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Abstract

Proximal gradient method has been playing an important role
to solve many machine learning tasks, especially for the non-
smooth problems. However, in some machine learning prob-
lems such as the bandit model and the black-box learning
problem, proximal gradient method could fail because the ex-
plicit gradients of these problems are difficult or infeasible to
obtain. The gradient-free (zeroth-order) method can address
these problems because only the objective function values are
required in the optimization. Recently, the first zeroth-order
proximal stochastic algorithm was proposed to solve the non-
convex nonsmooth problems. However, its convergence rate
is O( 1√

T
) for the nonconvex problems, which is significantly

slower than the best convergence rate O( 1
T
) of the zeroth-

order stochastic algorithm, where T is the iteration number.
To fill this gap, in the paper, we propose a class of faster
zeroth-order proximal stochastic methods with the variance
reduction techniques of SVRG and SAGA, which are denoted
as ZO-ProxSVRG and ZO-ProxSAGA, respectively. In theo-
retical analysis, we address the main challenge that an unbi-
ased estimate of the true gradient does not hold in the zeroth-
order case, which was required in previous theoretical analy-
sis of both SVRG and SAGA. Moreover, we prove that both
ZO-ProxSVRG and ZO-ProxSAGA algorithms have O( 1

T
)

convergence rates. Finally, the experimental results verify
that our algorithms have a faster convergence rate than the
existing zeroth-order proximal stochastic algorithm.

Introduction
Proximal gradient (PG) methods (Mine and Fukushima,
1981; Nesterov, 2004; Parikh, Boyd, and others, 2014) are a
class of powerful optimization tools in artificial intelligence
and machine learning. In general, it considers the following
nonsmooth optimization problem:

min
x∈Rd

f(x) + ψ(x), (1)

where f(x) usually is the loss function such as hinge loss
and logistic loss, and ψ(x) is the nonsmooth structure regu-
larizer such as `1-norm regularization. In recent research,
Beck and Teboulle (2009); Nesterov (2013) proposed the
accelerate PG methods to solve convex problems by using
∗Corresponding Author.
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the Nesterov’s accelerated technique. After that, Li and Lin
(2015) presented a class of accelerated PG methods for non-
convex optimization. More recently, Gu, Huo, and Huang
(2018) introduced inexact PG methods for nonconvex nons-
mooth optimization. To solve the big data problems, the in-
cremental or stochastic PG methods (Bertsekas, 2011; Xiao
and Zhang, 2014) were developed for large-scale convex
optimization. Correspondingly, Ghadimi, Lan, and Zhang
(2016); Reddi et al. (2016) proposed the stochastic PG meth-
ods for large-scale nonconvex optimization.

However, in many machine learning problems, the ex-
plicit expressions of gradients are difficult or infeasible to
obtain. For example, in some complex graphical model in-
ference (Wainwright, Jordan, and others, 2008) and struc-
ture prediction problems (Sokolov, Hitschler, and Riezler,
2018), it is difficult to compute the explicit gradients of
the objective functions. Even worse, in bandit (Shamir,
2017) and black-box learning (Chen et al., 2017) prob-
lems, only the objective function values are available (the
explicit gradients cannot be calculated). Clearly, the above
PG methods will fail in dealing with these scenarios. The
gradient-free (zeroth-order) optimization method (Nesterov
and Spokoiny, 2017) is a promising choice to address these
problems because it only uses the function values in opti-
mization process. Thus, the gradient-free optimization meth-
ods have been increasingly embraced for solving many ma-
chine learning problems (Conn, Scheinberg, and Vicente,
2009).

Although many gradient-free methods have recently been
developed and studied (Agarwal, Dekel, and Xiao, 2010;
Nesterov and Spokoiny, 2017; Liu et al., 2018b), they often
suffer from the high variances of zeroth-order gradient esti-
mates. In addition, these algorithms are mainly designed for
smooth or convex settings, which will be discussed in the be-
low related works, thus limiting their applicability in a wide
range of nonconvex nonsmooth machine learning problems
such as involving the nonconvex loss functions and nons-
mooth regularization.

In this paper, thus, we propose a class of faster gradient-
free proximal stochastic methods for solving the nonconvex
nonsmooth problem as follows:

min
x∈Rd

F (x) =: f(x) + ψ(x), f(x) =:
1

n

n∑
i=1

fi(x) (2)
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Table 1: Comparison of representative zeroth-order stochastic algorithms for finding an ε-approximate stationary point of non-
convex problem, i.e., E‖∇f(x)‖2 ≤ ε or E‖gη(x)‖2 ≤ ε. (S, NS, C and NC are the abbreviations of smooth, nonsmooth,
convex and nonconvex, respectively. T is the whole iteration number, d is the dimension of data and n denotes the sample size.)
B(≤ n) is a mini-batch size.

Algorithm Reference Gradient estimator Problem Convergence rate
RSGF Ghadimi and Lan (2013) GauSGE S(NC) O(

√
d
T )

ZO-SVRG Liu et al. (2018c) CooSGE S(NC) O( dT )

SZVR-G Liu et al. (2018a) GauSGE S(NC) O(max(d
2
3B

1
3 , d

1
3B

2
3 )/T )

GauSGE NS(NC) O(d
5√
33B

1√
33 /T

√
3
11 )

RSPGF Ghadimi, Lan, and Zhang (2016) GauSGE S(NC) + NS(C) O(
√

d
T )

ZO-ProxSVRG Ours CooSGE S(NC) + NS(C) O( dT )
GauSGE S(NC) + NS(C) O( dT + dσ2)

ZO-ProxSAGA Ours CooSGE S(NC) + NS(C) O( dT )
GauSGE S(NC) + NS(C) O( dT + dσ2)

where each fi(x) is a nonconvex and smooth loss function,
and ψ(x) is a convex and nonsmooth regularization term.
Until now, there are few zeroth-order stochastic methods
for solving the problem (2) except a recent attempt pro-
posed in (Ghadimi, Lan, and Zhang, 2016). Specifically,
Ghadimi, Lan, and Zhang (2016) have proposed a random-
ized stochastic projected gradient-free method (RSPGF),
i.e., a zeroth-order proximal stochastic gradient method.
However, due to the large variance of zeroth-order estimated
gradient generated from randomly selecting the sample and
the direction of derivative, the RSPGE only has a conver-
gence rateO( 1√

T
) , which is significantly slower thanO( 1

T ),
the best convergence rate of the zeroth-order stochastic al-
gorithm. To accelerate the RSPGF algorithm, we use the
variance reduction strategies in the first-order methods, i.e.,
SVRG (Xiao and Zhang, 2014) and SAGA (Defazio, Bach,
and Lacoste-Julien, 2014), to reduce the variance of esti-
mated stochastic gradient.

Although SVRG and SAGA have shown good perfor-
mances, applying these strategies to the zeroth-order method
is not a trivial task. The main challenge arises due to
that both SVRG and SAGA rely on the assumption that a
stochastic gradient is an unbiased estimate of the true full
gradient. However, it does not hold in the zeroth-order al-
gorithms. In the paper, thus, we will fill this gap between
zeroth-order proximal stochastic method and the classic
variance reduction approaches (SVRG and SAGA).

Main Contributions
In summary, our main contributions are summarized as fol-
lows:

• We propose a class of faster gradient-free proximal
stochastic methods (ZO-ProxSVRG and ZO-ProxSAGA),
based on the variance reduction techniques of SVRG and
SAGA. Our new algorithms only use the objective func-
tion values in the optimization process.

• Moreover, we provide the theoretical analysis on the con-
vergence properties of both new ZO-ProxSVRG and ZO-

ProxSAGA methods. Table 1 shows the specifical conver-
gence rates of the proposed algorithms and other related
ones. In particular, our algorithms have faster conver-
gence rate O( 1

T ) than O( 1√
T
) of the RSPGF (Ghadimi,

Lan, and Zhang, 2016) (the existing stochastic PG algo-
rithm for solving nonconvex nonsmoothing problems).

• Extensive experimental results and theoretical analysis
demonstrate the effectiveness of our algorithms.

Related Works
Gradient-free (zeroth-order) methods have been effectively
used to solve many machine learning problems, where the
explicit gradient is difficult or infeasible to obtain, and
have also been widely studied. For example, Nesterov and
Spokoiny (2017) proposed several random gradient-free
methods by using Gaussian smoothing technique. Duchi
et al. (2015) proposed a zeroth-order mirror descent al-
gorithm. More recently, Yu et al. (2018); Dvurechensky,
Gasnikov, and Gorbunov (2018) presented the accelerated
zeroth-order methods for the convex optimization. To solve
the nonsmooth problems, the zeroth-order online or stochas-
tic ADMM methods (Liu et al., 2018b; Gao, Jiang, and
Zhang, 2018) have been introduced.

The above zeroth-order methods mainly focus on the
(strongly) convex problems. In fact, there exist many non-
convex machine learning tasks, whose explicit gradients
are not available, such as the nonconvex black-box learn-
ing problems (Chen et al., 2017; Liu et al., 2018c). Thus,
several recent works have begun to study the zeroth-order
stochastic methods for the nonconvex optimization. For
example, Ghadimi and Lan (2013) proposed the random-
ized stochastic gradient-free (RSGF) method, i.e., a zeroth-
order stochastic gradient method. To accelerate optimiza-
tion, more recently, Liu et al. (2018c,a) proposed the zeroth-
order stochastic variance reduction gradient (ZO-SVRG)
methods. Moreover, to solve the large-scale machine learn-
ing problems, some asynchronous parallel stochastic zeroth-
order algorithms have been proposed in (Gu, Huo, and
Huang, 2016; Lian et al., 2016; Gu et al., 2018).
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Although the above zeroth-order stochastic methods can
effectively solve the nonconvex optimization, there are few
zeroth-order stochastic methods for the nonconvex nons-
mooth composite optimization except the RSPGF method
presented in (Ghadimi, Lan, and Zhang, 2016). In addition,
Liu et al. (2018a) have also studied the zeroth-order algo-
rithm for solving the nonconvex nonsmooth problem, which
is different from problem (2).

Zeroth-Order Proximal Stochastic Method
Revisit

In this section, we briefly review the zeroth-order proxi-
mal stochastic gradient (ZO-ProxSGD) method to solve the
problem (2). Before that, we first revisit the proximal gradi-
ent descent (ProxGD) method (Mine and Fukushima, 1981).

ProxGD is an effective method to solve the problem (2)
via the following iteration:

xt+1 = Proxηψ
(
xt − η∇f(xt)

)
, t = 0, 1, · · · , (3)

where η > 0 is a step size, and Proxηψ(·) is a proximal
operator defined as:

Proxηψ(x) = argmin
y∈Rd

{
ψ(y) +

1

2η
‖y − x‖2

}
. (4)

As discussed above, because ProxGD needs to compute
the gradient at each iteration, it cannot be applied to solve
the problems, where the explicit gradient of function f(x) is
not available. For example, in the black-box machine learn-
ing model, only function values (e.g., prediction results) are
available Chen et al. (2017). To avoid computing explicit
gradient, we use the zeroth-order gradient estimators (Nes-
terov and Spokoiny, 2017; Liu et al., 2018c) to estimate the
gradient only by function values.
• Specifically, we use the Gaussian Smoothing Gradient

Estimator (GauSGE) (Nesterov and Spokoiny, 2017;
Ghadimi, Lan, and Zhang, 2016) to estimate the gradients
as follows:

∇̂fi(x) =
fi(x+ µui)− fi(x)

µ
ui, i ∈ [n] , (5)

where µ is a smoothing parameter, and {ui}ni=1 denote
i.i.d. random directions drawn from a zero-mean isotropic
multivariate Gaussian distribution N (0, I).

• Moreover, to obtain better estimated gradient, we
can use the Coordinate Smoothing Gradient Estimator
(CooSGE) (Gu, Huo, and Huang, 2016; Gu et al., 2018;
Liu et al., 2018c) to estimate the gradients as follows:

∇̂fi(x) =
d∑
j=1

fi(x+ µjej)− fi(x− µjej)
2µj

ej , i ∈ [n] ,

(6)

where µj is a coordinate-wise smoothing parameter, and
ej is a standard basis vector with 1 at its j-th coordinate,
and 0 otherwise. Although the CooSGE need more func-
tion queries than the GauSGE, it can get better estimated
gradient, and even can make the algorithms to obtain a
faster convergence rate.

Finally, based on these estimated gradients, we give
a zeroth-order proximal gradient descent (ZO-ProxGD)
method, which performs the following iteration:

xt+1 = Proxηψ
(
xt − η∇̂f(xt)

)
, t = 0, 1, · · · , (7)

where ∇̂f(x) = 1
n

∑n
i=1 ∇̂fi(x).

Since ZO-ProxGD needs to estimate full gradient
∇̂f(x) = 1

n

∑n
i=1∇fi(x), when n is large in the prob-

lem (2), its high cost per iteration is prohibitive. As a result,
Ghadimi, Lan, and Zhang (2016) proposed the RSPGF (i.e.,
ZO-ProxSGD) with performing the following iteration:

xt+1 = Proxηψ
(
xt − η∇̂fIt(xt)

)
, t = 0, 1, · · · , (8)

where ∇̂fIt(xt) = 1
b

∑
i∈It ∇̂fi(x), It ∈ {1, 2, · · · , n}

and b = |It| is the mini-batch size.

New Faster Zeroth-Order Proximal Stochastic
Methods

In this section, to efficiently solve the large-scale nonconvex
nonsmooth problems, we propose a class of faster zeroth-
order proximal stochastic methods with the variance reduc-
tion (VR) techniques of SVRG and SAGA, respectively.

ZO-ProxSVRG
In the subsection, we propose the zeroth-order proximal
SVRG (ZO-ProxSVRG) method by using VR technique of
SVRG in (Xiao and Zhang, 2014; Reddi et al., 2016).

The corresponding algorithmic framework is described
in Algorithm 1, where we use a mixture stochastic gra-
dient v̂st = ∇̂fIt(xst ) − ∇̂fIt(x̃s) + ∇̂f(x̃s). Note that
EIt [v̂st ] = ∇̂f(xst ) 6= ∇f(xst ), i.e., this stochastic gradi-
ent is a biased estimate of the true full gradient. Although
the SVRG has shown a great promise, it relies upon the
assumption that the stochastic gradient is an unbiased es-
timate of the true full gradient. Thus, adapting the similar
ideas of SVRG to zeroth-order optimization is not a trivial
task. To address this issue, we analyze the upper bound for
the variance of the estimated gradient v̂st , and choose the ap-
propriate step size η and smoothing parameter µ to control
this variance, which will be in detail discussed in the below
theorems.

Next, we derive the upper bounds for the variance of es-
timated gradient v̂st based on the CooSGE and the GauSGE,
respectively.
Lemma 1. In Algorithm 1 using the CooSGE, given the
mixture estimated gradient v̂st = ∇̂fIt(xst ) − ∇̂fIt(x̃s) +
∇̂f(x̃s), then the following inequality holds

E‖v̂st −∇f(xst )‖2 ≤
2δnL

2d

b
E‖xst − x̃s‖2 +

L2d2µ2

2
,

(9)

where 0 ≤ δn ≤ 1.
Remark 1. Lemma 1 shows that variance of v̂st has an up-
per bound. As the number of iterations increases, both xst
and x̃s will approach the same stationary point x∗, then the
variance of stochastic gradient decreases, but does not van-
ishes, due to using the zeroth-order estimated gradient.
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Lemma 2. In Algorithm 1 using the GauSGE, given the es-
timated gradient v̂st = ∇̂fIt(xst ) − ∇̂fIt(x̃s) + ∇̂f(x̃s),
then the following inequality holds

E‖v̂st −∇f(xt)‖2 ≤ (2 +
12δn
b

)(d+ 6)3L2µ2

+
6δnL

2

b
E‖xst − x̃s‖2 + (4 +

24δn
b

)(2d+ 9)σ2. (10)

Remark 2. Lemma 2 shows that variance of v̂st has an up-
per bound. As the number of iterations increases, both xst
and x̃s will approach the same stationary point x∗, then the
variance of stochastic gradient decreases.

Algorithm 1 ZO-ProxSVRG for Nonconvex Optimization

1: Input: mini-batch size b, S, m and step size η > 0;
2: Initialize: x10 = x̃1 ∈ Rd;
3: for s = 1, 2, · · · , S do
4: ∇̂f(x̃s) = 1

n

∑n
i=1 ∇̂fi(x̃s);

5: for t = 0, 1, · · · ,m− 1 do
6: Uniformly randomly pick a mini-batch It ⊆

{1, 2, · · · , n} such that |It| = b;
7: Using (5) or (6) to estimate mixture stochastic gra-

dient v̂st = ∇̂fIt(xst )− ∇̂fIt(x̃s) + ∇̂f(x̃s);
8: xst+1 = Proxηψ(xst − ηv̂st );
9: end for

10: x̃s+1 = xsm and xs+1
0 = xsm;

11: end for
12: Output: Iterate x chosen uniformly random from
{(xst )mt=1}Ss=1.

ZO-ProxSAGA
In the subsection, we propose the zeroth-order proximal
SAGA (ZO-ProxSAGA) method via using VR technique of
SAGA in (Defazio, Bach, and Lacoste-Julien, 2014; Reddi
et al., 2016).

The corresponding algorithmic description is given in Al-
gorithm 2, where we use a mixture stochatic gradient v̂t =
1
b

∑
it∈It

(
∇̂fit(xt)−∇fit(ztit)

)
+ φ̂t. Similarly, EIt [v̂t] =

∇̂f(xst ) 6= ∇f(xst ), i.e., this stochastic gradient is a biased
estimate of the true full gradient. Note that in Algorithm 2,
due to

∑
it∈It ∇̂fit(z

t+1
it

) =
∑
it∈It ∇̂fit(xt), the step 8

can use directly the term
∑
it∈It

(
∇̂fit(xt) − ∇̂fit(ztit)

)
,

which is computed in the step 5, to avoid unnecessary cal-
culations. Next, we give the upper bounds for the variance
of stochastic gradient v̂t based on the CooSGE and the
GauSGE, respectively.
Lemma 3. In Algorithm 2 using the CooSGE, given the esti-
mated gradient v̂t = 1

b

∑
it∈It

(
∇̂fit(xt)−∇̂fit(ztit)

)
+ φ̂t

with φ̂t = 1
n

∑n
i=1 ∇̂fi(zti), then the following inequality

holds

E‖v̂t −∇f(xt)‖2 ≤
2L2d

nb

n∑
i=1

E‖xt − zti‖22 +
L2d2µ2

2
.

(11)

Remark 3. Lemma 3 shows that variance of v̂t has an upper
bound. As the number of iterations increases, both xt and
{zti}ni=1 will approach the same stationary point, then the
variance of stochastic gradient decreases.
Lemma 4. In Algorithm 2 using GauSGE, given the esti-
mated gradient v̂t = 1

b

∑
it∈It

(
∇̂fit(xt)−∇̂fit(ztit)

)
+ φ̂t

with φ̂t = 1
n

∑n
i=1 ∇̂fi(zti), then the following inequality

holds

E‖v̂t −∇f(xt)‖2 ≤ (2 +
12

b
)(d+ 6)3L2µ2

+
6L2

nb

n∑
i=1

E‖xt − zti‖2 + (4 +
24

b
)(2d+ 9)σ2. (12)

Remark 4. Lemma 4 shows that variance of v̂t has an upper
bound. As the number of iterations increases, both xt and
{zti}ni=1 will approach the same stationary point x∗, then
the variance of stochastic gradient decreases.

Algorithm 2 ZO-ProxSAGA for Nonconvex Optimization

1: Input: mini-batch size b, T and step size η > 0;
2: Initialize: x0 ∈ Rd, and z0i = x0 for i ∈ {1, 2, · · · , n},
φ̂0 = 1

n

∑n
i=1 ∇̂fi(z0i );

3: for t = 0, 1, · · · , T − 1 do
4: Uniformly randomly pick a mini-batch It ⊆

{1, 2, · · · , n} (with replacement) such that |It| = b;
5: Using (5) or (6) to estimate mixture stochastic gradi-

ent v̂t = 1
b

∑
it∈It

(
∇̂fit(xt)− ∇̂fit(ztit)

)
+ φ̂t;

6: xt+1 = Proxηψ(xt − ηv̂t);
7: zt+1

it
= xt for i ∈ It and zt+1

i = zti for i /∈ It;
8: φ̂t+1 = φ̂t − 1

n

∑
it∈It

(
∇̂fit(ztit)− ∇̂fit(z

t+1
it

)
)
;

9: end for
10: Output: Iterate x chosen uniformly random from
{xt}Tt=1.

Convergence Analysis
In this section, we conduct the convergence analysis of both
ZO-ProxSVRG and ZO-ProxSAGA. First, we give some
mild assumptions regarding problem (2) as follows:
Assumption 1. For ∀i ∈ {1, 2, · · · , n}, gradient of the
function fi is Lipschitz continuous with a Lipschitz constant
L > 0, such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd,

which implies

fi(x) ≤ fi(y) +∇fi(y)T (x− y) +
L

2
‖x− y‖2.

Assumption 2. The gradient is bounded as ‖∇fi(x)‖2 ≤
σ2 for all i = 1, 2, · · · , n.

The first assumption is standard for the convergence anal-
ysis of the zeroth-order algorithms (Ghadimi, Lan, and
Zhang, 2016; Nesterov and Spokoiny, 2017; Liu et al.,
2018c). The second assumption gives the bounded gradient
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used in (Nesterov and Spokoiny, 2017; Liu et al., 2018b),
which is relatively stricter than the bounded variance of gra-
dient in (Lian et al., 2016; Liu et al., 2018c,a), due to that
we need to analyze more complex problem (2) including a
non-smooth part. Next, we introduce the standard gradient
mapping (Parikh, Boyd, and others, 2014) used in the con-
vergence analysis as follows:

gη(x) =
1

η

(
x− Proxηψ(x− η∇f(x))

)
. (13)

For the nonconvex problems, if gη(x) = 0, the point x is a
critical point (Parikh, Boyd, and others, 2014). Thus, we can
use the following definition as the convergence metric.

Definition 1. (Reddi et al., 2016) A solution x is called ε-
accurate, if E‖gη(x)‖2 ≤ ε for some η > 0.

Convergence Analysis of ZO-ProxSVRG
In the subsection, we show the convergence analysis of
the ZO-ProxSVRG with the CooSGE (ZO-ProxSVRG-
CooSGE) and the GauSGE (ZO-ProxSVRG-GauSGE),
respectively.

Theorem 1. Assume the sequence {(xst )mt=1}Ss=1 generated
from Algorithm 1 using the CooSGE, and define a sequence
{ct}mt=1 as follows: for s = 1, 2, · · · , S

ct =


δnL

2dη

b
+ ct+1(1 + β), 0 ≤ t ≤ m− 1;

0, t = m

(14)

where β > 0. Let T = mS, η = ρ
dL (0 < ρ < 1

2 ) and b
satisfies the following inequality:

8ρ2m2

b
+ ρ ≤ 1, (15)

then we have

E‖gη(xst )‖2 ≤
E[F (x10)− F (x∗)]

Tγ
+
L2d2µ2η

4γ
, (16)

where γ = η
2 − Lη2 and x∗ is an optimal solution of the

problem (2). Further let b = [n
2
3 ], m = [n

1
3 ], ρ = 1

4 and
µ = O( 1√

dT
), we have

E‖gη(xst )‖2 ≤
16dLE[F (x10)− F (x∗)]

T
+O(

d

T
). (17)

Remark 5. Theorem 1 shows that, given µ = O( 1√
dT

), b =

[n
2
3 ] and m = [n

1
3 ], the ZO-ProxSVRG-CooSGE has O( dT )

convergence rate.

Theorem 2. Assume the sequence {(xst )mt=1}Ss=1 generated
from Algorithm 1 using the GauSGE, and define a sequence
{ct}mt=1 as follows: for s = 1, 2, · · · , S

ct =


3δnL

2η

b
+ ct+1(1 + β), 0 ≤ t ≤ m− 1;

0, t = m

(18)

where β > 0. Let η = ρ
L (0 < ρ < 1

2 ) and b satisfies the
following inequality:

24ρ2m2

b
+ ρ ≤ 1, (19)

then we have

E‖gη(xst )‖2 ≤
E[F (x10)− F (x∗)]

Tγ
+ (1 +

6δn

b
)(d+ 6)3

L2µ2η

γ

+ (2 +
12δn

b
)(2d+ 9)

σ2η

γ
, (20)

where γ = η
2 − η

2L and x∗ is an optimal solution of the
problem (2). Further let b = [n

2
3 ], m = [n

1
3 ], ρ = 1

6 and
µ = O( 1

d
√
T
), we have

E‖gη(xst )‖2 ≤
18LE[F (x10)− F (x∗)]

T
+O(

d

T
)

+O(dσ2). (21)

Remark 6. Theorem 2 shows that given µ = O( 1
d
√
T
), b =

[n
2
3 ] andm = [n

1
3 ], the ZO-ProxSVRG-GauSGE hasO( dT +

dσ2) convergence rate, in which the part O(dσ2) generates
from the GauSGE.

Convergence Analysis of ZO-ProxSAGA
In this subsection, we provide the convergence analysis
of the ZO-ProxSAGA with the CooSGE (ZO-ProxSAGA-
CooSGE) and the GauSGE (ZO-ProxSAGA-GauSGE),
respectively.

Theorem 3. Assume the sequence {xt}Tt=1 generated from
Algorithm 2 using the CooSGE, and define a positive se-
quence {ct}Tt=1 as follows:

ct =
L2dη

b
+ ct+1(1− p)(1 + β) (22)

where β > 0. Let cT = 0, η = ρ
Ld (0 < ρ < 1

2 ), and b
satisfies the following inequality:

32ρ2n2

b3
+ ρ ≤ 1, (23)

then we have

E‖gη(xt)‖2 ≤
E[F (x0)− F (x∗)]

Tγ
+
L2d2µ2η

4γ
, (24)

where γ = η
2 − Lη2 and x∗ is an optimal solution of the

problem (2). Further let b = [n
2
3 ], ρ = 1

8 and µ = O( 1√
dT

),
we have

E‖gη(xt)‖2 ≤
64dLE[F (x0)− F (x∗)]

3T
+O(

d

T
). (25)

Remark 7. Theorem 3 shows that given µ = O( 1√
dT

) and

b = [n
2
3 ], the ZO-ProxSAGA-CooSGE has O( dT ) conver-

gence rate.
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Theorem 4. Assume the sequence {xt}Tt=1 generated from
Algorithm 2 using the GauSGE, and define a positive se-
quence {ct}Tt=1 as follows:

ct =
3L2η

b
+ ct+1(1− p)(1 + β), (26)

where β > 0. Let cT = 0, η = ρ
L (0 < ρ < 1

2 ) and b satisfies
the following inequality:

96ρ2n2

b3
+ ρ ≤ 1, (27)

then we have

E‖gη(xt)‖2 ≤
E[F (x0)− F (x∗)]

Tγ
+

(2 + 12
b )(2d+ 9)σ2η

γ

+
(1 + 6

b )(d+ 6)3L2µ2η

γ
, (28)

where γ = 1
2η − Lη2 and x∗ is an optimal solution of

the problem (2). Further let b = [n
2
3 ], ρ = 1

12 and µ =

O( 1
d
√
T
), we have

E‖gη(xt)‖2 ≤
144LE[F (x0)− F (x∗)]

5T
+O(

d

T
) +O(dσ2). (29)

Remark 8. Theorem 4 shows that given µ = O( 1
d
√
T
) and

b = [n
2
3 ], the ZO-ProxSAGA-GauSGE hasO( dT +dσ2) con-

vergence rate, in which the part O(dσ2) generates from the
GauSGE.

All related proofs are in the supplementary document.

Experiments
In this section, we will compare the proposed algorithms
(ZO-ProxSVRG-CooSGE, ZO-ProxSVRG-GauSGE, ZO-
ProxSAGA-CooSGE, ZO-ProxSAGA-GauSGE) with the
RSPGF method (Ghadimi, Lan, and Zhang, 2016) on two
applications: black-box binary classification and ad-
versarial attacks on black-box deep neural networks
(DNNs). Note that the RSPGF uses the GauSGE to estimate
gradient.

Black-Box Binary Classification
Experimental Setup In this experiment, we apply our al-
gorithms to learn the black-box binary classification prob-
lem. Specifically, given a set of training samples {ai, li}ni=1,
where ai ∈ Rd and li ∈ {−1, 1}, we find the optimal pre-
dictor x ∈ Rd by solving the following problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) + λ1‖x‖1 + λ2‖x‖22, (30)

where fi(x) is the black-box loss function, that only returns
the function value given an input. Here, we specify the non-
convex sigmoid loss function fi(x) = 1

1+exp(liaTi x)
in the

black-box setting.

Table 2: Real data for black-box binary classification

datasets #samples #features #classes
20news 16,242 100 2

a9a 32,561 123 2
w8a 64,700 300 2

covtype.binary 581,012 54 2

In the experiment, we use the publicly available real
datasets1, which are summarized in Table 2. In the algo-
rithms, we fix the mini-batch size b = 20, the smoothing
parameters µ = 1

d
√
t

in the GauSGE and µ = 1√
dt

in the
GooSGE. Meanwhile, we fix λ1 = λ2 = 10−5, and use the
same initial solution x0 from the standard normal distribu-
tion in each experiment. For each dataset, we use half of the
samples as training data, and the rest as testing data.

Experimental Results Figures 1 and 2 show that both ob-
jective values and test losses of the proposed methods faster
decrease than the RSPGF method, as the time increases.
In particular, both the ZO-ProxSVRG and ZO-ProxSAGA
using the CooSGE show the better performances than the
counterparts using the GauSGE. From these results, we
find that the CooSGE shows the better performances than
the CauSGE in estimating gradients. Moreover, these re-
sults also demonstrate that both the ZO-ProxSVRG and
ZO-ProxSAGA using the CooSGE have a relatively faster
convergence rate than the counterparts using the GauSGE.
Since the ZO-ProxSAGA has less function query complexity
than the ZO-ProxSVRG, it shows the better performances
than the ZO-ProxSVRG. For example, the ZO-ProxSVRG-
CooSGE needs O(ndS + bdT ) function queries, while ZO-
SAGA-CooSGE needs O(bdT ) function queries.

Adversarial Attacks on Black-Box DNNs
In this experiment, we apply our methods to generate ad-
versarial examples to attack a pre-trained neural network
model. Following (Chen et al., 2017; Liu et al., 2018c), the
parameters of given model are hidden from us and only its
outputs are accessible. In this case, we can not compute
the gradients by using back-propagation algorithm. Thus,
we use the zeroth-order algorithms to find an universal ad-
versarial perturbation x ∈ Rd that could fool the samples
{ai ∈ Rd, li ∈ N}ni=1, which can be specified as the fol-
lowing elastic-net attacks to black-box DNNs problem:

min
x∈Rd

1

n

n∑
i=1

max
{
Fli(ai + x)−max

j 6=li
Fj(ai + x), 0

}
+ λ1 ‖x‖1 + λ2 ‖x‖22 , (31)

where λ1 and λ2 are nonnegative parameters to balance
attack success rate, distortion and sparsity. Here F (a) =
[F1(a), · · · , FK(a)] ∈ [0, 1]K represents the final layer
output of neural network, which is the probabilities of K
classes.

120news is from the website https://cs.nyu.edu/∼roweis/data.
html; a9a, w8a and covtype.binary are from the website www.csie.
ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
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Figure 1: Objective value versus CPU time on black-box binary classification.
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Figure 2: Test loss versus CPU time on black-box binary classification.

Following (Liu et al., 2018c), we use a pre-trained DNN2

on the MNIST dataset as the target black-box model, which
achieves 99.4% test accuracy. In the experiment, we select
n = 10 examples from the same class, and set the batch
size b = 5 and a constant step size η = 1/d for the zeroth-
order algorithms, where d = 28 × 28. In addition, we set
λ1 = 10−3 and λ2 = 1 in the experiment.

Figure 3 shows that both objective values and black-
box attack losses (i.e. the first part of the problem (31))
of the proposed algorithms faster decrease than the RSPGF
method, as the number of iteration increases. Here, we add
the ZO-ProxSGD-CooSGE method for comparison, which
is obtained by combining the ZO-ProxSGD method with the
CooSGE. Interestingly, the ZO-ProxSGD-CooSGE shows
better performance than both the ZO-ProxSVRG-GauSGE
and ZO-ProxSAGA-GauSGE, which further demonstrates
that the CooSGE can have better performance than the
CauSGE in estimating gradient. Although having a rel-
atively good performance in generating the adversarial
samples, the ZO-ProxSGD still shows worse performance
than both the ZO-ProxSVRG-CooSGE and ZO-ProxSAGA-
CooSGE, due to not using the VR technique.

Conclusions
In this paper, we proposed a class of faster gradient-free
proximal stochastic methods based on the zeroth-order gra-
dient estimators, i.e., the GauSGE and the CooSGE, which
only use the objective function values in the optimiza-

2https://github.com/carlini/nn robust attacks.
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Figure 3: Objective value and attack loss on generating ad-
versarial samples from black-box DNNs.
tion. Moreover, we provided the theoretical analysis on the
convergence properties of the proposed algorithms (ZO-
ProxSVRG and ZO-ProxSAGA) based on the CooSGE
and the GauSGE, respectively. In particular, both the ZO-
ProxSVRG and ZO-ProxSAGA using the CooSGE have rel-
atively faster convergence rates than the counterparts using
the GauSGE, since the CooSGE has better performance than
the CauSGE in estimating gradients.
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