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Abstract

Current Maximum Satisfiability (MaxSAT) algorithms based
on successive calls to a powerful Satisfiability (SAT) solver
are now able to solve real-world instances in many applica-
tion domains. Moreover, replacing the SAT solver with a Sat-
isfiability Modulo Theories (SMT) solver enables effective
MaxSMT algorithms. However, MaxSMT has seldom been
used in debugging multi-threaded software.
Multi-threaded programs are usually non-deterministic due
to the huge number of possible thread operation schedules,
which makes them much harder to debug than sequential pro-
grams. A recent approach to isolate the root cause of concur-
rency bugs in multi-threaded software is to produce a report
that shows the differences between a failing and a non-failing
execution. However, since they rely solely on heuristics, these
reports can be unnecessarily large. Hence, reports may con-
tain operations that are not relevant to the bug’s occurrence.
This paper proposes the use of MaxSMT for the generation
of minimal reports for multi-threaded software with concur-
rency bugs. The proposed techniques report situations that
the existing techniques are not able to identify. Experimental
results show that using MaxSMT can significantly improve
the accuracy of the generated reports and, consequently, their
usefulness in debugging the root cause of concurrency bugs.

1 Introduction
Nowadays, multicore and multiprocessor architectures have
become the dominant platforms. To take full advantage of
these computer architectures, one has to resort to parallel
and concurrent programming. However, multi-threaded pro-
grams are much more challenging to develop than sequen-
tial programs, as they typically allow a huge diversity of
thread operation schedules that can yield different outcomes.
Among the many possible schedules, some may result in un-
desirable behavior, like a crash or incorrect output (Lu et al.
2008). Such failing schedules (i.e. schedules that cause the
program to fail) are typically non-deterministic and hard to
reproduce, which renders the debugging of multi-threaded
programs notoriously difficult.

A concurrency bug occurs when some shared memory
is incorrectly changed due to a specific schedule of oper-
ations of concurrent threads being executed. A large body
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of work has focused on the ability to reproduce concur-
rency bugs in multi-threaded programs, namely determin-
istic execution (Berger et al. 2009; Devietti et al. 2010;
Olszewski, Ansel, and Amarasinghe 2009) and deterministic
record and replay (Lee et al. 2009; Altekar and Stoica 2009;
Huang, Zhang, and Dolby 2013). However, simply replicat-
ing a failing schedule does not provide any special insight
into the reason why the program has failed. As a result, find-
ing the bug in the code that allows the failure to surface can
still be a daunting task.

One way to ease the diagnosis of concurrency bugs is
to report the differences between a failing execution and a
non-failing execution. Given a failing schedule and a failure
condition, some systems try to produce a similar non-failing
schedule by systematically reordering pairs of thread events
in the failing execution. For each alternative schedule result-
ing from a thread event swapping, a Satisfiability Modulo
Theories (SMT) model is built that encodes the program’s
logic and synchronization constraints of the original execu-
tion and a condition representing the absence of the failure.
Next, an SMT solver is used to check if there is an alternate,
non-failing schedule that satisfies the constraints. After find-
ing a feasible non-failing schedule, a report is generated that
highlights the differences between the original failing sched-
ule and the non-failing. Hence, the programmer only needs
to focus on the differences in order to fix the bug.

Although effective in some cases, this technique has sev-
eral limitations. In particular, if more than two pairs of oper-
ations need to be reordered simultaneously in order to pre-
vent the failure, then there is no guarantee that a non-failing
schedule will be generated.

Alongside, there are systems that expose and isolate con-
currency errors that depend on both the thread operation
schedule and execution path. However, these systems do not
guarantee that the failing and non-failing executions exhibit
similar orderings of operations. As a consequence, the gen-
erated reports can be unnecessarily long and hard to analyze.

Recently, new Maximum Satisfiability Modulo Theories
(MaxSMT) algorithms have been proposed. However, its ap-
plication in many areas is still in its infancy. In this paper,
we propose the usage of MaxSMT to improve the effective-
ness of reports produced by systems that analyze concur-
rency bugs in multi-threaded programs. In particular, we ar-
gue that a minimal explanation for the occurrence of a con-
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(initially x = 0, y = 1, z = −1)
T1

1. T2.join()

2. T3.join()

3. T4.join()

4. T5.join()

5. assert(x == 0)

T2
1. x = x+ y

T3
1. x = x+ z

T4
1. y = y + 1

T5
1. z = z + 1

Figure 1: Schedule dependent bug in multi-thread program.

currency bug in a multi-threaded program can be obtained
by maximizing the similarities between the failing sched-
ule and non-failing schedules. Hence, the main contribu-
tions of this paper are as follows: (i) three complementary
metrics for measuring schedule similarity and a MaxSMT
model that optimizes these metrics in order to produce a re-
port with a minimal explanation of a concurrency bug; (ii) a
novel approximation algorithm that considerably speeds up
the MaxSMT model solving procedure by exploiting domain
knowledge, and (iii) an extensive experimental evaluation,
with benchmark and real-world concurrency bugs, showing
that the proposed model produces more accurate reports than
the previous approaches based on heuristics.

The rest of the paper is organized as follows: Section 2
provides background on concurrency bugs, SMT and other
concepts necessary for this work. Section 3 exemplifies lim-
itations of current systems for concurrency debugging. Sec-
tion 4 reviews MaxSMT and describes the model for obtain-
ing minimal reports. Section 5 evaluates the contributions of
the paper and discusses the results of the experiments. Fi-
nally, Section 6 concludes the paper.

2 Background
This section defines the concepts used in the remainder of
the paper. First, we review concurrency bugs. Next, we intro-
duce the Satisfiability Modulo Theories formalism. Finally,
two types of reports on concurrency bugs are described.

2.1 Concurrency Bugs
A concurrency bug is an error in multi-threaded code that
may cause the program to fail depending on the order in
which thread operations are executed. An operation is ei-
ther a read/write of a variable or a synchronization primitive
(e.g. lock, unlock, fork, etc). As an example, consider the
multi-threaded program with five threads (T1–T5) shown in
Figure 1. The program has three shared variables: x, y and
z. Variable x is accessed by T1, T2 and T3, y is accessed by
T2 and T4, and z by T3 and T5. T1 simply waits for all other
threads to terminate and then checks if x is 0.

This program can fail under two different scenarios, as
the assertion x == 0 is violated when T4 executes before
T2 or T5 before T3, but not otherwise. For instance, a fail-
ing schedule can occur if the sequence of execution is: <T4,
T5, T2, T3>, since the value of x is 2 when the assertion is
tested. In this case, the failure is caused by two concurrency
bugs, namely a data race on y between T2 and T4 and a data
race on z between T3 and T5. A data race occurs when two

different threads access the same variable without synchro-
nization, and at least one of the accesses is a write.1

For this data race, T2 reads the value of y concurrently
with the write on y by T4. Since the execution is non-
deterministic, one may observe a schedule where T4 incre-
ments y before T2 adding y to x, thus causing x to be greater
than 0 at the end of the program. However, if T2 increments
x prior to T4 setting y to 2 (and T5 also executes before T3
setting z to 0), then x = 0 at the end of the execution and the
program satisfies the assertion. In this example, each thread
executes the exact same sequence of operations in both the
failing and non-failing executions. Hence, since the differ-
ence between the executions concerns only the thread inter-
leaving, the bug is said to be strictly schedule dependent.

However, not all concurrency bugs are strictly schedule-
dependent. For example, consider the multi-threaded pro-
gram in Figure 2, which has three threads (T1-T3) and four
shared variables (x, y, z and w). The program will fail if x
is not greater than 0 at the end of T1’s execution.

As depicted in Figure 3, it may be the case that T2 runs
before T1, causing w to be incremented at line 2 of T1, and
T3 sets y = 0 in-between lines 4 and 5 of T1, i.e. after T1
increments w but before checking if y == 0. This inter-
leaving will cause x to be decremented to 0 at line 6 of T1
and, consequently, violate the assertion at line 7. Notice that
the failing and non-failing executions of this program neces-
sarily differ in their control-flow paths. As such, the bug is
deemed path-schedule dependent.

2.2 Satisfiability Modulo Theories
A propositional formula φ in Conjunctive Normal Form
(CNF), defined over a set X of n Boolean variables
{x1, . . . , xn}, is a conjunction of clauses, where a clause
is a disjunction of literals. A literal is either a variable xi or
its complement ¬xi. The Propositional Satisfiability (SAT)
problem consists of deciding whether there exists an assign-
ment to the variables in X such that the formula φ is satis-
fied. For ease of explanation, we often use the set notation
to represent the conjunction of clauses and formulas.

As an example, consider the CNF formula φ = {(¬x1 ∨
x2), (x1 ∨ x2 ∨ x3), (¬x2 ∨ ¬x3)}. In this case, a possible
satisfying assignment would be x1 = 0, x2 = 0, x3 = 1,
since it satisfies all clauses in φ.

The Satisfiability Modulo Theories (SMT) problem is a
generalization of SAT. Given a decidable first order theory
T , a T -atom is a ground atomic formula in T . A T -literal
is either a T -atom t or its complement ¬t. A T -formula is
similar to a propositional formula, but a T -formula is com-
posed of T -literals instead of propositional literals. Given a
T -formula φ, the SMT problem consists of deciding if there
exists a total assignment over the variables of φ such that φ
is satisfied. Depending on the theory T , the variables can be
of type integer, real, Boolean, etc.

Using SMT to encode multi-threaded executions. Some
debugging systems represent multi-threaded executions as
SMT formulations over symbolic variables (Huang, Zhang,

1We refer to the literature for a more detailed background on
concurrency bugs (Lu et al. 2006; Park, Vuduc, and Harrold 2010).
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(initially x = y = w = z = 0)
T1

1. if (z > 0)

2. w ++

3. x = 1

4. y = 1

5. if (y == 0)

6. x = x− 1

7. assert(x > 0)

T2
1. z = 1

2. x = x+ 1

3. y = y + 1

T3
1. if (w > 0)

2. y = 0

Figure 2: A multi-threaded program with a path and
schedule-dependent bug.

(initially x = y = w = z = 0)
T1

1. [z > 0]

2. w ++

3. x = 1

4. y = 1

5. [y == 0]

6. x = x− 1

7. assert(x > 0)

T2
1. z = 1

2. x = x+ 1

3. y = y + 1

T3

1. [w > 0]

2. y = 0

Figure 3: Failing schedule for program in Figure 2.

and Dolby 2013; Machado, Lucia, and Rodrigues 2015;
Machado, Lucia, and Rodrigues 2016). The constraints of a
concurrent execution are composed by a set of sub-formulae
that encode, respectively, the path conditions, the program
order of operations in each individual thread, the read-write
linkages of shared variables, the synchronization points, and
the failure condition.

Let vart,l denote the value of a shared variable var at line
l of thread t. Consider the initial values of the variables as
having line and thread equal to 0. Moreover, let the order
variables Rt,l (Wt,l) denote the execution order of the read
(write) operation at line l of thread t. A concrete instance of
the SMT formula for the multi-threaded program in Figure 2
is as follows.2

Path Constraints. Let us assume an execution path in
which the branch condition at line 1 of thread T1 evaluates
to true, whereas the branch conditions at lines 5 and 1 of
threads T1 and T3, respectively, evaluate to false. The path
constraints are then encoded as:

(z1,1 > 0) ∧ ¬(y1,5 = 0) ∧ ¬(w3,1 > 0)

Program Order Constraints. The following SMT formula

2Since the program in Figure 2 does not have synchronization
points, we do not consider this type of constraints in the model
description for the example.

enforces the schedule of operations in a particular thread:

(R1,1 < W1,2 < W1,3 < W1,4 < R1,5 < R1,7) ∧

(W2,1 < W2,2 < W2,3) ∧ (R3,1 < W3,2)

Read-Write Constraints. To encode all possible data-flows
over shared variables due to reads and writes performed by
the three threads along their execution paths, one would add
the following conjunction of constraints to the system:

(x0,0 = 0) ∧ (y0,0 = 0) ∧ (w0,0 = 0) ∧ (z0,0 = 0)  
initial values

((z1,1 = z0,0 ∧ R1,1 < W2,1)∨

(z1,1 = z2,1 ∧ R1,1 > W2,1)) ∧ (z2,1 = 1)  
reads/writes on z

(w1,2 = w0,0 + 1)∧

((w3,1 = w0,0 ∧ R3,1 < W1,2) ∨ (w3,1 = w1,2 ∧ R3,1 > W1,2))  
reads/writes on w

(y1,4 = 1)∧

((y1,5 = y1,4 ∧ (R1,5 < W2,3 ∨ W1,4 > W2,3))∨

(y1,5 = y2,3 ∧ R1,5 > W2,3 ∧ W2,3 > W1,4))∧

((y2,3 = y0,0 + 1 ∧ R2,3 < W1,4) ∨ (y2,3 = y1,4 + 1 ∧ R2,3 > W1,4))  
reads/writes on y

(x1,3 = 1)∧

((x1,7 = x1,3 ∧ (R1,7 < W2,2 ∨ W1,3 > W2,2))∨

(x1,7 = x2,2 ∧ R1,7 > W2,2 ∧ W2,2 > W1,3))∧

((x2,2 = x0,0 + 1 ∧ R2,2 < W1,3) ∨ (x2,2 = x1,3 + 1 ∧ R2,2 > W1,3))  
reads/writes on x

Note that each conjunct expresses the possible values re-
turned by a read operation on a shared variable by encoding
the most-recent write to that variable. For instance, the con-
straints (x2,2 = x0,0 + 1 ∧ R2,2 < W1,3) ∨ (x2,2 =
x1,3+1∧R2,2 > W1,3) indicate that the read on x by T2 at
line 2 either returns the result of adding 1 to the initial value
(therefore, read R2,2 happens before write W1,3) or the re-
sult of T1’s write at line 3 (hence, write W1,3 happens before
read R2,2 and is the most recent write to x).

Failure Constraint. Finally, to force the solver to produce
a failing schedule, one adds a constraint encoding the nega-
tion of the assertion: ¬(x1,7 > 0).

In contrast, to obtain a non-failing schedule, one would
add the original assertion to the formulation instead of the
constraint above. Furthermore, one would also need to add
constraints limiting the order variables to have all distinct
integer values within the range [1, n], where n is the number
of operations of the program. In this example, the Linear
Integer Arithmetic (LIA) theory is being used as T .

Using SMT in related areas. Over the last decade, there
has been a growing interest in using SMT for concurrency
debugging. For instance, several record and replay sys-
tems use SMT to deterministically reproduce concurrency
bugs (Lee et al. 2009; Altekar and Stoica 2009; Huang,
Zhang, and Dolby 2013). Alongside, BugAssist (Jose and
Majumdar 2011) pioneered root cause isolation with SMT
constraint solving by leveraging unsatisfiable cores. How-
ever, BugAssist is only able to diagnose errors in sequential
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programs. ConcBugAssist (Khoshnood, Kusano, and Wang
2015) extends BugAssist to handle concurrency bugs and
automatically generate fixes by casting the binate covering
problem as a constraint formulation. Finally, SMT has also
been extensively used in testing (Huang 2015; Farzan et al.
2013) of concurrent programs.

2.3 Differential Schedule Projections
In the context of root cause isolation using SMT solving,
the SYMBIOSIS debugging tool (Machado, Lucia, and Ro-
drigues 2015) introduced the notion of Differential Sched-
ule Projection (DSP). Like the name suggests, a DSP is built
by projecting a failing schedule onto an alternate schedule
(which is a non-failing variant of the failing schedule). The
DSP prunes out the common operations in the projection and
reports solely the subset of thread events that differ between
the schedules. These events correspond to read-write link-
ages that cause the failure in the failing schedule.

More formally, let us define an execution schedule as
a 3-tuple (V,Es, Edf ), corresponding to a directed acyclic
graph (DAG) with a set V of vertices, representing thread
operations in the execution, and two sets of directed edges
connecting the vertices: schedule edges (Es) and data-flow
edges (Edf ). A schedule edge links a pair of operations, be-
longing to the same thread or not, according to the execution
order given by the schedule. In turn, a data-flow edge con-
nects a write operation w to a read operation r, thus indicat-
ing that r reads the value written by w during the execution.

Consider now that F = (V,EF
s , EF

df ) and A =

(V,EA
s , E

A
df ) denote the DAGs of the failing and alternate

schedules, respectively. The portions of the schedules rel-
evant to the bug’s root cause are obtained by computing
the union of the edges exclusive to both schedules: Ep

s =
(EF

s ∪EA
s )\(EF

s ∩EA
s ) and Ep

df = (EF
df∪EA

df )\(EF
df∩EA

df ).
The DSP is then given by the pair (F p, Ap), where F p =
(V p, EF

s ∩Ep
s , E

F
df∩E

p
df ), A

p = (V p, EA
s ∩Ep

s , E
A
df∩E

p
df ),

and V p is the set of vertices (i.e. operations) appearing in the
edges in both Ep

s and Ep
df .

By highlighting the data-flow variations between the
schedules, the DSP allows obviating most of the execution’s
complexity (which is often irrelevant for the failure to occur)
and steer the programmer’s focus to the bug’s root cause.

2.4 Differential Path-Schedule Projections
When the manifestation of the failure depends on the
threads’ execution path, an alternate, non-failing schedule
will necessarily exhibit a variation in the program’s control-
flow with respect to the failing schedule. To handle such
path-schedule dependent bugs, CORTEX (Machado, Lucia,
and Rodrigues 2016) introduced Differential Path-Schedule
Projections (DPSPs), which are an extension of DSPs that
highlight differences in the control-flow, in addition to dif-
ferences in the data-flow.

However, since a change in the control-flow of a multi-
threaded program is, in practice, the result of a variation in
the schedule of the thread operations that changes the data-
flow on shared variables and causes a given branch condition

to evaluate differently, in the rest of the paper we will use the
term DSP to refer to both a DSP and a DPSP.

It should also be noted that the accuracy of DSPs is heav-
ily determined by the similarity between the schedules. The
more different the thread interleaving of the failing schedule
is from that of the alternate schedule, the fewer common por-
tions their projection will exhibit and the longer the resulting
DSP will be. An unnecessarily long DSP will contain events
from the original execution that are not related to the bug’s
root cause and, consequently, hinder the debugging task. It
is thus of paramount importance to obtain failing and alter-
nate schedules as identical as possible, in order to generate
an accurate and useful differential projection.

3 SYMBIOSIS and CORTEX Shortcomings
This section describes systems SYMBIOSIS’ and CORTEX’s
approaches for generating Differential Schedule Projections
(DSPs), and highlights their key shortcomings.

3.1 Swapping One Operation Pair is not Enough
SYMBIOSIS leverages symbolic execution and SMT con-
straint solving to produce DSPs that isolate concurrency
bugs. SYMBIOSIS receives as input a set of lightweight
per-thread path profiles recorded from an original failing
execution. Next, it performs a guided symbolic execution
along the thread path profiles with the goal of generating
per-thread traces with symbolic information. The symbolic
traces are used to generate an SMT constraint formulation
encoding the failure condition, as described in Section 2.2.
Afterwards, SYMBIOSIS resorts to an SMT solver to solve
the constraint system and output a failure-inducing ordering
of operations, i.e. the failing schedule.

After obtaining the failing schedule, SYMBIOSIS has to
devise an alternate, non-failing schedule in order to be able
to compute the DSP and pinpoint the bug’s root cause. The
generation of the alternate schedule is done by applying the
following heuristic:

1. Select a pair of events in the failing schedule, prioritizing
pairs whose events are closer in the execution;

2. Generate a candidate alternate schedule by swapping the
order of the two events in the failing schedule;

3. Check the satisfiability of the candidate alternate schedule
by solving an SMT formula like the one used to produce
the failing schedule, but modified to have the failure con-
straint inverted and new constraints enforcing the order of
operations given by the candidate alternate schedule;

4. If the SMT formula is satisfiable, return the non-failing
schedule. Otherwise, repeat steps 1 to 3 until a feasible
alternate schedule is found, or until all possible event pairs
have been reordered (in which case, SYMBIOSIS fails).

Once a feasible alternate schedule is found, SYMBIOSIS
proceeds to computing the DSP as described in Section 2.3.
Experimental results showed that this heuristic works well
in various scenarios (Machado, Lucia, and Rodrigues 2015).
However, it falls short for cases where the failure may stem
from more than one data-flow.
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As an example of this limitation, recall the buggy pro-
gram in Figure 1. Note that it suffices that T4 runs before
T2 or T5 runs before T3 for the program to fail. Consider
the failing schedule of operations <T4, T5, T2, T3> for
Figure 1. SYMBIOSIS will attempt to generate an alternate
schedule by reordering the following pairs of instructions:
(R1,5,W3,1), (R1,5,W2,1), (R3,1,W2,1), (R3,1,W5,1), and
(R2,1,W4,1). Swapping the former two event pairs renders
the model unsatisfiable because it violates the synchroniza-
tion semantics of the program, which state that the end of a
thread must happen before the join operation by the parent
thread. In turn, inverting the order of the remaining pairs will
fix one of the two problematic data-flows (z = z + 1 before
x = x + z or y = y + 1 before x = x + y), but never both
simultaneously. For that reason, SYMBIOSIS will fail to find
a feasible alternate schedule.

3.2 The Disregard for Minimality
Conversely to SYMBIOSIS, CORTEX aims at exposing and
isolating concurrency bugs in correct executions. CORTEX
starts from a set of per-thread path profiles collected from
one or more executions and produces a non-failing sched-
ule using symbolic execution and SMT constraint solving.
In fact, the model built by CORTEX is similar to the one em-
ployed by SYMBIOSIS to obtain the initial failing schedule.

Afterwards, CORTEX systematically explores the state
space of the program in an attempt to unveil a schedule that
leads to a failure. More concretely, CORTEX inverts branch
conditions in the original non-failing schedule, starting from
branches that are closer to the assertion point. For each new
combination of thread symbolic traces, CORTEX builds an
SMT formula encoding the failure condition and checks its
satisfiability. If the formula is satisfiable, then CORTEX ob-
tains the failing schedule and proceeds to the computation of
the DSP. Otherwise, CORTEX flips a different branch con-
dition, synthesizes new thread traces via symbolic execu-
tion, and repeats the procedure until a maximum number of
branch flips is reached.

Using this approach, CORTEX is able to generate fail-
ing schedules for failures that are path-schedule dependent.
Then, an alternate schedule is produced through an SMT
solver, as in SYMBIOSIS. Branch conditions are flipped and
new thread traces synthesized if necessary. Unfortunately,
the alternate schedule found by the SMT solver does not
come with any guarantees in terms of similarity to the initial
non-failing schedule. In fact, CORTEX simply uses the first
alternate schedule produced by the solver.

To better illustrate this limitation, recall the program in
Figure 2. Figure 3 shows a possible failing schedule for this
program. Recall that the failure occurs because T3 sets y to
0 before the evaluation of the branch condition in line 5 of
T1, which causes x to be decremented to 0 at line 6 and,
consequently, the violation of the assertion. For the purpose
of this example, let us consider that CORTEX starts from the
failing schedule in Figure 3 and aims at finding an alternate
schedule that allows computing the DSP. Since this failure is
path-schedule dependent, CORTEX needs to synthesize new
execution traces in order to find a feasible alternate schedule.

Suppose that CORTEX synthesizes an execution that flips

(initially x = y = w = z = 0)
T1

1. [z > 0]

2. w ++

3. x = 1

4. y = 1

5. [¬ (y == 0)]

7. assert(x > 0)

T2

1. z = 1

2. x = x+ 1

3. y = y + 1

T3
1. [¬ (w > 0)]

Figure 4: Possible alternate schedule for Figure 3.

(initially x = y = w = z = 0)
T1

1. [z > 0]

2. w ++

3. x = 1

4. y = 1

5. [¬ (y == 0)]

7. assert(x > 0)

T2
1. z = 1

2. x = x+ 1

3. y = y + 1

T3

1. [¬ (w > 0)]

Figure 5: An alternate schedule for Figure 3 that results in a
smaller DPSP than the one in Figure 4.

the path conditions of lines 1 and 5 of T3 and T1, respec-
tively. The alternate schedules depicted in Figures 4 and 5
are two possible interleavings found by the SMT solver for
this scenario. The DSPs generated for these two alternate
schedules would differ. The alternate schedule in Figure 5 is
more similar to the failing schedule, as they share a longer
common prefix (namely all the instructions executed by T2).
Since the common prefix is irrelevant to the occurrence of
the bug, it can be discarded when computing the DSP.

4 Generating DSPs with MaxSMT
This section proposes an approach based on Maximum Sat-
isfiability to address the limitations in SYMBIOSIS and COR-
TEX presented in Section 3.

4.1 Maximum Satisfiability in SMT
The Maximum Satisfiability (MaxSAT) problem can be seen
as an optimization version of the SAT problem. In MaxSAT,
the goal is to find an assignment to the variables of a CNF
formula that maximizes the number of satisfied clauses.
There are several variants of MaxSAT (Li and Manyà 2009).
In the context of this work, we consider the partial MaxSAT
problem where a MaxSAT formula φ = φh ∪ φs has some
clauses considered as hard (φh), while others are declared
as soft (φs). In partial MaxSAT, the goal is to find an assign-
ment to the variables in φ such that all hard clauses are sat-
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isfied and the number of satisfied soft clauses is maximized.
One can also define the Maximum Satisfiability prob-

lem in SMT formulas. The MaxSMT problem is similar to
MaxSAT, except that φh, as well as φs contain T -formulas
instead of propositional clauses. In MaxSMT, the goal is to
find an assignment that satisfies all T -formulas in φh and
maximizes the number of satisfied soft T -formulas in φs.

Example 4.1. Consider the MaxSMT formula φ = φh ∪ φs

where φh = {(x1 ≥ 0), (x1 ≤ 4)} and φs = {(x2 ≥
−1), (x2 ≤ 0), (x1+x2 = 5)}. Here, T is the Linear Integer
Arithmetic (LIA) theory. An optimal solution would be x1 =
4, x2 = 1, where soft constraint (x2 ≤ 0) is not satisfied.

Observe that algorithms to solve MaxSAT that use itera-
tive calls to a SAT solver can be adapted to solve MaxSMT.
In MaxSMT, an SMT solver is used instead of a SAT solver.
For instance, the SMT solver Z3 (de Moura and Bjørner
2008) is able to solve MaxSMT formulas (Bjørner and Nar-
odytska 2015). In the last decade, SMT solvers became
able to solve much larger problem instances than previously.
As a result, concurrency debuggers such as CLAP (Huang,
Zhang, and Dolby 2013), SYMBIOSIS and CORTEX have
successfully used SMT constraint solving to achieve their
goals. However, these tools rely on heuristic procedures with
no guarantee of approximation to the optimum.

One should note that soft formulas encode objectives or
preferences. It is well-known that any linear objective func-
tion can be easily encoded by using a set of soft formulas in
MaxSAT or MaxSMT. However, there exists a vast number
of applications where there is more than one objective func-
tion to optimize. When there are multiple objectives, one can
define a different set of soft formulas for each individual ob-
jective. Moreover, if those objectives can be sorted accord-
ing to some criteria, then each objective (encoded as a set
of soft formulas) can be optimized in order by using lexico-
graphic optimization (Marques-Silva et al. 2011).

4.2 Finding an Optimal DSP
In this section, we propose using MaxSMT to compute al-
ternate schedules as similar as possible to the correspond-
ing failing schedules. Those alternate schedules can then be
used to generate simpler and more informative DSPs than
the ones currently produced by the SYMBIOSIS and COR-
TEX systems. We consider three DSP quality criteria when
measuring schedule similarity:

• Number of data-flow variations. This corresponds to the
amount of data-flows that appear in the alternate schedule
but not in the failing schedule, i.e.

⏐⏐⏐EA
df ∩ Ep

df

⏐⏐⏐.
• Number of broken segments. Let a segment S =

o1o2 . . . ok be a maximal sequence of operations in the
failing schedule such that all oi belong to the same thread
T and for all o′ not belonging to T we have that o′ oc-
curs before o1 or after ok. S is considered broken if, in
the alternate schedule, some operation of a thread T ′ ̸= T
appears after o1 but before ok.

• Number of context switch variations. This accounts for
the context switches in the failing schedule that do not

occur in the alternate schedule, i.e., contiguous pairs of
operations oioj in the failing schedule such that oi and oj
belong to different threads and, in the alternate schedule,
some other operation ok appears in-between oi and oj .

The rationale for the aforementioned DSP quality crite-
ria stems from the observation that most real-world concur-
rency bugs can be triggered by only a few thread context
switches (Musuvathi et al. 2008). By generating an alternate
schedule that minimizes the variation in the data-flow and
context switching with respect to the failing sequence of op-
erations, one is able to reduce the cardinality of the projec-
tion edge sets Ep

df and Ep
s and thus produce a DSP that ac-

curately isolates the bug’s root cause.
The soft formulas in our MaxSMT model encode the min-

imization of these criteria, while constraints presented in
section 2.2 are considered as hard formulas. For each data-
flow edge (w, r) ∈ EF

df , we add a soft formula stating that
operation r must read the value written by w. Given some
operation o, we denote its order variable as O. Therefore,
let R and W be the order variables of r and w respectively.
For every data-flow edge (w, r), the MaxSMT model con-
siders, as a soft formula, the conjunction of W < R with
W ′ < W ∨ W ′ > R for all w′ ̸= w such that w′ is a
write operation on the variable read by r. To encode the bro-
ken segments criteria, we consider every possible maximal
sequence S = o1o2...ok of operations, in the failing sched-
ule, belonging to the same thread, and add the soft formula
Ok −O1 = k − 1. Finally, in order to minimize the number
of context switch changes, for each schedule edge (oi, oj)
such that oi and oj belong to different threads, the model
considers the soft formula Oi = Oj − 1.

We can look at this schedule computation problem as a
multi-objective problem with three different sets of soft for-
mulas φdf

s , φbs
s and φcs

s , representing the data-flows, broken
segments and context switches criteria respectively. We con-
sider two types of MaxSMT models: one where all crite-
ria are equally significant (i.e., φs = φdf

s ∪ φbs
s ∪ φcs

s ) and
one lexicographic model that optimizes φdf

s first, followed
by φbs

s and then φcs
s . By prioritizing the optimization of the

data-flows, one ensures that the specific interleaving of oper-
ations that causes the bug is the most accurate possible. Hav-
ing that, the optimization of the other criteria is mainly to
allow pruning out additional thread segments that, although
differing in the two executions, are not relevant to the failure.

Differential Path-Schedule Projections. Recall from sec-
tion 2.4 that, if the failure is path dependent, CORTEX syn-
thesizes execution traces that follow a different control-flow
than the one in the original non-failing schedule. As a result,
some operations in the original schedule may not appear in
new traces and vice-versa. When building φdf

s , we ignore
data-flow edges containing at least one operation that does
not appear in the synthesized traces. Same goes for operation
sequences (pairs) considered when building φbs

s (φcs
s ).

4.3 Approximating an Optimal DSP
In our experiments, we observed that the MaxSMT approach
proposed in the previous section struggled to find alternate
schedules within reasonable time. However, in practice, one
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Algorithm 1: Progressive algorithm for computing an
alternate schedule.

Input: F
1 Sa ← AssertSegment(F)
2 OPfix ← Operations(F) \ Sa

3 Sf ← Sa;Sl ← Sa

4 A← nil
5 do
6 Sf ← PreviousSegment(F , Sf)
7 Sl ← NextSegment(F , Sl)
8 OPfix ← OPfix \ (Sf ∪ Sl)
9 A← FindAltSchedule(F , OPfix)

10 while A = nil ∧OPfix ̸= ∅;
11 return A

does not necessarily have to find the alternate schedule that
is the most similar to the failing schedule in order to produce
a DSP that is sufficiently short and accurate.

State-of-the-art MaxSMT algorithms rely on multiple
calls to an SMT oracle and compute intermediate sub-
optimal solutions during the search process (Bjørner and
Phan 2014). Internally, modern SMT solvers apply an adap-
tation of the conflict-driven DPLL procedure used in state-
of-the-art SAT solvers (Sebastiani 2007). A simple approach
is to terminate the search early if the number of conflicts
crosses a fixed threshold. In such case, the MaxSMT solver
returns the best solution it was able to find. If no solution
was found, the formula is assumed to be unsatisfiable.

A better approach is to generate simpler MaxSMT mod-
els by first focusing on the operations close to the assertion
and progressively expanding until an alternate schedule is
found. This is the idea behind Algorithm 1, which receives
a failing schedule F as input and outputs an alternate sched-
ule A. Recall that a failing schedule is a sequence of op-
erations that results in a failure and segments are maximal
sequences of operations belonging to the same thread. The
assertion segment Sa is the segment that includes the failing
assertion. Algorithm 1 starts by setting OPfix to all opera-
tions except those in Sa (line 1). At each iteration, the order
of the operations in OPfix is fixed. The algorithm then re-
trieves the segments immediately before (Sf ) and after (Sl)
the assertion segment (lines 6 and 7). Next, it unfixes the cor-
responding operations from OPfix (line 8) and attempts to
compute an alternate schedule by solving a MaxSMT model
(line 9). If an alternate schedule is found, then that schedule
is returned. Otherwise, the algorithm keeps removing oper-
ations from OPfix until it either finds an alternate schedule
or the set of fixed operations becomes empty (line 10). Note
that conflict thresholds can also be used in algorithm 1 in
the computation of the alternate schedule in order to avoid
getting stuck solving hard MaxSMT formulas.

5 Experimental Evaluation
In order to evaluate the proposed MaxSMT-based ap-
proaches, the MaxSMT models and algorithms were inte-
grated in the publicly available versions of SYMBIOSIS3 and

3http://github.com/nunomachado/symbiosis

CORTEX4 tools. The experimental evaluation is mainly fo-
cused on assessing the performance and the quality of the
DSPs produced by our MaxSMT-based approaches with re-
spect to the base versions of SYMBIOSIS and CORTEX. The
performance criterion is measured in terms of constraint
solving time. For the latter criterion, we assume that reduc-
ing the size of the DSPs and the values of the metrics dis-
cussed in section 4.2 improves the quality of the DSP and
the productivity of the programmer when fixing the bug.

For the comparison, we resorted to several buggy multi-
threaded programs commonly used in the literature. We con-
sider two sets of test cases. The first includes several C/C++
and Java applications with strictly schedule-dependent bugs,
such as shared buffer implementation or an adapted paral-
lel file scanner (Elmas et al. 2013). The second set includes
programs with path-schedule dependent bugs from the IBM
ConTest benchmark suite, as well as the ExMCR benchmark.

In our experiments, Z3 (Bjørner and Phan 2014) (ver-
sion 4.6.0) was used as the MaxSMT solver. Z3 has na-
tive support for lexicographic optimization and implements
MaxSMT algorithms MaxRes and WMax.

5.1 Performance Comparison
Table 1 shows the execution times of the heuristics of
SYMBIOSIS/CORTEX and the MaxSMT-based approaches.
Columns ’MaxSMT’ and ’Lexico’ correspond to the full
MaxSMT and lexicographic models respectively. The ’Prog
(X)’ columns correspond to the progressive algorithm (Al-
gorithm 1), where X stands for the type of MaxSMT model
used. The ’cmp’ (complete) sub-column indicates that no
conflict threshold was imposed. For the ’inc’ (incomplete)
sub-column, a conflict threshold of 200000 was used. Each
line corresponds to a different test case and the best entries
for each test case are highlighted. A time limit of 3 hours
was imposed for each execution on a particular test case. En-
tries with ’TO’ indicate that the algorithm timed out, while
entries with ’FAIL’ indicate that the algorithm terminated
within the time limit, but failed to find an alternate schedule.

The results in Table 1 show that algorithms using the full
MaxSMT model require, in general, more time to generate
the DSPs. However, the progressive algorithm is always as
fast or much faster than all remaining approaches, includ-
ing the heuristic of SYMBIOSIS/CORTEX. In particular, for
the bufwriter test case, all configurations of the progressive
algorithm generate the DPSP at least 60 times faster than
the heuristic. The only exception is the manager test case,
but our approach is able to produce a much improved DPSP
(see Table 2). The ’Average’ line shows the average exe-
cution time for each algorithm only considering solved in-
stances. However, some algorithms are not able to solve all
instances within the time limit. These entries are underlined.
Nevertheless, the average execution time of the progressive
algorithm is much smaller than the remaining approaches.

5.2 DSP Quality Comparison
Table 2 shows the quality of the DSPs found by the orig-
inal version of SYMBIOSIS/CORTEX and by the proposed

4http://github.com/nunomachado/cortex-tool
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Table 1: Time in seconds required to generate DSPs (DPSPs) using SYMBIOSIS/CORTEX and MaxSMT

Test Case

MaxSMT Lexico Prog (MaxSMT) Prog (Lexico)

SYMB/ MaxRes WMax MaxRes WMax MaxRes WMax MaxRes WMax

CORTEX cmp inc cmp inc cmp inc cmp inc cmp inc cmp inc cmp inc cmp inc

crasher 22.6 3373 FAIL 4275 FAIL 4321 FAIL TO FAIL 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4
pbzip2 (S) 0.3 22.8 22.8 19.9 20.1 37.5 38.3 38.2 38.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pbzip2 (M) 0.9 122.8 122 112 112 TO 1280 4306 3751 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3
pbzip2 (L) 28.7 TO TO TO TO TO TO TO TO 2.3 2.3 2.3 3.0 2.2 2.2 2.2 2.1
pfscan 0.2 812 99.1 2.1 2 0.2 0.6 0.4 0.7 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
airline 0.2 TO 88.9 2.1 1.7 11.7 11.7 1.0 1.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
bank FAIL 11.6 11.8 3.3 3.4 2.5 2.6 2.2 2.2 1.5 1.4 1.1 1.1 1.2 1.2 1.1 1.1
cache4j (M) 114.1 3048 3301 3508 3794 3489 3494 2821 2846 6.0 5.9 6.7 7.8 6.0 5.3 6.9 7.0

cache4j (L) 343 TO TO TO 10668 TO TO TO TO 176 166 19.9 20.4 16.2 16.6 109 99.6

bufwriter 5790 TO TO 8939 8940 3773 3828 5803 5782 91.7 91.5 32.9 33.0 60.6 62.6 38.5 38.4

critical 0.5 2.5 0.3 2.3 0.2 0.1 0.3 0.2 0.3 0.2 0.7 2.6 0.2 0.2 0.2 0.3 0.6
exMCR 1.1 0.6 0.6 0.2 0.2 0.2 0.6 2.1 2.2 0.5 0.7 0.6 0.6 0.4 0.6 0.6 0.6
garage 13.4 TO 673 39.7 40.8 62.9 59.6 77.3 76.8 0.5 0.4 0.5 0.4 0.4 0.4 0.5 0.4
loader 55.8 107 102 239 246 130 135 TO 701 97.9 96.8 10.5 10.5 22.4 22.0 31.3 31.2

manager 189 TO FAIL TO FAIL TO FAIL TO FAIL TO 2171 TO 1630 TO 1567 TO 1199

ticketorder 7.1 1101 1097 373 371 182 186 146 146 9.1 9.1 3.7 3.6 12.7 13.0 3.3 3.4

Average 437 782 502 1347 1862 1001 753 1200 1112 25.8 159 5.5 107 8.2 106 13 86.5

Table 2: Quality of the DSPs (DPSPs), generated by SYMBIOSIS/CORTEX and MaxSMT, measured using the number of oper-
ations (OP), data-flow variations (DF), broken segments (BS) and context switch variations (CTX)

Test Case
SYMB / CORTEX MaxSMT Lexico Prog (MaxSMT) Prog (Lexico)

OP DF BS CTX OP DF BS CTX OP DF BS CTX OP DF BS CTX OP DF BS CTX

crasher 9 1 1 2 9 1 1 2 9 1 0 3 9 1 1 2 9 1 0 3

pbzip2 (S) 7 1 2 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 1
pbzip2 (M) 4 1 2 1 3 1 1 1 TO 3 1 0 2 3 1 0 2

pbzip2 (L) 7 1 2 1 TO TO 7 1 1 1 7 1 1 1
pfscan 27 1 2 1 27 1 1 1 27 1 0 2 27 1 0 2 27 1 0 2

airline 11 2 2 1 3 1 1 1 3 1 1 1 8 2 1 1 8 2 1 1
bank FAIL 6 1 1 2 6 1 1 2 54 2 2 1 54 2 1 2

cache4j (M) 14 1 1 2 3 1 1 2 3 1 0 3 43 1 1 2 3 1 0 3

cache4j (L) 5 1 2 1 TO TO 3 1 1 2 3 1 1 2

bufwriter 724 88 7 6 197 1 2 1 35 1 1 2 221 8 3 3 221 8 3 3

critical 9 4 3 4 7 4 2 2 7 4 2 2 7 4 2 2 7 4 2 2
exMCR 22 8 8 12 21 7 6 8 21 7 5 9 21 7 6 8 21 7 5 9

garage 5 2 1 2 3 1 2 1 3 1 1 2 5 2 0 3 5 2 0 3

loader 267 22 18 18 48 21 3 2 47 21 2 3 48 21 4 2 47 21 3 3

manager 120 46 58 147 TO TO 78 33 34 109 57 32 9 70
ticketorder 178 4 5 5 46 4 1 2 46 4 1 2 47 4 2 1 46 4 1 2

Average (%) - - - - 61 82 67 70 57 80 34 92 89 91 47 102 68 91 28 109

MaxSMT-based approaches. We consider the number of op-
erations, data-flow variations, broken segments and context
switch variations in the DSP. Results are shown only for a
representative set of configurations (see Table 3) which ex-
hibit better performance. The ’Average’ line shows the aver-
age relative DSP quality improvement/degradation with re-
spect to SYMBIOSIS/CORTEX. For example, 61% in the OPs
column for ’MaxSMT’ indicates that the alternate schedule
found produces, on average, a DSP with 100% - 61% = 39%
fewer operations than that of SYMBIOSIS/CORTEX.

In general, using the full MaxSMT model results in higher

quality DSPs. For example, when ’Lexico’ is able to find an
alternate schedule, it produces a DSP with the smallest num-
ber of operations, data-flow variations and broken segments.
’MaxSMT’ performs better in terms of context switches,
which is expected since ’Lexico’ prioritizes data-flow varia-
tions and broken segments. The DSPs produced by the pro-
gressive approaches are, usually, of equal quality to those
produced with the full models. Moreover, all the MaxSMT-
based approaches outperform SYMBIOSIS/CORTEX, espe-
cially in the test cases with path-schedule dependent bugs.

1615



Table 3: Representative configurations per type of approach

Approach MaxSMT Algorithm Conflict Threshold
MaxSMT WMax No
Lexico MaxRes No
Prog (MaxSMT) WMax Yes
Prog (Lexico) WMax Yes

6 Conclusions
This paper proposes the use of Maximum Satisfiability Mod-
ulo Theories (MaxSMT) to generate minimal Differential
Schedule Projections (DSPs) that automatically provide an
explanation of a concurrency bug in a multi-threaded pro-
gram. Also, in cases where solving the MaxSMT model is
too time-consuming, we exploit domain knowledge to build
smaller models and reduce the constraint solving time while
still providing a close approximation to an optimal DSP. per-
ations The proposed MaxSMT-based approaches were in-
tegrated into two state-of-the-art systems SYMBIOSIS and
CORTEX. Experimental results, using benchmark and real-
world concurrency bugs, show that using a MaxSMT model
greatly improves the quality of the DSPs, especially when
bugs are path and schedule dependent.
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