
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Separator-Based Pruned Dynamic Programming for Steiner Tree

Yoichi Iwata
National Institute of Informatics

yiwata@nii.ac.jp

Takuto Shigemura
The University of Tokyo
sigma@is.s.u-tokyo.ac.jp

Abstract

Steiner tree is a classical NP-hard problem that has been ex-
tensively studied both theoretically and empirically. In theory,
the fastest approach for inputs with a small number of termi-
nals uses the dynamic programming, but in practice, state-
of-the-art solvers are based on the branch-and-cut method. In
this paper, we present a novel separator-based pruning tech-
nique for speeding up a theoretically fast DP algorithm. Our
empirical evaluation shows that our pruned DP algorithm is
quite effective against real-world instances admitting small
separators, scales to more than a hundred terminals, and is
competitive with a branch-and-cut solver.

Introduction
For an undirected graph G = (V,E) and a terminal set A ⊆
V , a tree in G is called a Steiner tree if it connects all the
terminals in A. An input to the Steiner tree problem is an
undirected graph G = (V,E) with an edge-weight function
w : E → R>0 and a terminal set A ⊆ V , and the task is
to find a Steiner tree with the minimum total weight. We use
n, m, and k to denote the number of vertices, edges, and
terminals, respectively.

The Steiner tree problem has been extensively studied
both theoretically and empirically. In theoretical studies,
Steiner tree is known as one of the Karp’s 21 NP-complete
problems and has been studied from various theoretical
viewpoints including approximation algorithms and fixed-
parameter-tractable algorithms. In empirical studies, Steiner
tree is known to have many applications in various fields in-
cluding the VLSI design of microchips (Held et al. 2011),
the design of fiber-optic networks (Leitner et al. 2014), key-
word search in relational databases (Ding et al. 2007), and
team formulation in social networks (Lappas, Liu, and Terzi
2009)1. Due to its practical importance, in recent years, two

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The latter two applications use the following variant of Steiner
tree, called group Steiner tree: given a set of groups of vertices in-
stead of the terminals, find a minimum-weight connected tree con-
taining at least one vertex from each group. We can solve this vari-
ant by a reduction to the standard Steiner tree (for details, see, e.g.,
(Zachariasen and Rohe 2003) or (Gamrath et al. 2017)). Actually,
the datasets we use in the experiments contain instances obtained
by this reduction.

competitions of Steiner tree solvers, the 11th DIMACS Im-
plementation Challenge (2014) and the 3rd Parameterized
Algorithms and Computational Experiments (PACE) Chal-
lenge (2018), were held, and development of practically fast
Steiner tree solvers has attracted a lot of attention.

In theory, the Steiner tree problem is known to be fixed
parameter tractable (FPT) parameterized by the number of
terminals k; i.e., it can be solved in f(k)poly(n) time for
some computable function f . This means that, although the
problem is NP-hard in general, it is easy when the number
of terminals is small. The first FPT algorithm was obtained
by Dreyfus and Wagner (Dreyfus and Wagner 1971) and
has a time complexity O(3knm). This algorithm has been
improved in two directions: in terms of the poly(n) factor,
the current fastest FPT algorithm runs in O(3kn + 2k(m +
n log n)) time (Erickson, Monma, and Veinott 1987), and
in terms of the f(k) factor, the current fastest one runs in
O((2 + ε)kng(ε)) time for any ε > 0 for some function g
(Fuchs et al. 2007).

All of these FPT algorithms solve the problem as follows.
Let T be a minimum Steiner tree for terminals A and pick a
terminal u ∈ A. If u has degree one in T , T is the union of
the unique incident edge uv and the minimum Steiner tree
for terminals (A \ {u}) ∪ {v}. If u has degree at least two,
T is the union of the minimum Steiner tree for A1 ∪ {u}
and the minimum Steiner tree for A2 ∪ {u} for some parti-
tion A = A1 ∪A2 ∪ {u}. Conversely, any minimum Steiner
tree can be obtained by recursively applying these two op-
erations, and therefore, we can solve the problem by com-
puting a minimum Steiner tree for terminals S ∪ {u} for
every subset S ⊆ A and every vertex u ∈ V in a bottom-
up from small to large by using the dynamic programming
(DP). This is why the dependence on k is exponential. It
has been theoretically proved that avoiding the exponential
dependence on k is difficult; under the Set Cover Conjec-
ture, the Steiner tree with k terminals cannot be solved in
(2 − ε)kpoly(n) time for any ε > 0 (Cygan et al. 2016),
and under the Exponential-Time Hypothesis, it cannot be
solved in 2o(k)poly(n) time even for planar graphs (Marx,
Pilipczuk, and Pilipczuk 2017).

In practice, due to the exponential dependence on k, the
FPT algorithms have been used only against inputs with a
small number of terminals (usually less than ten). For solv-
ing general inputs, the state-of-the-art approach is a com-

1520

bination of sophisticated preprocessing using various re-
duction rules (Duin 2000; Polzin 2004; Daneshmand 2004)
and the branch-and-cut method using powerful MIP solvers
with various Steiner-tree-specific features such as fast cut-
ting plane generations and primal/dual heuristics. In con-
trast to the FPT algorithms, this approach has no theoretical
worst-case analysis better than the trivial 2npoly(n); how-
ever, it is quite powerful in practice. Actually, all the four
solvers submitted to the exact SPG (classical Steiner prob-
lem in graphs) track of the 11th DIMACS challenge used
the branch-and-cut method (Gamrath et al. 2017; Fischetti
et al. 2017; Althaus and Blumenstock 2014). Although there
have been studies for speeding up the FPT algorithms by us-
ing the best-first search (Ding et al. 2007) or the A∗ search
(Hougardy, Silvanus, and Vygen 2017), they are still limited
to instances with several tens of terminals.

One of the goals of the PACE challenge is to investigate
the practical applicability of algorithmic ideas from FPT al-
gorithms, and Steiner tree problem was chosen for the 3rd
challenge. The challenge consists of one heuristic track and
two exact tracks; one is for inputs with a small number of
terminals and the other is for inputs with small tree-width.
Here, tree-width is a famous sparsity measure of graphs. A
variety of real-world graphs have small tree-width (e.g., pla-
nar graphs with n vertices have tree-widthO(

√
n)), and var-

ious problems, including Steiner tree, are known to be fixed-
parameter tractable parameterized by tree-width (Bodlaen-
der et al. 2015; Fafianie, Bodlaender, and Nederlof 2015).

The main contribution of this paper is presenting a novel
separator-based pruning technique for speeding up the FPT
algorithm for Steiner tree while keeping its theoretical
worst-case bound. Our algorithm can implicitly exploit an
existence of small separators in real-world instances. We
conduct experiments using the benchmark datasets used in
the DIMACS and the PACE challenges. The experimen-
tal results show that the FPT algorithm with the proposed
pruning can solve not only instances with a small number
of terminals but also large sparse real-world instances with
more than a hundred terminals. The proposed algorithm is
not only faster than the existing speeding up method of the
FPT algorithm but also competitive with a branch-and-cut
solver; there are many instances (especially, small-terminals
or sparse instances) for which our algorithm is better but
there also exist many instances (especially, large-terminals
or dense instances) for which the branch-and-cut solver is
better. In the PACE challenge, our solver using the proposed
algorithm won the 1st in the track 1 (small number of ter-
minals) and the 2nd in the track 2 (small tree-width). Our
implementation is available on GitHub2.

The idea behind our pruning comes from an existing
polynomial-time algorithm for a special case of Steiner tree
such that the input graph is planar and all the terminals are
on a single face. In this case, we can improve the running
time of the FPT algorithm toO(k3n+k2n log n) as follows
(Erickson, Monma, and Veinott 1987). We number the ter-
minals from 0 to k − 1 along the face they locate on (see
Figure 1). Let T be a minimum Steiner tree for the termi-

2https://github.com/wata-orz/steiner tree

𝒌−𝟏
𝟎

𝟏

𝑻

𝒔+𝟏

𝒔−𝟏

𝒕−𝟏

𝒖

𝒕+𝟏

𝒔𝒕

Figure 1: All the terminals A = {0, 1, . . . , k− 1} are on the
unbounded face. By splitting a Steiner tree T at u ∈ V (T),
we obtain two Steiner trees for terminals {s, s+1, . . . , t} ∪
{u} and {t+ 1, t+ 2, . . . , s− 1} ∪ {u}.

nals A. Because the graph is planar and all the terminals
are on a single face, we can see that for any two terminals
s, t ∈ A, the path between s and t on T separates the ter-
minals {s + 1, . . . , t − 1} from the others. Let u ∈ V (T)
be a vertex on T . By splitting T at u, we can cut out a
minimum Steiner tree for terminals S ∪ {u} for some sub-
set S ⊆ A. By the above property, we can assume that
S induces a consecutive interval of A; i.e., we can write
S = {s, s + 1, . . . , t − 1, t} for some integers s, t ≥ 0
(when s > t, we use modulo k). Therefore, in the dynamic
programming, it is sufficient to compute a minimum Steiner
tree for terminals S ∪ {u} only for every such consecutive
interval S ⊆ A. As the number of such intervals is O(k2),
we obtain the above running time.

We can apply this idea for general inputs as follows. Sup-
pose that we have computed a minimum Steiner tree T for
terminals S ∪ {u} for some subset S ⊆ A and u ∈ V by
the dynamic programming. If the remaining terminals A \S
are separated by V (T) \ {u}, any minimum Steiner tree for
(A \ S) ∪ {u} must contain some vertex in V (T) \ {u}.
Therefore, we immediately know that the current minimum
Steiner tree for S ∪ {u} cannot be extended to a minimum
Steiner tree for A, and thus we can discard it from the DP
table. In contrast to the previous special case, unfortunately,
this condition rarely happens for general inputs. Our key ob-
servation is that, even if V (T) \ {u} itself is not a separator,
we can apply the pruning if there exists a separator satisfying
some weaker condition. As in the previous special case, this
pruning significantly reduces the number of subsets S ⊆ A
we need to consider (especially, for sparse graphs admitting
small separators) and thus leads to a significant speedup.

Preliminaries
For an integer i, we define [i] as the set {1, 2, . . . , i}. For
convenience, we assume A = [k]. For a subset S ⊆ V , we
define a Steiner tree for S as a connected subgraph G′ =
(V ′, E′) of the input graph G = (V,E) satisfying S ⊆ V ′,
and we denote the minimum weight of a Steiner tree for S
by opt(S). For a subset S ⊆ V , a subset C ⊆ V is called

1521

Algorithm 1 (Erickson, Monma, and Veinott 1987)
1: d(S, u)←∞ for ∀S ⊆ A and ∀u ∈ V .
2: d({a}, a)← 0 for ∀a ∈ A.
3: for S ⊆ A in ascending order of |S| do
4: Initialize a priority queue Qd on V .
5: while Qd is not empty do
6: Pop u with the smallest d(S, u) value from Qd.
7: for uv ∈ E do
8: d(S, v)

min←−− d(S, u) + w(uv)

9: for already processed S′ ⊆ A \ S do
10: for u ∈ V do
11: d(S ∪ S′, u) min←−− d(S, u) + d(S′, u)

12: return d(A, a) for an arbitrary a ∈ A.

an S-separator if S ∩ C 6= ∅ or S is not connected in the
graph G[V \ C]; or in other words, every Steiner tree for
S contains some vertex in C. For a tree T and two vertices
u and v on T , we define b(T, u, v) as the maximum weight
of a maximal degree-two path contained in the unique path
between u and v in T 3. Given a tree T and a vertex u, we
can compute b(T, u, v) for all v ∈ V (T) in linear time by
a simple DFS from u. For a variable x and a value y, we
denote by x min←−− y an operation updating x← min(x, y).

Classical Algorithm
We review a classical O(3kn + 2k(m + n log n))-time DP
algorithm (Erickson, Monma, and Veinott 1987) described
in Algorithm 1. We first create a two-dimensional table d :
2A × V → R≥0, which is initialized as d({a}, a) = 0 for
every terminal a ∈ A and d(S, u) =∞ for every other S ⊆
A and u ∈ V . We store the minimum weight of a Steiner tree
for S ∪ {u} we have found so far in d(S, u). We compute
the table by processing each subset S ⊆ A one by one in
ascending order of the size |S|. After processing a subset S,
we ensure that d(S, u) is equal to opt(S ∪ {u}) for every
u ∈ V . Finally, we can solve the problem by answering
d(A, a) for an arbitrary terminal a ∈ A.

We process each subset S ⊆ A as follows. First, we up-
date d(S, u) for every u by using Dijkstra’s algorithm as
follows; while there are unprocessed vertices, we pop an
unprocessed vertex u with the smallest d(S, u) value by
using a priority queue; then for each edge uv ∈ E, we
update d(S, v)

min←−− d(S, u) + w(uv) (we can obtain a
Steiner tree for S ∪{v} by inserting the edge uv to a Steiner
tree for S ∪ {u}). This takes O(m + n log n) time by us-
ing the Fibonacci heap. After this update, for each subset
S′ ⊆ A \ S that has been already processed, we update
d(S ∪ S′, u) min←−− d(S, u) + d(S′, u) (we can obtain a
Steiner tree for S∪S′∪{u} by merging two Steiner trees for
S ∪ {u} and S′ ∪ {u}). This takes O(2k−|S|n) time. Thus

3Suppose that the path between u = v0 and v = v` is
(v0, v1, . . . , v`), and among these vertices, {vi1 , . . . , vip} have de-
gree at least three in T . Then (v0, . . . , vi1), (vi1 , . . . , vi2), . . ., and
(vip , . . . , v`) are the set of maximal degree-two paths.

the total running time is
∑
S⊆A(m+ n log n+ 2k−|S|n) =

O(3kn+ 2k(m+ n log n)).

Separator-based Pruning
In order to speed up the DP algorithm, instead of computing
d(S, u) for every S ⊆ V and u ∈ V , we compute a small
portion of them while maintaining correctness of the algo-
rithm. For a subset S ⊆ V , we denote by valid(S) the set of
vertices v ∈ V such that (S, v) is contained in the table d.
Because we expect that valid(S) = ∅ for a large portion of
subsets S ⊆ A, instead of using the two-dimensional array,
we use a binary search tree to efficiently maintain the table
d. The key in each node is a set S ⊆ A with valid(S) 6= ∅,
and the value is a list of (u, d(S, u)) for u ∈ valid(S).

For a subset S ⊆ A and a vertex u ∈ V , a Steiner tree T
for S ∪ {u} is called important if there exists a Steiner tree
T ′ for (A \S)∪{u} such that T +T ′ is a minimum Steiner
tree forA. We can easily see that the optimal solution can be
obtained by computing only d(S, u) such that the minimum
Steiner tree for S ∪ {u} is important; however, it is difficult
to test the importance without knowing the optimal solution
itself. In our algorithm, we use the following necessary con-
dition of the importance.

Lemma 1. For a subset S ⊆ A and a vertex u ∈ V , a
Steiner tree T for S ∪ {u} is not important if there exists an
(A \ S)-separator C such that, for every v ∈ C, there exists
Sv ⊆ S satisfying the following inequality:

opt(Sv ∪ {v}) + opt((S \ Sv) ∪ {u}) < w(T). (1)

Proof. Suppose that T is important. Then there exists a
Steiner tree T ′ for (A \S)∪{u} such that T +T ′ is a mini-
mum Steiner tree for A. Because C is an (A \ S)-separator,
T ′ must contain some vertex v ∈ C. Let Tv be a minimum
Steiner tree for Sv ∪ {v} and let Tu be a minimum Steiner
tree for (S \ Sv)∪ {u}. Then Tv + Tu + T ′ is a Steiner tree
for A satisfying w(Tv + Tu + T ′) < w(T + T ′), which is a
contradiction.

In our algorithm, after processing a subset S ⊆ A, we
ensure the following for every u ∈ V : (1) if the minimum
Steiner tree for S ∪ {u} is important, (S, u) is contained in
the table d and d(S, u) is equal to opt(S ∪ {u}) and (2) if it
is not important, (S, u) is not contained in d or d(S, u) is at
least opt(S ∪ {u}).

A special case of Lemma 1 is when Sv = S for every
v ∈ C. In this case, the inequality (1) can be simplified to
opt(S ∪ {v}) < w(T). We can exploit this special case as
follows. For a value x, we define Cx := {v | d(S, v) ≤ x}.
Before running the for-loops at lines 9–11, we compute the
minimum value x such that Cx forms an (A \ S)-separator.
We then know that opt(S ∪ {v}) ≤ d(S, v) ≤ x holds for
every v ∈ Cx. Therefore we can conclude that for every
u ∈ V with d(S, u) > x, the corresponding Steiner tree for
S ∪{u} is not important, and thus we can safely drop (S, u)
from the table.

We use the case of Sv 6= S to strengthen the above prun-
ing as follows.

1522

Lemma 2. For a subset S ⊆ A and a vertex u ∈ V , a
Steiner tree T for S ∪ {u} is not important if there exists an
(A \S)-separator C such that, for every v ∈ C, at least one
of the following two conditions is satisfied.

1. opt(S ∪ {v}) < w(T), or
2. there exists a vertex s ∈ V (T) such that the distance be-

tween s and v is less than b(T, u, s).

Proof. We prove the lemma by applying Lemma 1. Let v be
a vertex in C. If v satisfies the first condition, the inequality
(1) holds for Sv = S. If v satisfies the second condition, let
P be a maximum-weight degree-two path contained in the
path between u and s on T (so we have w(P) = b(T, u, s)).
By deleting P from T , we obtain a Steiner tree for S′ ∪ {s}
and a Steiner tree for (S \S′)∪{u} for some S′ ⊆ S whose
total weight is w(T)− w(P). Therefore, we have opt(S′ ∪
{s})+opt((S\S′)∪{u}) ≤ w(T)−w(P). Because we can
construct a Steiner tree for S′∪{v} by inserting the shortest-
path between s and v to a Steiner tree for S′ ∪ {s}, we have
opt(S′ ∪ {v}) < opt(S′ ∪ {s}) + w(P). We now have

opt(S′ ∪ {v}) + opt((S \ S′) ∪ {u})
< opt(S′ ∪ {s}) + w(P) + opt((S \ S′) ∪ {u})
≤ (w(T)− w(P)) + w(P)

≤ w(T).

Therefore, the inequality (1) holds for Sv = S′.

We now describe the entire algorithm (see Algorithm 2).
We iterate only over subsets S ⊆ A such that valid(S) is
non-empty. For a vertex u ∈ valid(S), we denote by Tu the
corresponding Steiner tree for S ∪ {u} of weight d(S, u).

Before running Dijkstra’s algorithm, we first apply the
following update (lines 4–9). For each vertex u ∈ valid(S),
we construct the corresponding Steiner tree Tu. Because the
Steiner tree Tu is also a Steiner tree for S ∪ {v} for ev-
ery v ∈ V (Tu), we update d(S, v) min←−− d(S, u) for every
v ∈ V (Tu). Note that, even if Tu is important for S∪{u}, it
may not be important for S ∪ {v}, and therefore the table d
may not contain (S, v). We mark every such v as ‘dummy’
so that we can identify the corresponding Steiner tree as
unimportant. Although any Steiner tree obtained by extend-
ing an unimportant Steiner tree is also unimportant, this up-
date leads to smaller d(S, v) values for unimportant Steiner
trees, and therefore it is helpful for pruning.

We then update the table d by running Dijkstra’s algo-
rithm (lines 10–16). This part is almost the same as the clas-
sical algorithm without pruning. The only difference is that
we propagate the ‘dummy’ mark.

Next, we compute a setN of vertices as follows (lines 17–
27). Let p be a table initialized as follows: if v is contained
in every Tu, we set p(v)← −minu∈valid(S) b(Tu, u, v), and
otherwise, we set p(v) ← 0. We update p by running Di-
jkstra’s algorithm with the initial distance p and then set
N := {v | p(v) < 0}. After this update, p(v) is the mini-
mum of zero and dist(s, v)−minu∈valid(S) b(Tu, u, s) over
all s contained in every Tu. Therefore, p(v) < 0 implies
that, for every u ∈ valid(S), there exists s ∈ V (Tu) such

Algorithm 2 Separator-based Pruned DP Algorithm
1: d({a}, a)← 0 for ∀a ∈ A.
2: for S ⊆ A with valid(S) 6= ∅ in ascending order do
3: dummy(u)← false for ∀u ∈ V .
4: for u ∈ valid(S) do
5: Tu ← the Steiner tree for S ∪ {u}.
6: for v ∈ V (Tu) do
7: if d(S, v) > d(S, u) then
8: d(S, v)← d(S, u)
9: dummy(v)← true

10: Initialize a priority queue Qd on V .
11: while Qd is not empty do
12: Pop u with the smallest d(S, u) value from Q.
13: for uv ∈ E do
14: if d(S, v) > d(S, u) + w(uv) then
15: d(S, v)← d(S, u) + w(uv)
16: dummy(v)← dummy(u)

17: for v ∈ V do
18: if v is contained in every Tu then
19: p(v)← −minu∈valid(S) b(Tu, u, v)
20: else
21: p(v)← 0

22: Initialize a priority queue Qp on V .
23: while Qp is not empty do
24: Pop u with the smallest p(u) value from Qp.
25: for uv ∈ E do
26: p(v)

min←−− p(u) + w(uv)

27: N ← {v | p(v) < 0}.
28: x←minimum x s.t. (Cx∪N) is anA\S-separator.
29: for u ∈ V with d(S, u) > x or dummy(u) do
30: Drop (S, u) from d.
31: for already processed S′ ⊆ A \ S do
32: for u ∈ valid(S) ∩ valid(S′) do
33: d(S ∪ S′, u) min←−− d(S, u) + d(S′, u)

34: return d(A, a) for an arbitrary a ∈ A.

that dist(s, v) < b(Tu, u, s). Thus, the second condition of
Lemma 2 is satisfied for every v ∈ N .

We now do pruning (lines 28–30). We compute a mini-
mum value x such that Cx ∪N forms an (A \ S)-separator
(or zero if N itself is an (A \ S)-separator), where Cx :=
{v | d(S, v) ≤ x}. We can efficiently compute such x as
follows; starting from an empty set R, we insert a vertex
v ∈ V \ N to R one by one in non-increasing order of
d(S, v); when all the vertices inA\S get connected inG[R],
we set x := d(S, v) for the last inserted vertex v. Let u be
a vertex with d(S, u) > x. For each vertex v ∈ Cx, the
first condition of Lemma 2 is satisfied, and for each vertex
v ∈ N , the second condition of Lemma 2 is satisfied. There-
fore, we can safely drop every (S, u) with d(S, u) > x from
the table d by applying Lemma 2. We can also drop (S, u)
for every u ∈ V with the ‘dummy’ mark because we know
that the corresponding Steiner tree is unimportant.

Finally, for each already processed subset S′ ⊆ A \ S,
we update d by merging a Steiner tree for S ∪ {u} and a

1523

Steiner tree for S′ ∪ {u} into a Steiner tree for S ∪S′ ∪ {u}
(lines 31–33). This part is almost the same as the classical
algorithm without pruning. The only difference is how to
enumerate all such S′. Because we only need to enumerate
subsets S′ ⊆ A \ S with valid(S) ∩ valid(S′) 6= ∅, we use
a sophisticated data structure presented in the next section.

Further Speed-up Techniques
We present two techniques for further speeding up the
pruned DP algorithm.

Data Structure
We propose a binary tree data structure to maintain a set of
already processed subsets S′ ⊆ A with valid(S′) 6= ∅ so
that, given a subset S ⊆ A, we can efficiently enumerate all
the subsets S′ ⊆ A \ S with valid(S) ∩ valid(S′) 6= ∅. For
a node i, let Li denote the set of leaves of the subtree rooted
at i. For two subsets S, S′ ⊆ A, we define p(S, S′) as the
minimum integer p such that S ∩ [p] and S′ ∩ [p] differ.

Each leaf t of the tree contains a set St ⊆ A. Each internal
node i of the tree contains an integer ki and two sets Ii ⊆ A
and Ui ⊆ V . Initially, the data structure consists of a single
leaf t with St = ∅. We maintain the data structure so that the
following holds for every internal node i.

1. Ii = ∩t∈LiSt.

2. Ui = ∪t∈Livalid(St).

3. For all t ∈ Li, St ∩ [ki − 1] is the same.

4. For the left child l, ki 6∈ St for all t ∈ Ll, and for the right
child r, ki ∈ St for all t ∈ Lr.
We insert a subset S ⊆ A into the data structure by re-

cursively applying the following procedure starting from the
root. If the current node l is a leaf, we create a new inter-
nal node i with Ii := Sl ∩ S, Ui := valid(Sl) ∪ valid(S),
and ki := p(Sl, S); create a new leaf r with Sr := S; and
then replace l with the node i having two children l and
r. If the current node i is an internal node and p(Ii, S) <
ki, we create a new internal node j with Ij := Ii ∩ S,
Uj := Ui ∪ valid(S), and kj := p(Ii, S); create a new
leaf r with Sr := S; and then replace i with the node j
having two children i and r. If the current node i is an in-
ternal node and p(Ii, S) ≥ ki, we update Ii ← Ii ∩ S and
Ui ← Ui ∪ valid(S); and then proceed to the left child if
ki 6∈ S or to the right child if ki ∈ S. The worst-case run-
ning time of the insertion is O(kn).

We enumerate subsets S′ ⊆ A \ S with valid(S) ∩
valid(S′) 6= ∅ by recursively applying the following pro-
cedure starting from the root. If the current node t is a leaf,
we check the condition for St and add it to the candidates.
If the current node i is an internal node with Ii ∩ S 6= ∅ or
Ui ∩ valid(S) = ∅, we immediately know that Li contains
no subsets S′ ⊆ A\S with valid(S′)∩valid(S) 6= ∅. There-
fore, we do not process its children. If the current node i is
an internal node with Ii ∩ S = ∅ and Ui ∩ valid(S) 6= ∅,
we recursively process the two children of i. The worst-case
running time of the enumeration is O(min(2k−|S|, |L|)n),
where L is the set of subsets inserted into the data structure.

Note that our data structure is completely useless for the un-
pruned version because valid(S) = V holds for all S ⊆ A.

Meet in the Middle
We use the following folklore lemma about the existence
of a balanced separation of a tree (for the proof, see, e.g.,
(Fomin et al. 2018)) to show that we can obtain a minimum
Steiner tree by merging three Steiner trees for small subsets.
Lemma 3. Let T be a tree and µ : V (T) → R≥0 be a
non-negative vertex weight function. Then there exists a ver-
tex u ∈ V (T) such that µ(V (C)) ≤ µ(V (T))/2 for every
connected component C of T − u.
Corollary 1. Let T be a minimum Steiner tree for A. When
|A| ≥ 3, there exists a vertex u ∈ V (T) and a partition
A = S1 ∪ S2 ∪ S3 with 1 ≤ |S1| ≤ |S2| ≤ |S3| ≤ |A|/2
such that T is a union of Steiner trees for S1∪{u}, S2∪{u},
and S3 ∪ {u}.

Proof. By applying Lemma 3 against µ : V → {0, 1} such
that µ(u) = 1 ⇐⇒ u ∈ A, we obtain a vertex u′ ∈ V (T)
such that each connected component of T − u′ contains at
most |A|/2 terminals. Let u be a vertex of degree at least
three or contained in A that is nearest to u′ on T . Then,
we obtain a partition A = S1 ∪ . . . ∪ Sd with d ≥ 3 and
1 ≤ |Si| ≤ |A|/2 for each Si such that T is a union of
Steiner trees for S1∪{u}, . . ., and Sd∪{u}. While d ≥ 4, we
pick two smallest Si and Sj and then replace them with the
union Si ∪Sj . Note that because d ≥ 4, |Si|+ |Sj | ≤ |A|/2
holds. Finally, when d becomes three, we obtain the desired
partition.

Using this corollary, we can speed up the algorithm as
follows. In the for-loop at line 2, we iterate only over subsets
S ⊆ A of size at most |A|/2. In the for-loop at line 31, we
iterate only over subsets S′ ⊆ A \ S of size at most |A| −
2|S|. Finally, we return the minimum of d(S, u)+d(A\S, u)
over all the processed S and u ∈ valid(S).
Lemma 4. The above speedup is correct.

Proof. Let S1, S2, S3 be the subsets in Corollary 1. Because
the size of each subset is at most |A|/2, the algorithm cor-
rectly computes a minimum Steiner tree for Si ∪{u} for ev-
ery i ∈ [3]. Because opt(S1∪S2∪{u}) = opt(S1∪{u})+
opt(S2 ∪ {u}) and we have |S1| ≤ |A| − 2|S2|, it also cor-
rectly computes a minimum Steiner tree for S1 ∪ S2 ∪ {u}.
Therefore, d(S3, u)+d(A\S3, u) = d(S3, u)+d(S1∪S2, u)
gives the minimum Steiner tree.

Experimental Evaluation
We conducted experiments on a Linux server with Intel
Xeon E5-2670 (2.6 GHz) which produced a score of 399
for the DIMACS benchmark. For each test, we use a sin-
gle thread and limit the maximum run time by 30 minutes
and the maximum memory by 6GB. In the experiments, we
use the following benchmark datasets used in the DIMACS
challenge and the PACE challenge.
SteinLib A collection of crafted/real-world testsets (Koch,

Martin, and Voß 2000). We classify testsets into the fol-
lowing 7 categories.

1524

Random (B, C, D, E, MC, I, P4Z, P6Z): random graphs.
Artificial (SP, PUC): artificial instances.
Euclidian (X, P4E, P6E): Euclidian graphs.
CrossGrid (1R, 2R): 2D/3D cross-grid graphs.
VLSI (ALUE, ALUT, DIW, DMXA, GAP, MSM, TAQ,

LIN): grid graphs with holes coming from VLSI appli-
cations.

Rectilinear (ESFST, TSPFST): rectilinear graphs with
L1 distances preprocessed with GeoSteiner (Warme,
Winter, and Zachariasen 2000).

Group (WRP): instances obtained by a reduction from
the group Steiner tree problem coming from industrial
wire routing problems (Zachariasen and Rohe 2003).

Vienna Real-world instances from telecommunication net-
works (Leitner et al. 2014).

Copenhagen Obstacle-avoiding rectilinear Steiner tree in-
stances preprocessed with ObSteiner (Huang and Young
2013).

PACE Public instances of the two exact tracks of the PACE
challenge, each of which consists of 100 instances from
SteinLib and Vienna.

Impact of Pruning
We first evaluate the impact of the pruning by comparing the
performance with the unpruned version EMV ((Erickson,
Monma, and Veinott 1987)) using the PACE dataset. Note
that EMV is not a state-of-the-art method but a baseline al-
gorithm. Because the performance depends on the type of
instances, we will give a detailed comparison with two mod-
ern solvers later in this section. For evaluating the effect of
the two speed-up techniques, we implemented three variants
of the pruned DP algorithm: PRUNED(DS,MM) uses both
of the two speed-up techniques, PRUNED(DS) uses the data
structure but does not use the meet-in-the-middle technique,
and PRUNED(∅) uses neither techniques. PRUNED(∅) keeps
the processed subsets in a list and enumerates all the subsets
S′ ⊆ A\S with valid(S)∩valid(S′) 6= ∅ by naively testing
all the subsets in the list. All the solvers were implemented
using the Rust programming language.

The cactus plot in Figure 2 shows the running time of each
solver. We can see that PRUNED(∅) is already quite faster
than EMV. The data structure improves the performance
against difficult instances, and the meet-in-the-middle leads
to a uniform speedup. In the subsequent experiments, we
will use PRUNED to refer to the solver PRUNED(DS,MM).

Figure 3 illustrates the effect of the number of terminals
k. A point at coordinates (k, t) means that an instance with
k terminals was solved in t seconds. We can see that the
running time of EMV exponentially depends on k but the
running time of PRUNED does not. While there are unsolved
instances with only 25 terminals, there also exist solved in-
stances with more than a thousand terminals. This is not so
surprising when recalling that the idea of the proposed prun-
ing came from the polynomial-time algorithm for special
planar instances for which the number of subsets of termi-
nals we need to consider is not exp(k) butO(k2). Hence the
effectiveness of the pruning strongly depends on structures

0 25 50 75 100 125 150 175 200
the number of instances

10 3

10 2

10 1

100

101

102

103
TLE

ru
nn

in
g

tim
e

[s
ec

]

EMV
Pruned(DS,MM)
Pruned(DS)
Pruned()

Figure 2: A cactus plot showing the running times of EMV
and the three variants of PRUNED.

101 102 103 104

the number of terminals k

10 2

100

102

ru
nn

in
g

tim
e

t [
se

c]

EMV
Pruned

Figure 3: Effect of the number of terminals k

of graphs (e.g., we can expect that the pruning will be effec-
tive for sparse graphs admitting many small separators, but
it will not be effective for dense or random graphs).

Comparison with the A∗ Search
We compare the performance of PRUNED with an existing
solver HSV (Hougardy, Silvanus, and Vygen 2017) using
the experimental results reported in their paper. Their ex-
periments were conducted on a computer with Intel Xeon
W5590 (3.33 GHz) which produced a score of 391 for the
DIMACS benchmark and their solver was implemented us-
ing C++ language. HSV combines the EMV algorithm and
the A∗ search as follows: instead of filling the DP table
d(S, u) from small |S| to large |S|, it computes some lower
bound µ(A \ S, u) of opt(A \ S, u) and processes the one
with the smallest d(S, u) + µ(A \ S, u) value using a prior-
ity queue. It also uses a pruning based on the lower bound
µ. Note that it seems difficult to combine the A∗ search with
our separator-based pruning because, in order to efficiently
obtain the separator used in our pruning, we need to com-
pute the values of d(S, u) for all u ∈ V at once. Because
HSV did not use any preprocessing, we run PRUNED with-
out preprocessing for a fair comparison.

Table 1 shows the comparison of the performance of
HSV and PRUNED against datasets SteinLib, Vienna, and
Copenhagen. From each dataset, we use only instances
with less than 64 terminals (because HSV is limited to
such instances). The column ‘#’ shows the number of
such instances in each dataset. The column ‘solved’ shows
the number of instances solved by each solver within the
time/memory limit, and the column ‘better’ shows the num-

1525

Table 1: Comparison of HSV and PRUNED
HSV PRUNED

Dataset # solved better solved better
Random 418 262 0 281 35
Artificial 21 11 0 11 0
Euclidian 26 26 0 26 0
CrossGrid 45 33 0 42 14
VLSI 128 128 1 128 0
Rectilinear 93 93 0 93 4
Group 89 16 0 87 82
Vienna 6 3 0 6 3
Copenhagen 10 10 0 10 0

10 3 10 2 10 1 100 101 102 103 TLE
running time of HSV [sec]

10 3

10 2

10 1

100

101

102

103

TLE

ru
nn

in
g

tim
e

of
 P

ru
ne

d
[s

ec
]

Random
Artificial
Euclidian
CrossGrid
VLSI
Rectilinear
Group
Vienna
Copenhagen

Figure 4: Running time comparison of HSV and PRUNED

ber of instances for which the solver performed significantly
better than the other; we say that the performance of a solver
s1 is significantly better than a solver s2 for an instance i if
either (1) s1 solved i but s2 did not or (2) both of them solved
i but the run time of s2 is greater than the run time of s1
times ten plus one second. Figure 4 illustrates the running
time comparison against each instance. Each point corre-
sponds to a single instance and its coordinates (x, y) means
that HSV solved the instance in x seconds and PRUNED
solved the instance in y seconds.

We can see that PRUNED outperforms HSV for datasets
Random, CrossGrid, Group, and Vienna. For Random, the
pruning is not so effective but A∗ search is not even more
effective. For the other three datasets, the pruning works ef-
fectively because they are near-planar.

Comparison with the Branch-and-Cut Method
We compare the performance of PRUNED with an open-
source branch-and-cut solver SCIP-JACK (Gamrath et al.
2017). We use the latest version of SCIP-JACK which has
been submitted to the PACE challenge and won the 3rd in
the track 1 and the 1st in the track 2. It internally uses an MIP

Table 2: Comparison of SCIP-JACK and PRUNED
SCIP-JACK PRUNED

Dataset # k/n solved better solved better
Random 133 .256 96 91 16 0
Artificial 53 .239 8 4 6 6
VLSI 40 .046 20 0 32 27
Rectilinear 143 .425 138 41 113 1
Group 85 .086 65 4 79 58
Vienna 210 .145 129 97 42 7
Copenhagen 12 .140 8 2 7 3

10 3 10 2 10 1 100 101 102 103 TLE
running time of SCIP-Jack [sec]

10 3

10 2

10 1

100

101

102

103

TLE

ru
nn

in
g

tim
e

of
 P

ru
ne

d
[s

ec
]

Figure 5: Running time comparison of SCIP-JACK and
PRUNED. The legend is the same as in Figure 4.

solver SCIP (Gleixner et al. 2018) version 5.0.1 and an LP
solver SoPlex (Gleixner, Steffy, and Wolter 2012; 2015) ver-
sion 3.1.1. In addition to the branch-and-cut method, SCIP-
JACK uses a variety of preprocessing techniques to reduce
the graph size (Rehfeldt 2015). In the following compari-
son, PRUNED also uses the same preprocessing as SCIP-
JACK and the run time for the preprocessing is excluded for
both solvers so that the difference between the pruned DP
algorithm and the branch-and-cut method becomes clear.

Table 2 and Figure 5 show the comparison of the perfor-
mance of SCIP-JACK and PRUNED against datasets Stein-
Lib, Vienna, and Copenhagen. We omit all the too-easy in-
stances for which the preprocessing alone solved the prob-
lem. The column ‘#’ shows the number of the remaining
instances in each dataset, and the column ‘k/n’ shows the
average of k/n in the dataset. Because the theoretical worst-
case running time of SCIP-JACK and PRUNED exponen-
tially depends on n and k, respectively, we can expect that
a dataset with a smaller k/n value is more advantageous to
PRUNED. Note that the table does not contain Euclidian and
CrossGrid because the preprocessing solved all the instances
in these datasets.

As expected, the performance of PRUNED against Ran-

1526

dom is bad because random graphs admit no small separa-
tors. PRUNED outperforms SCIP-JACK against VLSI and
Group both coming from industrial applications. This is due
to the following two reasons: (1) the number of terminals is
relatively small for these applications (the number of termi-
nals of an instance obtained by the reduction from the Group
Steiner tree is the number of groups) and (2) because the
graphs are grid with holes, they admit many small separa-
tors. On the other hand, SCIP-JACK outperforms PRUNED
against geometric datasets Rectilinear and Vienna.

Acknowledgments
Yoichi Iwata is supported by JSPS KAKENHI Grant Num-
ber JP17K12643.

References
Althaus, E., and Blumenstock, M. 2014. Algorithms for the
maximum weight connected subgraph and prize-collecting
steiner tree problems. 11th DIMACS Implementation Chal-
lenge Workshop (Technical Report).
Bodlaender, H. L.; Cygan, M.; Kratsch, S.; and Nederlof,
J. 2015. Deterministic single exponential time algorithms
for connectivity problems parameterized by treewidth. Inf.
Comput. 243:86–111.
Cygan, M.; Dell, H.; Lokshtanov, D.; Marx, D.; Nederlof,
J.; Okamoto, Y.; Paturi, R.; Saurabh, S.; and Wahlström, M.
2016. On problems as hard as CNF-SAT. ACM Trans. Al-
gorithms 12(3):41:1–41:24.
Daneshmand, S. V. 2004. Algorithmic approaches to the
Steiner problem in networks. Ph.D. Dissertation, Universität
Mannheim.
Ding, B.; Yu, J. X.; Wang, S.; Qin, L.; Zhang, X.; and Lin, X.
2007. Finding top-k min-cost connected trees in databases.
In ICDE, 836–845.
Dreyfus, S. E., and Wagner, R. A. 1971. The steiner problem
in graphs. Networks 1(3):195–207.
Duin, C. 2000. Preprocessing the steiner problem in graphs.
In Advances in Steiner Trees. Springer US. 175–233.
Erickson, R. E.; Monma, C. L.; and Veinott, A. F. 1987.
Send-and-split method for minimum-concave-cost network
flows. Math. Oper. Res. 12(4):634–664.
Fafianie, S.; Bodlaender, H. L.; and Nederlof, J. 2015.
Speeding up dynamic programming with representative sets:
An experimental evaluation of algorithms for steiner tree on
tree decompositions. Algorithmica 71(3):636–660.
Fischetti, M.; Leitner, M.; Ljubic, I.; Luipersbeck, M.;
Monaci, M.; Resch, M.; Salvagnin, D.; and Sinnl, M. 2017.
Thinning out steiner trees: a node-based model for uniform
edge costs. Math. Program. Comput. 9(2):203–229.
Fomin, F. V.; Lokshtanov, D.; Saurabh, S.; Pilipczuk, M.;
and Wrochna, M. 2018. Fully polynomial-time parameter-
ized computations for graphs and matrices of low treewidth.
ACM Trans. Algorithms 14(3):34:1–34:45.
Fuchs, B.; Kern, W.; Mölle, D.; Richter, S.; Rossmanith, P.;
and Wang, X. 2007. Dynamic programming for minimum
steiner trees. Theory Comput. Syst. 41(3):493–500.

Gamrath, G.; Koch, T.; Maher, S. J.; Rehfeldt, D.; and Shi-
nano, Y. 2017. SCIP-Jack - a solver for STP and variants
with parallelization extensions. Math. Program. Comput.
9(2):231–296.
Gleixner, A.; Bastubbe, M.; Eifler, L.; Gally, T.; Gam-
rath, G.; Gottwald, R. L.; Hendel, G.; Hojny, C.; Koch, T.;
Lübbecke, M. E.; Maher, S. J.; Miltenberger, M.; Müller,
B.; Pfetsch, M. E.; Puchert, C.; Rehfeldt, D.; Schlösser, F.;
Schubert, C.; Serrano, F.; Shinano, Y.; Viernickel, J. M.;
Walter, M.; Wegscheider, F.; Witt, J. T.; and Witzig, J. 2018.
The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse
Institute Berlin.
Gleixner, A. M.; Steffy, D. E.; and Wolter, K. 2012. Im-
proving the accuracy of linear programming solvers with it-
erative refinement. In ISSAC, 187–194.
Gleixner, A. M.; Steffy, D. E.; and Wolter, K. 2015. Iterative
refinement for linear programming. Technical Report 15-15,
ZIB, Takustr. 7, 14195 Berlin.
Held, S.; Korte, B.; Rautenbach, D.; and Vygen, J. 2011.
Combinatorial optimization in VLSI design. In Combina-
torial Optimization - Methods and Applications. IOS Press.
33–96.
Hougardy, S.; Silvanus, J.; and Vygen, J. 2017. Dijkstra
meets steiner: a fast exact goal-oriented steiner tree algo-
rithm. Math. Program. Comput. 9(2):135–202.
Huang, T., and Young, E. F. Y. 2013. Obsteiner: An ex-
act algorithm for the construction of rectilinear steiner min-
imum trees in the presence of complex rectilinear obstacles.
IEEE Trans. on CAD of Integrated Circuits and Systems
32(6):882–893.
Koch, T.; Martin, A.; and Voß, S. 2000. SteinLib: An up-
dated library on steiner tree problems in graphs. Technical
Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin, Takustr. 7, Berlin.
Lappas, T.; Liu, K.; and Terzi, E. 2009. Finding a team of
experts in social networks. In KDD, 467–476.
Leitner, M.; Ljubic, I.; Luipersbeck, M.; Prossegger, M.; and
Resch, M. 2014. New real-world instances for the steiner
tree problem in graphs. Technical Report, ISOR, Uni Wien.
Marx, D.; Pilipczuk, M.; and Pilipczuk, M. 2017. On subex-
ponential parameterized algorithms for steiner tree and di-
rected subset TSP on planar graphs. CoRR abs/1707.02190.
Polzin, T. 2004. Algorithms for the Steiner problem in net-
works. Ph.D. Dissertation, Saarland University.
Rehfeldt, D. 2015. A generic approach to solving the steiner
tree problem and variants. Master’s thesis, Technische Uni-
versität Berlin.
Warme, D.; Winter, P.; and Zachariasen, M. 2000. Exact
algorithms for plane Steiner tree problems: A computational
study. In Du, D.-Z.; Smith, J.; and Rubinstein, J., eds., Ad-
vances in Steiner Trees. Kluwer. 81–116.
Zachariasen, M., and Rohe, A. 2003. Rectilinear group
steiner trees and applications in VLSI design. Math. Pro-
gram. 94(2-3):407–433.

1527

