance (including
full domain bounds) is encoded in unary. While it is not fea-
sible to aim for fixed-parameter tractability under such gen-
eral conditions, we show that the problem can be solved in
polynomial time when the treewidth of the mixed incidence
graph is bounded by a constant. The mixed incidence graph
is based on the same idea as the mixed primal graph used
in Setting 2, but builds on the more expressive incidence
graph representation used, among others, for ILPs (Ganian,
Ordyniak, and Ramanujan 2017). This algorithm is also es-
sentially optimal, as can be shown via complementary lower
bounds established already for the ILP setting.

Setting Representation Param. Complexity
Bd. coef. Primal td∗ FPT
Bd. domain Mixed Primal tw FPT
Hybrid Hybrid Primal tw FPT
Unary Mixed Incidence tw XP

Table 1: An outline of the algorithmic results obtained in
this paper. Parameterization “td∗” stands for treedepth and
the arity of the objective function, while “tw” stands for
treewidth. XP is the class of problems that can be solved
in polynomial time for each fixed value of the parameter.

Preliminaries
Integer Quadratic Programming
Formally, we view an instance I of INTEGER QUADRATIC
PROGRAMMING (IQP) as a tuple (F , η) where F is a set of
linear integer inequalities over variables X = {x1, . . . , xn}
and η is an integer quadratic polynomial over X , i.e., η con-
tains integer (and non-zero) multiples of terms such as x1,
x2
1, and x1·x2. Inequalities in F are called constraints, where

1478

each constraint A ∈ F ranges over variables var(A), is said
to have arity |var(A)| = ℓ, and is assumed to be of the form
cA,1xA,1 + cA,2xA,2 + · · ·+ cA,ℓxA,ℓ ≤ bA; we also define
var(I) = X . Similarly, var(η) is the set of variables which
occur in at least one term in η.

Constraints A ∈ F such that |var(A)| = 1 are called box
constraints, and the domain of a variable x ∈ X is the set of
all integers z such that x ↦→ z satisfies all domain constraints
of x. We denote by dom(x) the maximum absolute value in
the domain of x.

We will generally use the term coefficients to refer to num-
bers that occur in F and η. The maximum coefficient in I is
then the largest absolute value of an integer that occurs in I,
i.e., the maximum number |z| such that z is either the right-
hand side of an inequality in A ∈ F , a multiple of a variable
in A ∈ F , or a multiple of a quadratic term in η. We also
use the terms left-hand side and right-hand side coefficient
to refer to the coefficients occurring on the left respectively
right side of an inequality in F . Similarly, the maximum co-
efficient of a variable x ∈ X , denoted coef(x), is the largest
absolute value of an integer that multiplies x in a constraint
or a term containing x in η.

We say that an IQP instance I has unary domain if the
domain of all variables is finite and all box constraints are
encoded in unary. Moreover, we say that I has unary coeffi-
cients if all coefficients are encoded in unary.

Example 1. Let I = (F , η) be the following IQP instance
on the variables x1, x2, x3, and x4:

maximize −5x2
1 − 2019x2 + 3x2x3

subject to 3x1 − 7x2 ≤ 12 (C1)
3x3 − 4x4 ≤ 10 (C2)

−2 ≤ x1 ≤ 3

−3 ≤ x2 ≤ 6

−4 ≤ x4 ≤ 0

Then dom(x1) = 3, dom(x2) = 6, dom(x3) = ∞, and
dom(x4) = 4. The maximum coefficient in η is 5, the maxi-
mum left-hand side coefficient is 7, the maximum right-hand
side coefficient is 12, coef(x2) is 7, and the maximum coef-
ficient of I is 12.

A (partial) assignment α is a mapping from (a sub-
set X ′ of) X to Z. For an assignment α and an inequal-
ity (constraint) A of arity ℓ, we denote by A(α) the left-
hand side value of A obtained by applying α, i.e., A(α) =∑

cx∈A∧x∈X′ cα(x), where cx ∈ A means that cx occurs
as a term on the left-hand side of A. We denote by η[X ′]
the restriction of η to all terms that are defined solely on the
variables in X ′ and we let η(α) be the valuation of η[X ′]
given α. An assignment α is called feasible if it satisfies ev-
ery A ∈ F , i.e., if A(α) ≤ bA for each A ∈ F . A feasible
assignment is also referred to as a solution. A solution α that
maximizes η(α) is called optimal; observe that the existence
of a solution does not guarantee the existence of an optimal
solution (there may exist an infinite sequence of feasible as-
signments α with increasing values of η(α)); in other words
such an instance is unbounded. Given an instance I, the task

x1 x2 x3 x4 x1 x2 x3 x4

C1 C2

Figure 1: The primal graph (left) and the incidence graph
(right) of the IQP instance given in Example 1.

in IQP is to compute an optimal solution for I if one ex-
ists, and otherwise to decide whether there exists a feasible
assignment.

We note that aside from the inequality representation in-
troduced above and used in other works (Lokshtanov 2015),
IQP may equivalently be defined by having F contain only
equalities and with explicit domains for individual variables.
While using the former representation is more convenient
for formalizing our contributions, none of the results pre-
sented herein is sensitive to the specific representation used
(changing the representation only changes our parameters
by a multiplicative constant).

Finally, we will introduce two basic graph representations
of IQP instances, which are also illustrated in Figure 1. Let
I = (F , η) be an IQP instance. The primal graph of I, de-
noted by P (I), is the undirected graph on var(I) having an
edge between x and y if x and y occur together in a con-
straint in F . The incidence graph of I, denoted by H(I), is
the bipartite graph with var(I) on one side, F on the other
side, and there is an edge between x ∈ var(I) and A ∈ F if
and only if x occurs in the constraint A.

Parameterized Complexity
In parameterized algorithmics (Cygan et al. 2013; Nieder-
meier 2006; Flum and Grohe 2006; Downey and Fellows
2013) the running time of algorithms is studied with respect
to a parameter k ∈ N and input size n. The basic idea is to
find a parameter that describes the structure of the instance
such that the combinatorial explosion can be confined to
this parameter. In this respect, the most favorable complex-
ity class is FPT (fixed-parameter tractable) which contains
all problems that can be decided by an algorithm running
in time f(k) · nO(1), where f is a computable function. Al-
gorithms with this running time are called fixed-parameter
algorithms.

One of the few (fixed-parameter) tractability results on
IQP is due to Lokshtanov (2015) and can be viewed as
an analogue to Lenstra’s classical result for Integer Linear
Programming (Lenstra, Jr. 1983), but with additional condi-
tions.

Proposition 2. An IQP instance I with ℓ =
maxx∈var(I) coef(x) and k = max(|var(I)|, ℓ) can be
solved in time Λ(k, I) = f(k) · IO(1).

We note that the current proof of Proposition 2 leads to
an algorithm with a double-exponential dependency on the
parameters, and is hence not yet feasible for use in practice.

1479

Structural Parameters
Here, we give an overview of the graph parameters that will
be used in this paper. A tree-decomposition T of a graph
G = (V,E) is a pair (T, χ), where T is a tree and χ is a
function that assigns each tree node t a set χ(t) ⊆ V of
vertices such that the following conditions hold: (1) for ev-
ery edge {u, v} ∈ E(G) there is a tree node t such that
u, v ∈ χ(t) and (2) for every vertex v ∈ V (G), the set of
tree nodes t with v ∈ χ(t) forms a non-empty subtree of T .
The set χ(t) is also called the bag associated with the tree
node t. The width of a tree-decomposition (T, χ) is the size
of a largest bag minus 1. A tree-decomposition of minimum
width is called optimal. The treewidth of a graph G is the
width of an optimal tree-decomposition of G.

For presenting our dynamic programming algorithms, it
is convenient to consider tree-decompositions in a normal
form; such decompositions are called nice (Kloks 1994). A
tree-decomposition (T, χ) of G is nice if T is rooted at a
node r with χ(r) = ∅ and each node of T is one of the
following four types:

1. a leaf node: a node t having no children and |χ(t)| = 1;
2. a join node: a node t having exactly two children t1, t2,

and χ(t) = χ(t1) = χ(t2);
3. an introduce node: a node t having exactly one child t′,

and χ(t) = χ(t′) ∪ {v} for a vertex v of G;
4. a forget node: a node t having exactly one child t′, and

χ(t) = χ(t′) \ {v} for a vertex v of G.

For t ∈ V (T) we denote by Tt the subtree of T rooted at t
and write χ(Tt) for the set

⋃
t′∈V (Tt)

χ(t′).

Proposition 3 (Kloks 1994; Bodlaender 1996). It is possible
to compute an optimal (nice) tree-decomposition of an n-
vertex graph G with treewidth k in time kO(k3)n.

Our second parameter is called treedepth—a structural pa-
rameter closely related to treewidth (Nešetřil and Ossona
de Mendez 2012). A useful way of thinking about graphs
of bounded treedepth is that they are graphs of bounded
treewidth with no long paths.

Since we will only need to directly work with treedepth
in a single, technical lemma (notably Lemma 7), we refer
to the book of Nešetǐl and de Mendez (2012) for the formal
definition of the parameter.

IQP Lower Bounds
A simple reduction from SUBSET SUM given in (Murty and
Kabadi 1987, Example 2) shows that IQP remains NP-hard
even if all variables are binary and the instance has only box
constraints. We strengthen this result to instances with max-
imum coefficient one. The starting point of our reduction is
the well-known NP-complete INDEPENDENT SET problem.

Theorem 4. IQP is NP-hard even on instances with binary
domain, maximum coefficient one, and where all constraints
are box constraints.

Proof Sketch. Let (G, k) be an instance of INDEPENDENT
SET. We construct an instance I of IQP as follows: We set

var(I) = {xv | v ∈ V (G) }, F contains only box con-
straints restricting the domain of each variable to {0, 1}, and
we set η = (

∑
v∈V (G) xv)− (

∑
{u,v}∈E(G) xuxv). To com-

plete the proof, it suffices to show that G has an independent
set of size at least k if and only if there is a solution α for I
with η(α) ≥ k.

Since our reduction preserves the size/value of a solution,
it also can be used to carry over the known inapproxima-
bility results for INDEPENDENT SET (Håstad 1996) to IQP.
Namely, we obtain that IQP cannot be approximated within
a factor of |var(I)|1−ϵ, for ϵ > 0, unless NP ⊆ ZPP.

Bounded Coefficients
In this section we study the setting where the input instances
have bounded coefficients. Recently, Koutecký, Levin, and
Onn (2018) showed that ILP is fixed parameter tractable pa-
rameterized by the treedepth of the primal graph and the
maximum left-hand side coefficient occurring in F . The
lower bound result from the previous section shows that we
cannot hope to obtain the same result for IQP unless we add
additional restrictions on the objective function η. As our
first and introductory result, we show that IQP is fixed pa-
rameter tractable if we parameterize by the maximum coef-
ficient, the treedepth of the primal graph, and |var(η)|.

In the following let I = (F , η) be an IQP instance, td(I)
the treedepth of P (I), and ℓ(I) the maximum coefficient of
I. We will now state our main result for this section.

Theorem 5. IQP is fixed-parameter tractable parameter-
ized by ℓ(I), td(I), and |var(η)|.

Before we proceed to the proof of above theorem, let us
first argue its tightness. As mentioned previously, Theorem 4
shows that dropping |var(η)| from the parameterization re-
sults in the problem becoming NP-hard even when the re-
maining two parameters are bounded by a constant. The fol-
lowing two known results then similarly rule out the possi-
bility of dropping (or, in the case of treedepth, weakening)
any of the other two parameters; note that ILP-feasibility is
precisely IQP with η = 0.

Theorem 6 (Ganian and Ordyniak 2018, Theorem 12 and
13). ILP-feasibility is NP-hard even for instances:

• with primal graphs of constant treedepth,
• with maximum coefficient one and primal graphs of

treewidth at most two.

The proof of Theorem 5 uses the same strategy as the
proof of an analogous theorem for ILP given by Ganian and
Ordyniak (2018, Theorem 6). In particular, the algorithm for
ILP can be divided into three steps:

(1) Compute an optimal treedepth decomposition of P (I),

(2) Using a bottom-up pruning procedure, the original ILP
instance is transformed into an equivalent ILP instance
whose number of variables is bounded by a function of
the parameters, and

(3) the pruned instance is now solved by invoking Lenstra’s
algorithm (Lenstra, Jr. 1983)

1480

Step (1) remains the same also in our proof of Theorem 5.
In order to perform Step (2), we will obtain a more refined
version of (Ganian and Ordyniak 2018, Lemma 11), which
will then form the main tool for our pruning procedure.
Lemma 7. There exist computable functions f, g and
an algorithm that takes as input I = (F , η) and an
optimal treedepth decomposition of P (I), runs in time
O(f(ℓ(I), td(I), |var(η)|) · |I|) and outputs an IQP instance
I′ containing at most g(ℓ(I), td(I), |var(η)|) variables and
whose maximum coefficient is no larger than the maximum
coefficient of I with the following property: there exists a so-
lution α of I of value w if and only if there exists a solution
α′ of I′ of value w. Moreover, α can be computed from α′ in
linear time.

Proof Sketch. The proof is very similar to the proof of
Lemma 11 in (Ganian and Ordyniak 2018). The main dif-
ference is due to a different definition of the primal graph
in the cited proof, which additionally contains a clique on
all variables contained in the objective function. It can be
shown that adding a clique on all variables contained in the
objective function only increases the treedepth by at most
|var(η)|. After that, the remainder of the proof is virtually
identical.

There are two main differences in the formulation of the
above lemma compared to Lemma 11 in (Ganian and Or-
dyniak 2018): (1) Both the running-time and the size of the
reduced instance are given in terms of our parameters ℓ(I),
td(I), and |var(I)| and (2) we state explicitly that the coef-
ficients of the pruned instance are no larger than the coeffi-
cients in the original instance. The latter point is critical for
our next Step (3), since we are required to use Proposition 2
instead of Lenstra’s algorithm in order to solve the instance
obtained from Lemma 7.

Proof Sketch of Theorem 5. The algorithm proceeds as fol-
lows. First, we compute a treedepth decomposition of
P (I) (Nešetřil and de Mendez 2012). Second, we invoke
Lemma 7 to obtain an equivalent instance I′ with only a few
variables. Finally, we use Proposition 2 to solve I′.

We remark that due to the employed techniques, the
running-time of the algorithm arising from Theorem 5 has
a non-elementary dependency on the parameters. Hence, the
result should be viewed primarily as a classification result.

Bounded Domain
It is known that ILP parameterized by the treewidth of
the primal graph as well as the maximum absolute domain
value of any variable is fixed-parameter tractable (Jansen
and Kratsch 2015). Because of Theorem 4 this is not the
case for IQP, i.e., IQP remains NP-hard even when all vari-
ables have a binary domain and the primal graph is edge-
less. This is because having non-linear interactions between
the variables in the optimization function implicitly allows
the expression of linear constraints. To obtain tractability for
IQP instances, it hence becomes necessary to also restrict
the structure of the non-linear interactions between variables
within the optimization function. To this end we propose the

x1 x2 x3 x4

Figure 2: The mixed primal graph of the IQP instance given
in Example 1.

mixed primal graph, denoted by PM (I), which extends the
primal graph by adding an edge between any two distinct
variables x and y that occur together in a mixed term of η
(see Figure 2 for an illustration of the mixed primal graph).

Our main result for this section is establishing that the
tractability for ILP using bounded domain and bounded
treewidth of the primal graph carries over to IQP with the
use of the mixed primal graph. In fact, we show tractability
for the much more general Integer Programming (IP) prob-
lem, i.e., the generalization of IQP where both the objective
function as well as the constraints are allowed to be arbitrary
polynomials over the set of variables. Since known hardness
results for ILP given in Theorem 6 carry over to IQP, it is es-
sentially the case that the much more general IP exhibits the
same complexity behavior on instances of bounded mixed
primal treewidth as ILP on instances of bounded primal
treewidth. Note, however, that the tractability results given
in Theorem 5 for treedepth do not carry over to IP, since it
is known that IP is undecidable even for instances with con-
stantly many variables (Köppe 2012).

In the following let I be an instance of IQP, T = (T, χ)
be a nice tree-decomposition of PM (I) of width ω, and let
d = maxx∈var(I) dom(x).
Theorem 8. An IP instance I can be solved in time O((2d+
1)ω+2|I|), given that a nice tree-decomposition of PM (I) of
width ω is provided with the input.

Before we proceed, let us formalize some additional nota-
tion used in this section. For a subset V ′ of var(I), we denote
by F [V ′] the subset of F containing all constraints A such
that var(A) ⊆ V ′. Let α : V ′ → Z be a (partial) assignment,
x ∈ var(I), and s ∈ Z. We denote by αx→s the assignment
obtained from α after setting α(x) = s. Finally, we denote
by I[V ′] the subinstance of I induced by V ′, i.e., the IP in-
stance (F [V ′], η[V ′]).

We prove the theorem by giving a dynamic program-
ming algorithm on T that computes the set R(t) of all valid
records for every node t ∈ V (T), where a record is a pair
(α, o) consisting of an assignment α : χ(t) → [−d, d] and an
integer o. A record (α, o) is valid for t if o is the maximum
value for η(α′) over all feasible assignments α′ : χ(Tt) →
[−d, d] for I[χ(Tt)] that agree with α on the variables in
χ(t). We show next how to compute the set of all valid
records for each of the four node types of T .
Lemma 9. R(t) can be computed from R(t′) in time
O(|R(t′)| · d · |I|) for an introduce node t of T with child t′.

Proof Sketch. Let x be the variable introduced by t, i.e.,
χ(t) = χ(t′) ∪ {x}. In this case R(t) is the set of all pairs
(α, o + (η[χ(t)] \ η[χ(t′)])(α)) with (α[χ(t′)], o) ∈ R(t′)
and α : χ(t) → [−d, d] is a feasible assignment for I[χ(t)].
Hence to obtain R(t) it suffices to check whether the as-
signment αx→v is feasible for I[χ(t)] for every (α, o) ∈

1481

R(t′) and every v ∈ [−d, d] and to evaluate the terms
in (η[χ(t)] \ η[χ(t′)]) for the assignment αx→v , which is
possible since all “new” constraints, i.e., the constraints in
F(χ(t)) \ F(χ(t′)), only contain variables in χ(t) and the
same also holds for all terms in η(χ(t)) \ η(χ(t′)).

The computation of R(t) for forget and join nodes follows
similar lines as the proof of Lemma 9, and is trivial for leaf
nodes. We summarize below.

Lemma 10. R(t) can be computed in time O((2d +
1)ω+1d|I|) for a leaf, forget, and join-node t.

Proof Sketch for Theorem 8. The algorithm computes the
set of all valid records R(t) for every node t of T using a
bottom-up dynamic programming algorithm starting in the
leaves of T , until it computes R(r) for the root node r. It
then outputs o if R(r) = {(∅, o)} and otherwise correctly
returns that I has no optimal solution.

Theorem 8 together with Proposition 3 now imply that IP
is fixed-parameter tractable parameterized by the maximum
domain and the treewidth of PM (I). Since IQP is a special
case of IP, we obtain:

Corollary 11. IQP is fixed-parameter tractable parameter-
ized by maximum domain and the treewidth of PM (I).

Hybrid Restrictions
In this section, we turn our attention to instances where each
variable is restricted in one of two possible ways: either the
domain is bounded, or its maximum coefficient is bounded.
Naturally, such instances are more general than those cov-
ered in the first two settings, and hybrid restrictions may oc-
cur naturally when modeling systems where variables repre-
sent elements with different properties. Even though neither
of the results and graph representations introduced up to this
point can be used to obtain fixed-parameter algorithms for
such instances, we will show that one can still exploit the
treewidth of variable interactions to deal with such instances.

Formally, the hybrid bound hyb(I) of an IQP instance
I is defined as maxx∈var(I) min(dom(x), coef(x)). Observe
that every IQP instance with domain at most k or maxi-
mum coefficient at most k has a hybrid bound of at most
k, but the converse is not true. We note that IQP remains
NP-hard even when both hyb(I) and the treewidth of the
mixed primal graph are bounded by a constant; indeed,
even ILP-feasibility remains NP-hard when restricted to in-
stances with a maximum coefficient of 1 and primal graphs
of treewidth 2 (Ganian and Ordyniak 2018). The underlying
reason for this is that variables with unbounded domain can,
in some sense, carry long-distance interactions between vari-
ables. We introduce the hybrid primal graph representation
in order to account for this and capture such interactions. For
the purposes of this section, we will say that a variable x is
large-domain if dom(x) > hyb(I).

Definition 12. The hybrid primal graph of I = (F , η) is the
graph PH(I) = (V,E∪E′) where (V,E) = PM (I) and E′

is the set of all variable pairs that are connected by a path in
PM (I) whose internal vertices are large-domain variables.

x1 x2 x3 x4 x1 x2 x3 x4

C1 C2

Figure 3: Left: The hybrid primal graph of the IQP instance
I given in Example 1. Observe that hyb(I) = 7 and x3 is
the only large-domain variable. Right: The mixed incidence
graph of the IQP instance given in Example 1.

We state our main result for this section below.
Theorem 13. IQP is fixed-parameter tractable parameter-
ized by hyb(I) and tw(PH(I)).

Our first task on the way to proving Theorem 13 is to
define a type of tree-decomposition that treats the large-
domain variables (i.e., variables x such that dom(x) >
hyb(I)) in a certain way. To this end, we call a tree-
decomposition of PH(I) hybrid if:
1. for each large-domain variable x, there exists a leaf node

t such that x ∈ χ(t), and
2. every leaf node t has a parent q (called the guard node)

of degree 2 such that χ(q) is obtained by removing all
large-domain variables from χ(t), and

3. all nodes other than guard and leaf nodes satisfy the con-
ditions of nice tree-decompositions, i.e., are either forget,
introduce or join nodes.
It is not difficult to show that any nice tree-decomposition

of PH(I) can be transformed into a hybrid one in linear
time—the core idea is to create new leaves that will con-
tain the large-domain variables together with their neighbor-
hood.

Our strategy for obtaining the fixed-parameter algorithm
of Theorem 13 will now be the following. We will employ
dynamic programming along the lines of Theorem 8; in par-
ticular, at each node t that is neither a guard nor a leaf node,
we will use the same records R(t) and apply Lemmas 9
and 10. Hence the crucial part will be to obtain the records
R(q) for each guard node q.
Lemma 14. Let (T, χ) be a hybrid width-k tree-
decomposition of PH(I) and let q be a guard node in T .
Then it is possible to compute R(q) in time Λ(hyb(I), I) ·
(2hyb(I) + 1)k · |I|O(1).

Proof Sketch. The procedure has two steps. First, we branch
over all feasible assignments of the variables in χ(q). Sec-
ond, for each such assignment α we apply Proposition 2 on
the instance resulting by the application of α on I[χ(p)],
where p is the unique child of q. It can be shown that this in-
stance satisfies the conditions required by Proposition 2.

We can now proceed to a proof of the desired result.

Proof of Theorem 13. We begin by computing an optimal
hybrid tree-decomposition. Next, we use Lemma 14 to com-
pute the records R(q) for each guard node q in T . Once that

1482

is done, we proceed by dynamically computing the records
for all other nodes in T in a leaves-to-root fashion by invok-
ing Lemmas 9 and 10. Finally, we solve I by reading the
record at the root node r of T , in the same manner as in
the proof of Theorem 8. The resulting runtime can be upper-
bounded by |var(I)| times the runtime of Lemma 14.

Unary Coefficients and Unary Domain
In this section we generalize the polynomial-time algorithm
for ILP with unary coefficients and unary domain using in-
cidence treewidth (Ganian, Ordyniak, and Ramanujan 2017)
to IQP. Again, because of our hardness result (Theorem 4),
we will need additional restrictions on the variable depen-
dencies expressed by mixed terms in the objective function.
We therefore introduce the mixed incidence graph of an IQP
instance I, denoted by HM (I), which is obtained from the
incidence graph by adding edges between any two distinct
variables occurring in mixed terms of the objective function
(see Figure 3 for an illustration).

In the following let I = (F , η) be an IQP instance and
let T = (T, χ) be a nice tree-decomposition of HM (I) of
width ω. Similarly to the previous approach employed for
ILP (Ganian, Ordyniak, and Ramanujan 2017), we will first
show a slightly stronger result that will then imply tractabil-
ity for unary domain and unary coefficients for constant ω.
Let Γ be the maximum absolute value of A(α) over every
constraint A ∈ F and every feasible assignment α for I.

Theorem 15. IQP can be solved in time O(Γω+3ω3|I|)
given that a nice tree decomposition of HM (I) of width ω is
provided with the input.

As the algorithm uses dynamic programming on T , the
overall structure of the algorithm is the same as for the algo-
rithm presented in Theorem 8. We will hence only present
the records together with the corresponding replacements of
the lemmas required for showing the correctness for the four
different node types of T .

To distinguish between variables and constraints con-
tained within the bags of T , we use χvar(t) and χA(t) to
denote the sets χ(t) ∩ var(I) and χ(t) ∩ F , respectively. A
record for a node t ∈ V (T) is a triple (α, γ, o), where:

• α : χvar(t) → [−Γ,Γ],
• γ : χA(t) → [−Γ,Γ], and
• o is a non-negative integer.

Note here that we use that Γ also bounds the domain of every
variable. We say that a record (α, γ, o) for a node t ∈ V (T)
is valid if o is the maximum value of η(α′) for any assign-
ment α′ : χvar(Tt) → [−Γ,Γ] satisfying:

R1 α′(x) = α(x) for every variable x ∈ χvar(t),
R2 A(α′) = γ(A) for every constraint A ∈ χA(t).

We denote by R(t) the set of all valid records for t. The
following lemma summarizes the computation for leaf, in-
troduce, forget, and join nodes.

Lemma 16. R(t) can be computed in time
O(Γω+2ω2 log Γ) for a leaf, introduce, forget, or join
node t of T .

Using Lemma 16, the proof of Theorem 15 now follows
along the same lines as the proof of Theorem 8.

Note that together with Proposition 3, Theorem 15 implies
polynomial-time tractability of IQP instances with bounded
mixed incidence treewidth as long as Γ can be bounded by a
polynomial of the input size. Namely, all tractability results
considered in (Ganian, Ordyniak, and Ramanujan 2017) for
ILP and bounded incidence treewidth carry over to IQP and
bounded mixed incidence treewidth:
Corollary 17. IQP is solvable in polynomial-time for in-
stances with bounded mixed incidence treewidth that addi-
tionally satisfy either:
• unary domain and unary coefficients, or
• non-negativity and unary coefficients on the right-hand

side of constraints.
An IQP instance is non-negative if so is the domain of all
variables as well as all coefficients occurring on the left-
hand side of constraints.

Similarly, the hardness results given for ILP-feasibility by
Ganian, Ordyniak and Ramanujan (2017) carry over to IQP,
i.e., IQP is NP-hard for non-negative instances with binary
domain and mixed incidence treewidth at most three as well
as instances with maximum coefficient two and mixed inci-
dence treewidth at most three.

Note, however, that we cannot (at least not directly) gen-
eralize our tractability result for IQP for bounded mixed in-
cidence treewidth to IP. Informally this is because even the
mixed incidence treewidth does not take into account depen-
dencies between variables that arise from mixed terms in the
constraints.
Theorem 18. IP-feasibility is NP-hard even for instances
with mixed incidence treewidth one, binary domain vari-
ables, and maximum coefficient one.

Proof Sketch. The reduction is similar to our reduction from
INDEPENDENT SET used in Theorem 4 only that this time
we model the objective function as a constraint.

We note that it would be possible to generalize our algo-
rithm given in Theorem 15 to IP, if we were to extend the
mixed incidence graph by adding all edges between vari-
ables that appear together in mixed terms of the constraints.
Since IQP and not IP is the focus of this paper, we decided
against providing the algorithm in its full generality.

Concluding Notes
Our results provide the first (and already surprisingly de-
tailed) picture of the complexity of IQP w.r.t. natural struc-
tural and syntactical restrictions. To our surprise, IQP be-
haves very similar to the much simpler ILP once the role of
the mixed terms in the optimization function is taken into
account. Our results raise several interesting questions con-
cerning the complexity of IQP and even ILP, and we high-
light two such questions below:
1. Is IQP fixed-parameter tractable parameterized by the

treedepth of the mixed primal graph and the maximum
coefficient, i.e., can treedepth be used even when opti-
mizing functions of large arity?

1483

2. What is the complexity of IQP (and ILP) parameterized
by the treedepth of the mixed primal graph and hyb(I)?

The latter question is particularly interesting in light of
the recently growing interest in multi-stage stochastic
ILPs (Koutecký, Levin, and Onn 2018), whereas ILP in-
stances with bounded primal treedepth and hyb(I) are sig-
nificantly more general than multi-stage stochastic ILPs.

Acknowledgments. The authors wish to thank the reviewers
for their insightful comments. Eduard Eiben was supported
by Pareto-Optimal Parameterized Algorithms (ERC Starting
Grant 715744) and by Parameterized Complexity for Practi-
cal Computing (RCN Toppforsk Grant 274526). Robert Ga-
nian acknowledges support from the FWF Austrian Science
Fund (Project P31336: NFPC) and is also affiliated with FI
MU, Brno, Czech Republic. Dušan Knop is partially sup-
ported by DFG project MaMu (NI369/19) and is also affili-
ated with Department of Theoretical Computer Science, FIT,
ČVUT, Prague, Czech Republic.

References
Aziz, H.; Gaspers, S.; Lee, E. J.; and Najeebullah, K. 2018.
Defender stackelberg game with inverse geodesic length as
utility metric. In Proc. AAMAS 2018, 694–702. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Crampton, J.; Gutin, G. Z.; Koutecký, M.; and Watrigant, R.
2017. Parameterized resiliency problems via integer linear
programming. In Proc. CIAC 2017, volume 10236 of Lec-
ture Notes in Computer Science, 164–176.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2013. Parameterized Algorithms. Texts in Computer Sci-
ence. Springer.
Del Pia, A., and Weismantel, R. 2014. Integer quadratic
programming in the plane. In Chekuri, C., ed., Proc. SODA
2014, 840–846.
Del Pia, A.; Dey, S. S.; and Molinaro, M. 2017. Mixed-
integer quadratic programming is in NP. Math. Program.
162(1-2):225–240.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Dvořák, P.; Eiben, E.; Ganian, R.; Knop, D.; and Ordyniak,
S. 2017. Solving integer linear programs with a small num-
ber of global variables and constraints. In Sierra, C., ed.,
Proc. IJCAI 2017, 607–613. ijcai.org.
Eiben, E.; Ganian, R.; Knop, D.; and Ordyniak, S. 2018.
Unary integer linear programming with structural restric-
tions. In Proc. IJCAI 2018, 1284–1290. ijcai.org.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory, volume XIV of Texts in Theoretical Computer Sci-
ence. An EATCS Series. Berlin: Springer.

Ganian, R., and Ordyniak, S. 2018. The complexity land-
scape of decompositional parameters for ilp. Artificial Intel-
ligence 257:61 – 71.
Ganian, R.; Ordyniak, S.; and Ramanujan, M. S. 2017. Go-
ing beyond primal treewidth for (M)ILP. In Singh, S. P.,
and Markovitch, S., eds., Proc. AAAI 2017, 815–821. AAAI
Press.
Håstad, J. 1996. Clique is hard to approximate within
n1-epsilon. In Proc. FOCS 1996, 627–636.
Iwashita, H.; Ohori, K.; Anai, H.; and Iwasaki, A. 2016.
Simplifying urban network security games with cut-based
graph contraction. In Proc. AAMAS 2016, AAMAS ’16,
205–213. International Foundation for Autonomous Agents
and Multiagent Systems.
Jansen, B. M. P., and Kratsch, S. 2015. A structural approach
to kernels for ILPs: Treewidth and total unimodularity. In
Proc. ESA 2015, volume 9294 of Lecture Notes in Computer
Science, 779–791. Springer.
Kloks, T. 1994. Treewidth, Computations and Approxima-
tions, volume 842 of Lecture Notes in Computer Science.
Springer.
Köppe, M. 2012. On the complexity of nonlinear mixed-
integer optimization. In Mixed Integer Nonlinear Program-
ming. Springer. 533–557.
Koutecký, M.; Levin, A.; and Onn, S. 2018. A Parameter-
ized Strongly Polynomial Algorithm for Block Structured
Integer Programs. In Chatzigiannakis, I.; Kaklamanis, C.;
Marx, D.; and Sannella, D., eds., Proc. ICALP 2018, volume
107 of LIPIcs, 85:1–85:14. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.
Lenstra, Jr., H. W. 1983. Integer programming with a fixed
number of variables. Math. Oper. Res. 8(4):538–548.
Lokshtanov, D. 2015. Parameterized integer quadratic
programming: Variables and coefficients. CoRR
abs/1511.00310.
Murty, K. G., and Kabadi, S. N. 1987. Some np-complete
problems in quadratic and nonlinear programming. Math.
Program. 39(2):117–129.
Nešetřil, J., and de Mendez, P. O. 2012. Sparsity - Graphs,
Structures, and Algorithms, volume 28 of Algorithms and
combinatorics. Springer.
Nešetřil, J., and Ossona de Mendez, P. 2012. Sparsity:
Graphs, Structures, and Algorithms, volume 28 of Algo-
rithms and Combinatorics. Springer.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms, volume 31 of Oxford Lecture Series in Mathematics
and its Applications. Oxford: Oxford University Press.
Robertson, N., and Seymour, P. D. 1983. Graph minors. i.
excluding a forest. J. Comb. Theory, Ser. B 35(1):39–61.
Shaloudegi, K.; György, A.; Szepesvári, C.; and Xu, W.
2016. SDP relaxation with randomized rounding for energy
disaggregation. In Proc. NIPS 2016, 4979–4987.
Wang, T., and Ling, H. 2016. Path following with adaptive
path estimation for graph matching. In Proc. AAAI 2016,
3625–3631.

1484

