
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

A Recursive Algorithm for Projected Model Counting

Jean-Marie Lagniez, Pierre Marquis?
CRIL, U. Artois & CNRS

Institut Universitaire de France?
F-62300 Lens, France
{lagniez, marquis}@cril.fr

Abstract

We present a recursive algorithm for projected model count-
ing, i.e., the problem consisting in determining the number
of models ‖∃X.Σ‖ of a propositional formula Σ after elim-
inating from it a given set X of variables. Based on a ”stan-
dard” model counter, our algorithm projMC takes advantage
of a disjunctive decomposition scheme of ∃X.Σ for comput-
ing ‖∃X.Σ‖. It also looks for disjoint components in its input
for improving the computation. Our experiments show that in
many cases projMC is significantly more efficient than the
previous algorithms for projected model counting from the
literature.

Introduction
In this paper, we are concerned with the projected model
counting problem. Given a propositional formula Σ and a
set X of propositional variables to be forgotten, one wants
to compute the number of interpretations of the variables
occurring in Σ but not in X , which coincide on X with a
model of Σ. Stated otherwise, the objective is to count the
number of models of the quantified Boolean formula ∃X.Σ
over its variables (i.e., the variables occurring in Σ but not
in X).

The projected model counting problem is a central issue
to a number of AI problems (for instance, in planning, when
the objective is to compute the robustness of a given plan
given by the number of initial states from which the exe-
cution of the plan reaches a goal state (Aziz et al. 2015)),
but also outside AI (especially it proves useful in some for-
mal verification problems (Klebanov, Manthey, and Muise
2013)).

Since it generalizes the standard model counting prob-
lem (recovered when X = ∅), the projected model counting
problem is at least as hard as the latter (#P-hard). The pres-
ence of variables X to be forgotten nevertheless may render
the problem easier in some cases (thus, when every variable
of Σ belongs to X , the problem boils down to deciding the
satisfiability of Σ). That mentioned, a naive approach which
would consist first in forgetting the variables of X from Σ,
then in counting the number of models of the resulting for-
mula would be impractical in many cases, in particular when

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

X is large. Indeed, forgetting the variables of X from Σ in
a brute-force way often leads to a formula which is much
larger than Σ (in the worst case, an exponential blow-up may
occur).

Despite the importance of the problem, few algorithms
for projected model counting have been pointed out so far.
An FPT algorithm, where the parameter is the treewidth of
the primal graph of the input instance, has been designed
recently (Fichte et al. 2018), but this algorithm is practical
only for instances having a very small treewidth. Three other
algorithms for the projected model counting task have been
presented in (Aziz et al. 2015), namely dSharpP, #clasp,
and d2c. Those algorithms are quite dissimilar in essence:

• dSharpP is an adaptation of the model counter dSharp
(Muise et al. 2012), which computes a Decision-DNNF
representation of its input Σ to determine the number of
models ‖Σ‖. dSharpP considers as an additional input a
set P of protected variables (i.e., those variables of Σ
which should not be forgotten). The search achieved by
dSharp is constrained so that the decision variables are
taken in priority from P . Whenever there is no variable
of P in the current formula (i.e., this formula contains
only variables from X), a sat solver is used to deter-
mine whether it is consistent. If so, its number of mod-
els is 1, otherwise it is equal to 0. This technique has
also been considered in (Klebanov, Manthey, and Muise
2013). Note that the constraint imposed on the variable or-
dering limits the ability to find cutsets of small size, and
this may have a strong (yet negative) impact on the quality
of the conjunctive decompositions of Σ found by dSharp.

• #clasp is an extension of clasp, an algorithm for model
enumeration on a projected set of variables (Gebser, Kauf-
mann, and Schaub 2009), which basically amounts to
computing a deterministic DNF representation of ∃X.Σ.
Each time an implicant of ∃X.Σ is found, a blocking
clause equivalent to the negation of this implicant is added
to Σ. In #clasp, whenever an implicant of ∃X.Σ is found,
a prime implicant is first extracted from it in a greedy
fashion (this is reminiscent to the approach considered in
(Schrag 1996; Castell 1996)). Compared to clasp, this fur-
ther extraction step often leads to the adding of far less
blocking clauses to Σ, so that #clasp performs usually
better than clasp.

1536

• d2c consists in computing first a Decision-DNNF repre-
sentation of Σ, then forgetting in it all the variables of X
(this can be achieved in linear time, but the resulting rep-
resentation is not deterministic any longer in the general
case). The next step consists in turning this resulting rep-
resentation into a CNF one. This can be done in linear time
via the introduction of new variables while preserving the
number of models of the input (Tseitin 1968). Finally, the
number of models of the resulting CNF formula is evalu-
ated using sharpSAT (Thurley 2006).

Unlike those algorithms, our algorithm for projected
model counting, called projMC, is a recursive algorithm ex-
ploiting a disjunctive decomposition scheme of ∃X.Σ for
computing ‖∃X.Σ‖. More precisely, ∃X.Σ is split into an
equivalent (disjunctively interpreted) set of pairwise incon-
sistent formulae, so that ‖∃X.Σ‖ can be computed by sum-
ming up the corresponding projected model counts. projMC
also looks for disjoint components in its input for improving
the computation.

To evaluate the performance of our approach, we mea-
sured the time required by projMC for achieving the pro-
jected model counting task on a number of benchmarks
(uniform random 3-CNF formulae, random Boolean circuits,
planning instances). Our experiments show that in many
cases projMC challenges the previous algorithms for pro-
jected model counting from the literature. Indeed, for some
benchmarks, when compared to dSharpP, #clasp, and d2c,
the time savings achieved by projMC are of several orders
of magnitude. In order to verify that the improvements ob-
tained in practice with projMC are actually due to the under-
lying approach and not to the performance of the ”standard”
model counter used in it (which is D4 (Lagniez and Mar-
quis 2017) in our implementation), we also developed D4P,
which is the same algorithm as dSharpP, but using D4 as a
model counter instead of dSharp. While D4P performs typ-
ically better than dSharpP (and #clasp and d2c), projMC
appears as a better performer than D4P for many instances.

The rest of the paper is organized as follows. In the
next section, we give some formal preliminaries. Then we
describe our new projected model counter. Afterwards we
present the empirical protocol which has been considered
in the experiments, as well as the corresponding experi-
mental results. Finally, a last section concludes the paper
and gives some perspectives for further research. The binary
code of projMC, as well as the benchmarks used in our ex-
periments and additional empirical results are available from
www.cril.fr/KC/.

Formal Preliminaries
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives. ⊥
(resp. >) is the Boolean constant always false (resp. true).
An interpretation (or world) ω is a mapping from P to
{0, 1}.The set of all interpretations is denoted W . An in-
terpretation ω is a model of a formula ϕ ∈ LP if and
only if it makes it true in the usual truth functional way.
Mod(ϕ) denotes the set of models of the formula ϕ, i.e.,
Mod(ϕ) = {ω ∈ W | ω is a model of ϕ}. |= denotes log-

ical entailment and ≡ logical equivalence, i.e., ϕ |= ψ iff
Mod(ϕ) ⊆ Mod(ψ) and ϕ ≡ ψ iff Mod(ϕ) = Mod(ψ).
When ϕ ∈ LP and X ⊆ P , ∃X.ϕ is a quantified Boolean
formula denoting (up to logical equivalence) the most gen-
eral consequence of ϕ which is independent from the vari-
ables of X (see e.g., (Lang, Liberatore, and Marquis 2003)).
Var(ϕ) denotes the set of variables occurring in ϕ ∈ LP
and Var({ϕ1, . . . , ϕk}) =

⋃k
i=1 Var(ϕi); when X ⊆ P ,

we have Var(∃X.ϕ) = Var(ϕ) \X .
A literal ` is a propositional variable or a negated one.

When ` is a literal over x, its complementary literal ∼` is
given by ∼` = ¬x if ` = x and ∼` = x if ` = ¬x, and
we note var(`) = x. A literal ` is pure in a CNF formula
Σ when Σ contains no occurrence of ∼`. One also says that
the corresponding variable var(`) is pure in Σ. A term is
a conjunction of literals. It is also viewed as the set of its
literals when this is convenient. A clause is a disjunction of
literals. When δ =

∨m
j=1 `j is a clause, ∼δ denotes the term

given by
∧m

j=1
∼`j . A clause δ1 is a subclause of a clause δ2

when every literal of δ1 is a literal of δ2. A CNF formula ϕ
is a conjunction of clauses. It is also viewed as the set of its
clauses when this is convenient. ‖ϕ‖ denotes the number of
models of ϕ over Var(ϕ).

Given a subset X of P and a world ω, ω[X] is the term∧
x∈X|ω|=x x∧

∧
x∈X|ω|=¬x ¬x. The conditioning of a CNF

formula ϕ by a consistent term γ is the CNF formula ϕ | γ
obtained from ϕ by removing each clause containing a lit-
eral of γ and by shortening the remaining clauses, removing
from them the complementary literals of those of γ.
BCP denotes a Boolean Constraint Propagator (Zhang

and Stickel 1996; Moskewicz et al. 2001), which is a key
component of many solvers. BCP(Σ) returns the CNF for-
mula Σ once simplified using unit propagation.

The primal graph of a CNF formula Σ is the (undirected)
graph where vertices correspond to the variables of Σ and an
edge connecting two variables exists whenever one can find
a clause of Σ where both variables occur. Every connected
component of this graph (i.e., a maximal subset of vertices
which are pairwise connected by a path) corresponds to a
subset of clauses of Σ, referred to as a connected component
of the formula Σ.

A Recursive Algorithm
for Projected Model Counting

Our projected model counter projMC computes ‖∃X.Σ‖
where Σ is a CNF formula and X a set of propositional vari-
ables. Assuming Σ being in CNF is harmless since one can
use Tseitin technique (Tseitin 1968) to associate in linear
time with any propositional circuit a CNF formula having
the same number of models.

Unlike the previous algorithms for projected model count-
ing sketched in the introductive section, projMC is a recur-
sive algorithm guided by a deterministic disjunctive form for
Σ w.r.t. X . Such a form is a (disjunctively interpreted) set of
formulae {ϕ1, . . . , ϕk+1} over Var(Σ) satisfying the fol-
lowing conditions:

• ∀i ∈ {1, . . . , k + 1}, Var(ϕi) ∩X = ∅;

1537

• ∀i, j ∈ {1, . . . , k + 1}, if i 6= j then ϕi ∧ ϕj |= ⊥;

•
∨k+1

i=1 ϕi ≡ >.

Because
∨k+1

i=1 ϕi is valid, we have ∃X.Σ ≡ (∃X.Σ) ∧
(
∨k+1

i=1 ϕi)≡
∨k+1

i=1 (∃X.Σ)∧ϕi ≡
∨k+1

i=1 ∃X.(Σ∧ϕi) since
no element of a deterministic disjunctive form for Σ w.r.t.X
contains a variable of X . Furthermore, since the elements of
a deterministic disjunctive form for Σ w.r.t. X are pairwise
conflicting, we get that ‖∃X.Σ‖ =

∑k+1
i=1 ‖(∃X.Σ) ∧ ϕi‖,

hence

‖∃X.Σ‖ =

k+1∑
i=1

‖∃X.(Σ ∧ ϕi)‖.

The set {Σ ∧ ϕi | i ∈ {1, . . . , k + 1}} is referred to as the
disjunctive decomposition associated with {ϕ1, . . . , ϕk+1}.

Technically speaking, such a notion of disjunctive decom-
position can be related to several concepts considered in
some previous works about SAT or #SAT. On the one hand,
it can be viewed as a specific case of the notion of set of
scattered formulae from a formula Σ (see (Hyvärinen, Junt-
tila, and Niemelä 2006) for details), obtained by focusing on
clauses/terms not containing any variable fromX . However,
the objective pursued in (Hyvärinen, Junttila, and Niemelä
2006) was quite distinct from our own one (in this paper, the
decomposition was used as a distribution method for SAT
solving in grids). On the other hand, when it consists of con-
sistent formulae, a deterministic disjunctive form for Σ w.r.t.
X forms a partition, just as the primes of an X-partition
of Σ, used for generating an SDD representation of Σ (see
(Darwiche 2011) for details). Nevertheless, the connection
to SDD does not extend further: whenever Σ contains vari-
ables from X and from Var(Σ) \X , the disjunctive decom-
position associated with a deterministic disjunctive form is
not a (X,Var(Σ) \X)-decomposition of Σ: disjunctive de-
compositions do not aim to create formulae that do not share
variables.

Clearly enough, generating a disjunctive decomposition
{Σ ∧ ϕi | i ∈ {1, . . . , k + 1}} associated with a deter-
ministic disjunctive form for Σ w.r.t. X is computationally
useful for computing ‖∃X.Σ‖ only if the formulae Σ ∧ ϕi

are somewhat more simple than Σ. To ensure it and guar-
antee the termination of projMC, one does not compute
any deterministic disjunctive form for Σ w.r.t. X but one
induced by a model ω of Σ (if there is not such model,
then ∃X.Σ is inconsistent and ‖∃X.Σ‖ = 0). One starts
by considering the CNF formula Σ | ω[X] =

∧k
i=1 δi,

called the core ϕ1 of the deterministic disjunctive form
{ϕ1, . . . , ϕk+1} for Σ w.r.t. X induced by ω. By construc-
tion, ϕ1 =

∧k
i=1 δi contains variables occurring in Var(Σ)

but not in X . Then we generate a (disjunctively interpreted)
set of CNF formulae {ϕ2, . . . , ϕk+1} which is equivalent to
the negation of ϕ1, by defining, for each i ∈ {1, . . . , k},
ϕi+1 = (

∧i−1
j=1 δj) ∧ ∼δi. By construction, {ϕ1, . . . , ϕk+1}

satisfies the conditions of a deterministic disjunctive form
for Σ w.r.t. X . Note also that ∃X.(Σ ∧ ϕ1) is equivalent to
ϕ1. Indeed, ∃X.(Σ∧ϕ1) is equivalent to (∃X.Σ)∧ϕ1 since
ϕ1 does not contain any variable of X . Furthermore, since
ω[X] ∧ Σ |= Σ, we have that ∃X.(ω[X] ∧ Σ) |= ∃X.Σ.

But ∃X.(ω[X] ∧ Σ) is equivalent to Σ | ω[X], hence to
ϕ1, so ϕ1 |= ∃X.Σ, and as a consequence (∃X.Σ) ∧ ϕ1

is equivalent to ϕ1. Accordingly, when computing the num-
ber of models of the disjunctive decomposition {Σ ∧ ϕi |
i ∈ {1, . . . , k + 1}} associated with {ϕ1, . . . , ϕk+1}, one
replaces Σ ∧ ϕ1 by ϕ1. Since Var(ϕ1) ∩ X = ∅, one can
take advantage of a ”standard” model counter for comput-
ing ‖ϕ1‖ and no recursive call of projMC is needed (this is
a base case for the recursion).

Our algorithm projMC also takes advantage of any con-
junctive decomposition of its input Σ into disjoint connected
components whenever such a decomposition exists. Indeed,
whenever Σ can be split into two sets of clauses α and β
not sharing any variable so that Σ ≡ α ∧ β, then the com-
putation of ∃X.Σ can be achieved by computing ∃X.α and
∃X.β since ∃X.Σ ≡ ∃X.(α ∧ β) ≡ (∃X.α) ∧ (∃X.β).
And since ∃X.α and ∃X.β do not share any variable, one
can compute ‖∃X.Σ‖ = ‖∃X.α‖ × ‖∃X.β‖. As it is the
case for the model counting problem, taking advantage of
conjunctive decompositions proves to be very useful for the
efficiency purpose.

Algorithm 1: projMC(Σ, X)
input : a CNF formula Σ
input : a set of variables X to be forgotten
output: the number of models of ∃X.Σ over

Var(Σ) \X
1 Σ← BCP(Σ)
2 if Var(Σ) ∩X = ∅ then return MC(Σ)
3 if cache(Σ) 6= nil then return cache(Σ)
4 comps ← connectedComponents(Σ)
5 if #(comps) 6= 1 then
6 cpt ← 1
7 foreach ϕ ∈ comps do
8 cpt ← cpt× projMC(ϕ, X)

9 else
10 ω ← sat(Σ)
11 cpt ← 0
12 if ω 6= ∅ then
13 dd ← DD(Σ, ω,X)
14 foreach ϕ ∈ dd do
15 cpt ← cpt+ projMC(ϕ, X)

×2#(Var(dd)\(Var(ϕ)∪X))

16 cache(Σ)← cpt
17 return cpt

More in detail, Algorithm 1 provides the pseudo-code of
the projected model counter projMC. The projected model
counting of a given CNF formula Σ w.r.t. a set of variables
X to be forgotten is achieved by calling projMC(Σ, X). At
line 1, Σ is simplified using Boolean constraint propagation.
At line 2, we consider the case when Σ does not contain
any variable of X . In this case, there is no variable to be
forgotten and it is enough to compute the number of models
of Σ, using any model counter MC. This is a base case of

1538

our algorithm (no recursion takes place).
At line 3 one looks into a cache to check whether or not

the current formula Σ has already been encountered during
the search. The cache, initially empty, gathers pairs consist-
ing of a CNF formula and the corresponding projected model
count w.r.t.X . Each time Σ has already been cached, instead
of re-computing ‖∃X.Σ‖ from scratch, it is enough to return
cache(Σ). In our implementation, the cache is residual and
shared with the model counter MC.

At line 4, one partitions Σ into a set of CNF formulae
that are pairwise variable-independent (i.e., two distinct el-
ements of comps are built up from two disjoint sets of
variables). connectedComponents is a ”standard” procedure
used in previous model counters. It is based on the search
for the connected components of the primal graph of Σ and
it returns a set comps of CNF formulae composed of clauses
from Σ, so that every pair of distinct formulae from comps
do not share any common variable.

At line 5, one tests how many connected components have
been found in Σ. If there are more than one component,
then at lines 6, 7, and 8, one recursively computes the pro-
jected model counts corresponding to each of them, and we
store in cpt the product of the corresponding counts. For
efficiency reasons, in our implementation, one uses a spe-
cific trick that it is not made explicit in the algorithm for
the sake of readibility: systematically, one sets aside all the
components forming a consistent term containing as many
literals as possible. For instance, if the input Σ is equal to
x1 ∧¬x2 ∧ (x3 ∨x4), one sets aside the two components x1
and ¬x2 to keep only the component x3 ∨ x4. Indeed, for a
set of components forming a consistent term like {x1,¬x2},
the corresponding projected model count is always equal to
1 (whatever the variables occurring in the term belongs toX
or not). Hence projMC returns directly 1 in this case, without
needing to consider the literals of the term independently in
distinct recursive calls.

When only one component of Σ has been found, at line
10, one looks for a model ω of Σ over Var(Σ). One tests
at line 12 whether such a model exists. If not (ω = ∅),
then Σ is inconsistent, hence so is ∃X.Σ, and the model
count is 0, the value of cpt initialized at line 11. Interest-
ingly, the heuristic used by the solver sat tries to satisfy Σ
by assigning in priority the variables from X . A valuable
consequence of this choice is that it leads to a lazy han-
dling of the clauses of Σ which contain a literal ` pure in
Σ and such that var(`) = x with x ∈ X . Indeed, when `
is pure in Σ, ` will be set to 1 by ω so that no clauses of Σ
containing ` will belong to Σ | ω[X]. This does not invali-
date the correctness of the approach since such clauses can
be removed from Σ without changing its projected model
count. Thus, while the ”standard” pure literal rule (i.e., the
one consisting in removing every clause of Σ containing a
variable which is pure in Σ) cannot be applied safely (it
does not preserve the number of models of its input in the
general case), its restriction where only pure literals over X
are considered is correct: let α (resp. β) be the subset of the
clauses of Σ containing ` (resp. not containing `). We have
∃X.Σ ≡ ∃X.(∃{x}.(α ∧ β)). Since ` is pure in Σ, x does
not occur in β. Hence ∃{x}.(α ∧ β) ≡ (∃{x}.α) ∧ β. Now,

since every clause of α contains `, ∃{x}.α is valid, therefore
∃X.Σ ≡ ∃X.β.

At line 13, one computes the disjunctive decomposition
dd associated with the deterministic disjunctive form for Σ
w.r.t.X induced by ω. At lines 14, and 15, one sums the pro-
jected model counts for the formulae belonging to dd (note
that when the elements ϕ of dd do not contain the same set
of variables, a preliminary normalization step – multiplying
each count by 2 to the power of the number of variables oc-
curring in dd but not in ϕ and not inX – before summing up,
is necessary). Finally, at line 16, one adds Σ to the cache, as-
sociated with the corresponding projected model count cpt ,
and at line 17, one returns the value of cpt .

Algorithm 2: DD(Σ, ω,X)

input : a CNF formula Σ
input : a model ω of Σ over Var(Σ)
input : a set of variables X to be forgotten
output: a set dd of CNF formulae, the disjunctive

decomposition associated with the deterministic
disjunctive form for Σ w.r.t. X induced by ω

1 {δ1, . . . , δk} ← BCP(Σ | ω[X])

2 dd ← {
∧k

i=1 δi}
3 foreach δj ∈ {δ1, . . . , δk} do
4 dd ← dd ∪ {Σ ∧ (

∧j−1
l=1 δl) ∧ ∼δj}

5 return dd

Algorithm 2 provides the pseudo-code of the program
which generates the disjunctive decomposition associated
with the deterministic disjunctive form of Σ w.r.t.X induced
by the model ω of Σ used for guiding the search. At line 1, Σ
is first conditioned by the consistent term ω[X]. This means
that every clause of Σ containing a literal belonging to ω[X]
is removed from Σ, and in the remaining clauses, every lit-
eral ` overX such that ∼` is a literal of ω[X] is removed. Fi-
nally, Boolean constraint propagation is applied to Σ | ω[X]
in order to simplify it further (if possible). Clearly, no vari-
able of X occurs in the resulting (conjunctively interpreted)
set of clauses {δ1, . . . , δk}, which is the core of the deter-
ministic disjunctive form for Σ w.r.t. X induced by ω that
is computed. At line 2, we first initialize the disjunctive de-
composition dd as the singleton containing the core. At lines
3 and 4, we add to dd k CNF formulae since the core con-
tains k clauses. At line 4, the clauses of Σ subsumed by the
clauses δl are removed (this is not detailed in the pseudo-
code for the sake of readability). By construction, the for-
mulae of dd are pairwise inconsistent. Furthermore, every
δj of the core is a subclause of a clause of Σ since the core is
obtained by conditioning Σ using a consistent term. Accord-
ingly, in our implementation, when δj is equal to a clause of
Σ, δj is not taken into consideration within the loop (indeed,
in this case, Σ ∧ δj is equivalent to Σ and Σ ∧ ∼δj is incon-
sistent, so that its contribution to the total model count will
be equal to 0). Finally, at line 5, one returns the disjunctive
decomposition dd which has been computed.

1539

An Example. Here is an example illustrating how projMC
works. Let Σ = (x1 ∨ x2)∧ (¬x2 ∨ x3 ∨ x4)∧ (¬x3 ∨ x5).
Let X = {x2, x3}. The formula ∃X.Σ is equivalent to x1 ∨
x4 ∨ x5, so that ‖∃X.Σ‖ = 7.

When run on Σ and X , the first instructions of projMC
have no effect (applying BCP does not change Σ, and Σ has a
unique connected component). Suppose that the model ω of
Σ setting every variable to 1 has been found at line 10. Then
the core Σ | ω[X] of the deterministic disjunctive form for Σ
w.r.t.X induced by ω will be equal to x5. As a consequence,
the other formula belonging to the disjunctive decomposi-
tion associated with this deterministic disjunctive form will
be Σ ∧ ¬x5.

The recursive call of projMC on the core x5 and X will
lead to calling MC on x5 as expected (since no variable of
X occurs in the core). Then MC returns 1, and finally the
recursive call of projMC on x5 returns 1 × 22 = 4 since
the two variables x1, x4 belong to the set of variables of dd
but not to the set of variables of the associated core (this
normalization step is achieved at line 15).

The recursive call of projMC on Σ ∧ ¬x5 and X leads
first to simplify Σ ∧ ¬x5 using BCP, so that the formula
¬x5 ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ ¬x3 is got. Since the two
components ¬x5 and ¬x3 form together a consistent term,
only one component actually needs to be considered, namely
(x1 ∨ x2) ∧ (¬x2 ∨ x4).

So, at that step, projMC is called on (x1∨x2)∧ (¬x2∨x4)
and X . Suppose again that the model ω of Σ setting ev-
ery variable to 1 has been found. Then the resulting core
will be equal to x4, and the resulting disjunctive decomposi-
tion will be {x4, (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ ¬x4}. Since
¬x4 does not contain a variable of X , at the next recur-
sive call to projMC, MC is used to compute its model count,
equal to 1, and finally the recursive call of projMC on x4
returns 1 × 21 = 2 since the variable x1 belongs to the set
of variables of the disjunctive decomposition but not to the
set of variables of the associated core. The recursive call of
projMC on (x1∨x2) ∧ (¬x2∨x4) ∧ ¬x4 andX leads first to
simplify (using BCP) the input into x1 ∧ ¬x2 ∧ ¬x4, which
is a consistent term. Hence it has only 1 model. Thus one
obtains that ‖∃X.((x1 ∨ x2) ∧ (¬x2 ∨ x4))‖ = 2 + 1 = 3.
Finally the previously computed counts are summed up. One
thus gets 4 + 3 = 7 models, as expected.

Interestingly, it can be observed that projMC handles ad-
equately the cases when X = ∅ or X = Var(Σ), in the
sense that it does not waste too much time in many re-
cursive calls for any of those two ”extreme” situations. In-
deed, when X = ∅, projMC mainly boils down to calling a
”standard” model counter MC (line 2), as expected. When
X = Var(Σ), if Σ is unsatisfiable, then it will be detected
as such during the first call to projMC (line 12) and a count
of 0 will be returned. In the remaining case, a model ω of Σ
will be found. The core of the deterministic disjunctive form
for Σ w.r.t. X induced by ω will be equal to the empty set
of clauses since Σ | ω[Var(Σ)] is valid when ω is a model
of Σ. Hence the disjunctive decomposition associated with
this deterministic disjunctive form will consist only of this
core. Because this core contains no variable, the next recur-
sive call to projMC (i.e., the one with the core as an operand)

will mainly consist in calling the model counter MC (line 2)
on it, and MC will return 1 in this case.

Finally, one can prove that our algorithm projMC actually
does the job for which it has been designed:
Proposition 1 Algorithm 1 is correct and terminates.
Proof: The correctness of projMC (i.e., the fact that the re-
sult provided is equal to ‖∃X.Σ‖ on inputs Σ and X) comes
from the fact that each rule used in the algorithm is sound
w.r.t. the projected model counting task, as explained previ-
ously. The key equalities are ‖∃X.Σ‖ =

∑k+1
i=1 ‖∃X.(Σ ∧

ϕi)‖ for any deterministic disjunctive form {ϕ1, . . . , ϕk+1}
for Σ w.r.t. X , and ‖∃X.(α ∧ β)‖ = ‖∃X.α‖ × ‖∃X.β‖
when Var(α) ∩Var(β) = ∅.

The termination of projMC comes from the fact that each
time a deterministic disjunctive form for Σ w.r.t. X is com-
puted, its core does not contain any variable of X , so that
the recursive call to projMC concerning it will lead to the
base case of the recursion (line 2). As to the other disjoints
Σ ∧ ϕi of the corresponding disjunctive decomposition, by
construction, every ϕi contains the negation of a subclause
δi−1 of Σ. Hence, at the next call to projMC concerning this
disjoint, the literals of the term ∼δi−1 will be assigned and
the corresponding variables will be removed from the in-
put using Boolean constraint propagation (line 1). Thus the
number of variables of the input strictly diminishes at each
step and this ensures the termination of the algorithm.

Note that the detection of disjoint components (lines 4 to
9 in Algorithm 1) coud be frozen in projMC without ques-
tioning the correctness and the termination of this algorithm
(however, it has a significant impact on the efficiency of
the computation on some instances). Similarly, the use of
a cache has no impact on the correctness or the termination
of the algorithm, so that the instructions at lines 3 and 16
could be frozen as well (but again using a cache proves to be
computationally useful in many cases).

Empirical Evaluation
In order to evaluate the benefits offered by projMC, we per-
formed some experiments. The empirical protocol we fol-
lowed is precisely the same as the one considered in (Aziz
et al. 2015). Thus we have considered 260 instances coming
from three data sets. The first data set consists of 100 in-
stances, based on random 3-CNF formulae, where the num-
ber of variables is set to 100 and the number of clauses is
varied. Clause-to-variable ratios of 1, 1.5, 2, 3, and 4 have
been considered. We let also the number of variables of X
to vary (the elements ofX are chosen uniformly at random).
The second data set consists of 60 instances, corresponding
to random Boolean circuits based on 30 variables. Those cir-
cuits are generated as follows. One keeps a set containing at
start the 30 variables, and as long as the set is not a single-
ton, we randomly select an operator o (AND, OR, NOT),
pick up operands V for o in the set at random, create a new
variable v, add the gate o ↔ o(V) to the circuit, and put v
back in the set. The process is repeated c times, with c equals
to 1, 5, or 10. Finally, the third data set consists of 100 in-
stances generated from five classical planning problems (de-
pots, driver, rovers, logistics, and storage) considered under

1540

varying planning horizons. For each problem and value of
the horizon, two variants are considered, one with the goal
state fixed and one where the goal is relaxed to be any viable
goal. For the first variant, the projected model count to be
computed represents the number of initial states the given
plan can achieve the goal from. For the second variant, it
gives the number of initial states plus all goal configurations
that the given plan works for.

For each instance, we measured the time (in seconds)
required by projMC to achieve the projected model count-
ing job. In the experiments, the model counter MC used in
projMC is the top-down compilation-based model counter
D4 described in (Lagniez and Marquis 2017). For the sake of
comparison, we have also run the previous projected model
counters dSharpP, #clasp, and d2c on the same instances
(those solvers are available from people.eng.unimelb.edu.
au/pstuckey/countexists) and measured the corresponding
computation times. In addition, we have also compared
projMC with D4P, which is the same algorithm as dSharpP,
but using D4 as the underlying model counter instead of
dSharp. All the experiments have been conducted on a clus-
ter of Intel Xeon E5-2643 (3.30 GHz) quad core processors
with 32 GiB RAM. The kernel used was CentOS 7, Linux
version 3.10.0-514.16.1.el7.x86 64. The compiler used was
gcc version 5.3.1. Hyperthreading was disabled, and no
memory share between cores was allowed. A time-out of
600s and a memory-out of 7.6 GiB has been considered for
each instance.

The results are reported on the scatter plots given in Fig-
ure 1. Each dot represents an instance; the time (in seconds)
needed to solve it using the projected model counter cor-
responding to the x-axis (resp. y-axis), is given by its x-
coordinate (resp. y-coordinate). Logarithmic scales are used
for both coordinates. In part (a) (resp. (b), (c), (d)) of the fig-
ure, the x-axis corresponds to dSharpP (resp. #clasp, d2c,
D4P). The y-axis corresponds to projMC in each part of the
figure.

The four scatter plots in Figure 1 clearly show that for a
great majority of instances the time needed by projMC to
count the number of projected models is smaller (and of-
ten significantly smaller) than the corresponding computa-
tion times when the other projected model counters are used.
This is especially the case when the ”trivial” instances (i.e.,
those solved with a second or alike) are neglected. Notwith-
standing those instances, it is interesting to observe that
projMC appears at least as efficient as any of the other pro-
jected model counters for all the instances from the random
and the planning data sets.

The cactus plot in Figure 2 gives for dSharpP, #clasp,
d2c, D4P, and projMC the number of instances solved in a
given amount of time. Clearly enough, projMC outperforms
the previous projected model counters: when the ”trivial” in-
stances have been discarded, projMC typically solves more
instances than any of them in any given amount of time. Es-
pecially, some significant benefits in terms of the number of
instances solved have been obtained. Thus, Table 1 makes
precise for each projected model counter under considera-
tion the number of instances (over 260) which have been
solved within the time limit of 600s. It can be observed that

projMC has been able to solve many more instances than the
other projected model counters.

projected model counter # of instances solved
dSharpP 115
#clasp 94
d2c 71
D4P 140

projMC 192

Table 1: Number of instances solved within the time limit
depending on the projected model counter used.

Table 2 reports for each projected model counter un-
der consideration the number of instances which have been
solved by it, and only by it.

projected model counter # of instances uniquely solved
dSharpP 0
#clasp 1
d2c 0
D4P 1

projMC 44

Table 2: Number of instances uniquely solved within the
time limit depending on the projected model counter used.

Table 2 shows that projMC was able to solve a significant
number of instances that were out of reach for the other pro-
jected model counters, given the time limit under consider-
ation. That mentioned, the virtual best solver for our exper-
iments would solve 211 instances, which is slightly above
192. This coheres with the results reported in Figure 1 (d),
showing that for the circuit instances, D4P typically chal-
lenges projMC.

Conclusion and Perspectives
We have presented a new algorithm, projMC, for comput-
ing the number of models ‖∃X.Σ‖ of a propositional for-
mula Σ after eliminating from it a given set X of variables.
Unlike previous algorithms, projMC takes advantage of a
disjunctive decomposition scheme of ∃X.Σ for computing
‖∃X.Σ‖. It also looks for disjoint components in its in-
put for improving the computation. Our experiments have
shown that projMC can be significantly more efficient than
the existing algorithms dSharpP, #clasp, and d2c for pro-
jected model counting. Empirically, projMC also proved bet-
ter than D4P on many instances, showing that the improved
performance of projMC is not solely due to the the fact that
it is ”powered” by D4.

A first perspective for further research consists in turn-
ing our projected model counter into a compiler generating
a d-DNNF representation from a CNF formula containing
some existentially quantified variables. Provided that the un-
derlying model counter MC is replaced by a d-DNNF com-
piler (like C2D (Darwiche 2002; 2004), dSharp (Muise et al.
2012) or D4 (Lagniez and Marquis 2017)), the changes to be

1541

0.1

1

10

100

0.1 1 10 100

p
r
o
j
M
C

dSharpp

Circuit
Random
Planning

(a) projMC vs. dSharpP

0.1

1

10

100

0.1 1 10 100

p
r
o
j
M
C

#clasp

Circuit
Random
Planning

(b) projMC vs. #clasp

0.1

1

10

100

0.1 1 10 100

p
r
o
j
M
C

d2c

Circuit
Random
Planning

(c) projMC vs. d2c

0.1

1

10

100

0.1 1 10 100

p
r
o
j
M
C

d4p

Circuit
Random
Planning

(d) projMC vs. D4P

Figure 1: Comparing projMC with dSharpP, #clasp, d2c, and D4P. The coordinates correspond to computation times in
seconds. Logarithmic scales are used.

done mainly consist in modifying the instructions at lines 14
and 15 of Algorithm 1 to generate a deterministic OR node
instead of making a summation. In such a compiler, when
a model of Σ is generated (i.e., at a step corresponding to

line 10 of Algorithm 1), one could look for an assignment
maximizing the number of clauses which are satisfied by
some existentially quantified literals of the model, so as to
get a deterministic disjunctive form which contains as few

1542

0

100

200

300

400

500

600

0 50 100 150 200

ti
m

e
(i

n
se

co
nd

s)

number of instances solved

d2c
#clasp
dSharpp

d4p
projMC

Figure 2: Number of instances solved by dSharpP, #clasp,
d2c, D4P, and projMC in a given amount of time.

elements as possible (hence a deterministic OR node with
as few children as possible). In fact, one already tested this
approach within projMC but the benefits achieved are not
that significant in this case – the time spent in the maximi-
sation processes can be quite large. However, things can be
different when the objective is to generate a compiled rep-
resentation since, in such a setting, one is typically ready to
spend more off-line time in the compilation step, provided
that the size of the associated compiled form is significantly
smaller. We plan to make some experiments in this direction
to determine whether this approach could prove useful for
generating more succinct compiled representations.

A second perspective will consist in taking advantage
of the two programs B and E for gate detection and re-
placement within CNF formulae, used as the key compo-
nents of the preprocessor for model counting reported in
(Lagniez, Lonca, and Marquis 2016). Indeed, B and E could
be exploited as additional inprocessing filtering techniques
in projMC. It would be interesting to determine whether this
could be computationally useful, especially for solving cir-
cuit instances where, by construction, many gates can be
found.

A last perspective will consist in evaluating projMC and
the other projected model counters on other benchmarks,
especially those reported in the repository available from
https://github.com/dfremont/counting-benchmarks/tree/
master/benchmarks/projection.1

1We would like to thank an anonymous reviewer for pointing
out this dataset.

References
Aziz, R. A.; Chu, G.; Muise, C. J.; and Stuckey, P. J. 2015.
#∃SAT: Projected model counting. In Proc. of SAT’15, 121–
137.
Castell, T. 1996. Computation of prime implicates and
prime implicants by a variant of the Davis and Putnam pro-
cedure. In Proc. of ICTAI’96, 428–429.
Darwiche, A. 2002. A compiler for deterministic decom-
posable negation normal form. In AAAI’02, 627–634.
Darwiche, A. 2004. New advances in compiling CNF into
decomposable negation normal form. In Proc. of ECAI’04,
328–332.
Darwiche, A. 2011. SDD: A new canonical representation of
propositional knowledge bases. In Proc. of IJCAI’11, 819–
826.
Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2018.
Exploiting treewidth for projected model counting and its
limits. In Proc. of SAT’18, 165–184.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Solu-
tion enumeration for projected Boolean search problems. In
Proc. of CPAIOR’09, 71–86.
Hyvärinen, A. E. J.; Junttila, T. A.; and Niemelä, I. 2006.
A distribution method for solving SAT in grids. In Proc. of
SAT’06, 430–435.
Klebanov, V.; Manthey, N.; and Muise, C. J. 2013. SAT-
based analysis and quantification of information flow in pro-
grams. In Proc. of QUEST’13, 177–192.
Lagniez, J.-M., and Marquis, P. 2017. An improved
decision-DNNF compiler. In Proc. of IJCAI’17, 667–673.
Lagniez, J.-M.; Lonca, E.; and Marquis, P. 2016. Improv-
ing model counting by leveraging definability. In Proc. of
IJCAI’16, 751–757.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. Journal of Artificial Intelligence Research 18:391–443.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Ma-
lik, S. 2001. Chaff: Engineering an efficient SAT solver. In
Proc. of DAC’01, 530–535.
Muise, C.; McIlraith, S.; Beck, J.; and Hsu, E. 2012. Dsharp:
Fast d-DNNF compilation with sharpSAT. In Proc. of AI’12,
356–361.
Schrag, R. 1996. Compilation for critically constrained
knowledge bases. In Proc. of AAAI’96, 510–515.
Thurley, M. 2006. sharpSAT - counting models with ad-
vanced component caching and implicit BCP. In Proc. of
SAT’06, 424–429.
Tseitin, G. 1968. On the complexity of derivation in propo-
sitional calculus. Steklov Mathematical Institute. chapter
Structures in Constructive Mathematics and Mathematical
Logic, 115–125.
Zhang, H., and Stickel, M. 1996. An efficient algorithm for
unit propagation. In Proc. of ISAIM’96, 166–169.

1543

