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Abstract

Real world experiments are expensive, and thus it is important
to reach a target in a minimum number of experiments. Exper-
imental processes often involve control variables that change
over time. Such problems can be formulated as functional
optimisation problem. We develop a novel Bayesian optimi-
sation framework for such functional optimisation of expen-
sive black-box processes. We represent the control function
using Bernstein polynomial basis and optimise in the coef-
ficient space. We derive the theory and practice required to
dynamically adjust the order of the polynomial degree, and
show how prior information about shape can be integrated.
We demonstrate the effectiveness of our approach for short
polymer fibre design and optimising learning rate schedules
for deep networks.

Introduction
Functional optimisation arises when a time-varying system
requires optimal control variable values to change with time.
As an example consider optimising the learning rate sched-
ule while training a neural network. The learning rate sched-
ule can be expressed as a function of time and often there
is knowledge about the shape of this function; traditionally,
it is a decreasing function. Consider also recirculation pro-
cesses, common in industries like drug production or plastic
recycling. Recirculation involves the reintroduction of par-
tially formed output product into the input of the system
until target output is reached. Recirculation might require
adjusting of input parameters as a function of time to keep
the system optimal throughout. Often, industrial knowledge
exists about the trend of this adjustment.

We propose a Bayesian functional optimisation algorithm
for expensive processes that offers two main capabilities:
a) allows detection of underspecification of complexity of
the functional search space and adjusting for it in a dynamic
fashion, and b) admits loose prior information on the shape
of the function.

The closest work is that of (Vien, Zimmermann, and Tou-
ssaint 2018), where functions are represented in a functional
RKHS, captured through functional kernels. Based on that a
Gaussian process is constructed and subsequently, Bayesian
optimisation is performed. However, their method does not
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allow incorporating prior information or for adjustment of
function complexity mid-optimisation. When Bayesian op-
timisation is used for optimisation of physical experiments
loose prior knowledge may be available. But, only recently,
the value of using such information in Baysian optimisation
is being looked at (Li et al. 2018).

Our solution is primarily based on representing the con-
trol function on Bernstein polynomial basis (Bernstein
1912) and then optimising in the coefficient space. Bern-
stein polynomials basis follow the Stone-Weierstrass ap-
proximation theorem i.e. any function on a bounded sub-
space when represented on this basis system can be point-
wise approximated to an arbitrary precision. Whilst the the-
orem is true for any polynomial basis system, Bernstein ba-
sis offers many unique properties, some of which are critical
for achieving our goals. They are presented in more detail
in proposed framework. Once the control functions are rep-
resented on a Bernstein basis with a suitable order, we can
directly use the coefficient vector as the input subspace for
the global optimisation of a function, which maps the coef-
ficient vector to the outcome of the system.

Bernstein polynomials have been a popular choice in the
field of aerospace for the optimisation of aerofoil geome-
try. For example, it has been used in (Kulfan and Busso-
letti 2006) to convert a shape optimisation problem into a
function optimisation problem. Often Computational Fluid
Dynamic (CFD) tools are used to optimise such geometries
(Samareh 2001). However, these methods are not designed
to be sample-efficient, and hence, not feasible for expen-
sive optimisation tasks. The proposed Bayesian functional
optimisation algorithm addresses the optimisation of expen-
sive experimental processes, two of which we present in this
paper (physical recirculation systems, and optimisation of
learning rate schedule for a large neural network model be-
ing trained on a large dataset).

Mathematically, if g(t) is the control function that drives
the system output (y) by a functional h : g(t) → y where
g ∈ B(R), the space of all bounded real-valued functions,
then the original functional optimisation problem can be
written as:

g∗(t) = argmaxg(t)∈B(R)h(g(t))

When we convert g(t) onto the nth order Bernstein polyno-
mial as g(t) =

∑n
v=0 αvbv,n(t), where α = {αv}nv=1are
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Figure 1: Intuition behind determining whether the current
order of Bernstein suffices to capture the optimal function.

the Bernstein coefficients and bv,n(t) are the base polyno-
mials (more in framework), the above optimisation problem
can thus be reformulated in a more familiar function optimi-
sation problem as:

α∗ = argmaxα∈Af(α)

where f : α → y. In addition to a control function, we
may also have some other control variables (u) that need
to be optimised. For example, in the case of neural net-
work hyper-parameter tuning, umay represent network size
parameters, whilst α represents the learning rate sched-
ule. In such cases, our formulation can be easily extended
to {α∗,u∗} = argmaxα∈A,u∈Uf(α,u). Putting them to-
gether, we will henceforth indicate x = {α,u}, and X =
A ∪ U .

Next, following the properties of derivative of a func-
tion of Bernstein basis, and using results from (Chang et
al. 2007), we show that prior information on shapes such
as monotonicity or unimodality can be encoded by simply
adding constraint functions on the values of α. We further
propose a principled way to detect if the order of the poly-
nomial is underspecified. The intuition is as follows: Fig
1 shows three functions at the top and their corresponding
derivative at the bottom panel with matching colour. Let
us assume that the current function we have with a 3rd or-
der Bernstein polynomial is the red function. The maximum
derivative of the red function happens at t = 0 and it is
around -2.8. The target function is depicted via the colour
green and its maximum derivative as seen from the bottom
panel is -4 at t = 0. In the absolute sense, the derivative
magnitude is higher than the current function that we have.
However, we see that the derivative limit of a 3rd order Bern-
stein polynomial (blue function) is at -3, which in the magni-
tude sense is lower than the maximum derivative of the target
function (green). Thus the optimal function (green) cannot
be reached by a 3rd order Bernstein polynomial. The target
function can only be reached if the order is increased. An
underspecification of the order is thus detected if the deriva-
tive magnitude is close to the theoretical maxima possible
within the current order of the polynomial basis based on

Figure 2: Short polymer fibre production using recirculation.

the ranges over α. When an underspecification is detected,
we increment the order of the Bernstein basis. We derive a
key lemma to compute the maximum of the derivative for
a function realised using Bernstein polynomial basis of a
fixed order. Next, using the existing results of order eleva-
tion for Bernstein basis, we show how to reuse observation
obtained using lower order basis for the new higher order
basis. In some cases, it may not be possible to detect order
underspecification via derivative checking (if the function
has more number of modes than can be modelled by the cur-
rent order of the polynomial), and hence, we also increment
order at a fixed interval up to a maximum specified order. At
all times, we use all the observations using order elevation
technique. Convergence is guaranteed as long as the func-
tion is realisable within the maximum order specified.

We apply our algorithm to two problems: the design and
production of concentrated short polymer fibre solution us-
ing recirculation and learning rate schedule optimisation for
neural network training. Interesting new materials like short
polymer fibres can impart exotic properties to natural fabrics
(Feng et al. 2003; Ma, Hill, and Rutledge 2008). Production
involves injecting a liquid polymer into a high speed butanol
flow through a specially designed apparatus (Fig 2) (Li et al.
2017). This turns the liquid polymer into short nano-scale
fibres. The control variables include the apparatus geometry
and flow rates which in turn determine the produced fibre
quality. To increase the fibre concentration in the mixture
produced, the same mixture (butanol+fibre) is recirculated
through the apparatus, keeping the polymer flow uninter-
rupted. Since the recirculation process introduces dynamics
in the constituents of the mixture, one may need to change
the control variables to keep them optimal throughout this
dynamic process. We apply our algorithm in maximising the
quality of fibre yield for the already mentioned short poly-
mer fibre production process. During recirculation we only
change the butanol flow rate as a function of time, as others
are not easy to change dynamically in the used setup. We
used the experimenter’s hunch that an increasing flow rate
will result in the highest quality fibre. In our experiments,
we found two profiles, one which is nearly constant, and the
other which is increasing that both result in the highest qual-
ity possible, loosely validating the experimenter’s hunch.

In neural network training, the learning rate schedule can
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be modelled either as a long vector or as a function of epochs
(Bengio 2012). The latter is attractive as the smoothness in
the consecutive learning rate values implies smaller effec-
tive design space when considered as a function than with
a full blown vector of the corresponding schedule. We ap-
plied our algorithm for learning rate schedule optimisation
and found that an optimised learning rate schedule can even
make SGD to perform better than both the method proposed
by (Vien, Zimmermann, and Toussaint 2018) and a state of
the art optimiser with automatic scheduling like Adam.

Bayesian optimisation
Bayesian optimisation is a global optimisation method for
expensive black-box function (Jones, Schonlau, and Welch
1998; Mockus 1994). The optimisation problem:

x∗ = argmaxx∈X f(x)
The function is usually modelled using a Gaussian Process
(Rasmussen 2006) as the prior i.e.

f(x) ∼ GP(m(x), k(x,x′)).

where m(x) and k(x,x′) are the mean and the covariance
functions of the Gaussian process (Brochu, Cora, and de
Freitas 2010). Mean m(x) can be assumed to be a zero
function without any loss of generalisation. Popular co-
variance functions include squared exponential (SE) kernel,
Matérn kernel, etc. The predictive mean and variance of the
Gaussian process is a Gaussian distribution, which encap-
sulates epistemic uncertainty. Using an observation model
of y = f(x) + ε, where ε ∼ N (0, σ2

noise), and denoting
D = {xi, yi}ti=1, the predictive distribution can be derived
as:

P (ft+1 | D1:t,x) = N (µt+1(x), σ
2
t+1(x))

where, k = [k(x,x1), . . . , k(x,xt)], the kernel matrix
[Kij ] = k(xi,xj)∀i, j ∈ 1, . . . , t, and

µt+1(x) = k
T [K + σ2

noiseI]
−1y1:t

σt+1(x) = k(x,x)− kT [K + σ2
noiseI]

−1k

Next, a surrogate utility function called acquisition func-
tion is constructed to find the next sample to evaluate. It bal-
ances two contrastive needs of sampling at the high mean
location versus sampling at the high uncertainty location so
that the global optima for f(.) is reached in a fewer num-
ber of samples. Acquisition functions are either constructed
based on improvement over the current best (e.g. Probabil-
ity of Improvement, Expected Improvement (Kushner 1964;
Mockus, Tiesis, and Zilinskas 1978)), or information based
criteria (e.g. Entropy Search (Hennig and Schuler 2012).
Predictive Entropy Search (Hernández-Lobato, Hoffman,
and Ghahramani 2014)), or confidence based criteria (e.g.
GP-UCB (Srinivas et al. 2010)). A GP-UCB acquisition
function for the (t+ 1) th iteration is:

at+1(x) = µt(x) +
√
βt+1σt(x)

where βt is an increasing sequence of O(log t). An ex-
ample sequence can be βt = 2log(td/2+2π2/3δ) where d
represents the dimensionality of the data and 1 − δ is the
probability of convergence. A regret rt is defined as the

difference of the t’th function evaluation and the global
maxima, i.e. rt = maxx∈X f(x) − f(xt), and the cu-
mulative regret is defined as Rt =

∑t
t′=1 rt′ . It can be

shown that when Gaussian process is used with SE ker-
nel then Rt ∼ O(

√
t(log t)d+1), i.e. the cumulative re-

gret only grows sublinearly and Limt→∞Rt/t → 0, im-
plying a ‘no regret’ algorithm. Generic Bayesian optimi-
sation is a sequential algorithm with one recommendation
per iteration. However, when at each iteration it is conve-
nient to perform a batch of recommendation. it can be al-
tered to batch Bayesian optimisation (Contal et al. 2013;
Desautels, Krause, and Burdick 2014; Vellanki et al. 2017;
Gupta et al. 2018).

Proposed framework
As previously mentioned, we model the control function
g(t) using the Bernstein polynomial basis. Instead of opti-
mising the function g(t) directly, we optimise its Bernstein
coefficients {αv}v=1:n. In this manner, we are able to con-
vert our functional optimisation problem into a vector opti-
misation problem. In this section, first we present how the
optimum control function can be found in the presence of
basic shape information. We also discuss how the order of
the polynomial can be adjusted based on the complexity of
the control function being optimised.

Bernstein polynomial representation with shape
constraints
An nth order Bernstein polynomial as a linear combination
of its basis polynomials is represented as

gn(t) =
∑n
v=0 αvbv,n(t) (1)

where bv,n(t) =
(
n
v

)
tv(1 − t)n−v are the Bernstein basis

polynomials for order n defined on [0, 1],
(
n
v

)
is the binomial

coefficient, and αv are the Bernstein coefficients. In other
words, the Bernstein polynomial is the weighted sum of the
basis polynomials. We first present a lemma that guarantees
universality of Bernstein polynomial basis.

Lemma 1. (Bernstein 1912). Any continuous function f
defined on the closed interval [0, 1] can be uniformly ap-
proximated by a Bernstein polynomial function Bn(f). Let
Bn(f)(t) =

∑n
v=0 f

(
v
n

)
bv,n(t). then as n → ∞, Bn(f)

converges to the function f , i.e. limn→∞Bn(f) = f . @
Next, we present the lemma to control the shape of the

function. Our interest lies in the elegant relationship be-
tween the Bernstein coefficients {αv}nv=0 and the shape of
the Bernstein polynomial. In Theorem 1 and 2, we elaborate
on the details of this relationship for the monotonic function
and the unimodal function case. The following Lemma leads
us towards Theorems 1 and 2.

Lemma 2. For a Bernstein polynomial gn(t) =∑n
b=0 αvbv,n(t), the derivative of the polynomial is given

by g
′

n(t) = n
∑n−1
v=0 (αv+1 − αv) bv,n−1(t). In other words

the derivative of the nth order Bernstein polynomial can be
expressed through a linear combination of Bernstein base
polynomials up to order (n − 1). (Please refer to supple-
mentary material for detailed proof) @
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Theorem 1. (Monotonicity): If αv+1 ≥ αv , then gn(t) is a
monotonically increasing function. Similarly if αv+1 ≤ αv ,
then gn(t) is a monotonically decreasing function. (Chang
et al. 2007)

Proof. From Lemma 2, consider the derivative of the Bern-
stein polynomial g

′

n(t) = n
∑n−1
v=0 (αv+1 − αv) bv,n−1(t).

Here, the base polynomials {bv,n−1(t)}n−1v=0 are always pos-
itive by definition. Therefore, if the difference (αv+1 − αv)
is kept positive, the derivative g

′

n(t) remains positive imply-
ing gn(t) to be a monotonically increasing function. A sim-
ilar argument can be made for gn(x) to be a monotonically
decreasing function provided αv+1 < αv .

Theorem 2. (Unimodality)(Chang et al. 2007): For n ≥ 3.
If α0 = α1 = ... = αl1 < αl1+1 ≤ αl1+2 ≤ ... ≤ αl2 and
αl2 ≥ αl2+1 ≥ ... ≥ αl3 > αl3+1 = ... = αn for some
0 ≤ l1 < l2 ≤ l3 ≤ n, then there exists some s ∈ (0, τ)]
such that s is the unique maximum point of gn(t) and gn(t)
is strictly increasing on [0, s] and it is strictly decreasing on
[s, τ ].

Proof. Please refer to (Chang et al. 2007) for proof. The
proof also uses Lemma 2 as a key ingredient.

These theorems are used to formulate the constraints in
the next subsection. Chang et al. (Chang et al. 2007) have
also provided theory for the cases other than unimodal con-
cave. Our framework can be extended to all such cases
where such a relationship between the coefficients and the
shape of the polynomial has been established. Often the
prior information about the trend is available from the do-
main experts. Specifically, in the design of short polymer
fibre, it is known that fibres get shorter as they are recircu-
lated. Hence, to get a narrow size-distribution we need to
produce longer fibres initially, with a gradual reduction in
length. This would require butanol flow to increase mono-
tonically with time. On the contrary, for deep learning sched-
ule tuning we use monotonically decreasing constraint. Our
method can also be applied to applications where the func-
tion is either unimodal or even when there is no prior infor-
mation available about the shape of the control function.

For illustration, let us consider the functions that are rep-
resented via third order Bernstein polynomial basis. The
base polynomials in this case are b0,3(t) = (1 − t)3,
b1,3(t) = 3t(1− t)2, b2,3(t) = 3t2(1− t), and b3,3(t) = t3.
Fig 3 shows the sample functions from functions with only
range constraint, as well as functions with monotonicty con-
straint and unimodality constraint.

Control function optimisation with shape
constraints
We recall our optimisation problem as:

x∗ = argmaxx∈X f(x)
where x = {α,u}, X = A ∪ U , α is the Bernstein co-
efficient vector and u are the other fixed control variables.
When prior information about the shape of the control func-
tion is available, then it boils down to usual constrained op-
timisation problem as:
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Figure 3: Examples of a third order Bernstein polynomial.

x∗ = argmaxx∈X f(x) s.t. C ≥ 0

where C is a set of inequality constraints over the parameter
space. Such constraints can be easily enforced during ac-
quisition function optimisation. In the following, we present
the C for monotonically increasing and decreasing control
functions, and unimodal control functions based on the The-
orems 1 and 2.

Controlling the range of the control function: By choos-
ing the values of α0:n ∈ [0, 1] the Bernstein polynomial is
limited to the range [0, 1] (this is possible due to Lemma
3, which will be described in the next subsection). For any
application, optimised Bernstein polynomial can then be
rescaled using the known range of input function.

Increasing control function: C = {Cv}n−1v=0 where
Cv =αv+1 − αv . This is used in the design of recirculation
control function in short polymer fibre production experi-
ment as presented in experiments.

Decreasing control function: C = {Cv}n−1v=0 where
Cv =αv − αv+1. These constraints are used in modelling
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Algorithm 1 Framework for control function optimisation.
Input: Observations D1:m = {xi, yi}mi=1, where yi =
f(gn(t) | xi) + ε for an nth order Bernstein polynomial,
xi = {αi,ui} for αi ∈ R1×n. Fixed increment schedule ω.
Constraints based on shape prior C.
for m = 1 :MaxIteration

build GP on D1:m

sample xm+1 = argmaxx∈X a (xm | C,D)
evaluate ym+1 = f(gn(t) | xm+1) (see eq: (1))
obtain the current best sample {x+, y+}
compute the maximum difference d between any ...
two coefficients in α+

if d > 0.95 or mmodω = 0

update order n = n+ 1

re-evaluate {αi}mi=1 for αi ∈ R1×(n+1)

update observations D1:m

end if
augment the data D1:m+1 = D1:m ∪ {xm+1, ym+1}

end for

learning rate schedules for deep neural network optimisers
as presented in experiments.

Unimodal control function: For unimodal control func-
tion we chose simplified constraints adapted from Theo-
rem 2. For some 0 < l < n, we define the constraints as
C = {Cv}n−1v=0 where Cv = αv+1−αv ∀v = 0 : l and Cv =
αv − αv+1 ∀v = l : n− 1.

Dynamically adjusting order of Bernstein basis
As discussed earlier the intuition is illustrated in Fig 1. We
compare the maximum computed derivative of the best con-
trol function with the maximum derivative possible with the
same order polynomial. If it is close then we increase the
polynomial order.

We first derive Lemma 3 that provides an easy way to
compute the maximum of the derivative of a function based
on the Bernstein coefficients.

Lemma 3. The derivative g
′

n(t) of the Bernstein polyno-
mial of order n gn(t) is bounded by ‘n’ times the maxima of
the basis polynomial with the highest coefficient.

Proof. It can be said about Bernstein polynomials that the
range of the polynomial gn(t) is bounded by the values of
the minimum and maximum values of the Bernstein coef-
ficients {αv}v=0:n. Then from Lemma 2 we can say that
the derivative of the Bernstein polynomial g

′

n(t) is bounded
by the values of the minimum and maximum of the val-
ues of the Bernstein coefficients {n(αv+1 − αv)}v=0:n−1.
By the same token the theoretical maximum of the mag-
nitude of the derivative is (αmax − αmin), assuming α ∈
[αmax, αmin].

Based on this it can be said that an n-th order Bernstein
polynomial can only be used to sufficiently approximate a
function if the derivate of the function is within the bounds
as stated in Lemma 3. We should test whether the current
function has already reached the limit or at least close to
it. If it is true then we can decide that the current order is
underspecified and we increment the order by one.

Next, we use the following lemma to reuse the past ob-
servations by transforming {αv}v=0:n vectors of length n to
{α′

v}v=0:n+1 vectors of length n+ 1.
Lemma 4. A Bernstein polynomial of order n and with
Bernstein coefficients {αv}v=0:n can be represented us-
ing a Bernstein polynomial of order n + 1 with Bernstein
coefficients {α′

v}v=0:n+1, such that α
′

v = v
n+1αv−1 +(

1− v
n+1

)
αv . In other words, it is possible to raise the or-

der of the Bernstein polynomial and recompute the Bern-
stein coefficients. (Please refer to (Lorentz 2012)) @

Lemma 3 can detect one type of signs of underspecifica-
tion. To avoid underspecification altogether, we also incre-
ment the order at a regular interval until a maximum spec-
ified order is reached. The overall algorithm is presented
in Algo 1. If the order of the Bernstein polynomial be-
comes very high then it is possible to use high-dimensional
Bayesian optimisation (Rana et al. 2017; Oh, Gavves, and
Welling 2018).

Experiments
We evaluate our proposed functional optimisation method
on one synthetic and two real world experiments: optimi-
sation of fibre yield in short polymer fibre production, and
learning rate schedule optimisation for neural network train-
ing. For convenience, we refer to the proposed algorithm as
BFO-SP. For all experiments, we start with a 5th order Bern-
stein polynomial basis, but limit the highest order to 10. The
change of order is triggered due to hitting the derivative limit
when it reaches 95% of the maximum derivative magni-
tude possible. The code will be made available upon request.
Given a problem, the shape prior is an estimation of the field
expert. For example, in the application of short polymer fi-
bre design, our material science collaborators know from
the fluid dynamics principles that the shape of the function
needs to have an increasing flow profile for optimal produc-
tion of fibres. It is this hunch that has been incorporated into
the optimisation system. In a scenario where such a hunch
is unavailable we would have used the general form of BFO
without the shape prior constraint.

In the experiments proposed, the parameters are the coef-
ficients of the Bernstein polynomials. Their values are opti-
mised between 0 and 1. Then the function is reconstructed
using these coefficients and Bernstein polynomials. This
function is then rescaled to the true limits of the application.

In the experiments, BFO-SP is compared with the method
proposed by (Vien, Zimmermann, and Toussaint 2018). We
found that there is no significant difference in the computa-
tional cost of running BFO-SP against Vien et al.’s method.
However, as Vien et al.’s method does not incorporate shape
prior, it may take a higher number of iterations to converge.
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Figure 4: Synthetic experiment.

Synthetic experiments
In the synthetic experiment, we construct two different 10
dimensional vectors, one which is monotonically decreas-
ing and the other which is unimodal convex. These can be
thought of schedule vectors, sampled on a fixed grid of size
10 from the optimal control functions that we would like to
recover via our functional optimisation approach. For each,
the utility of a trial control function is measured by first sam-
pling the control function on the same grid and evaluating
the resultant 10 dimensional vector through a Gaussian pdf
function whose mean is the respective optimal vector.

We start with Bernstein polynomial of order 5 and then
increase the order when either a) at the trigger as mentioned
in Lemma 2, or b) at a fixed schedule of every 10 iterations.
The results are shown in Fig 4 with a) showing the case for
monotonicity and b) showing the case for unimodality. In the
plots we show the optimal (in red), the best so far when the
first order change is triggered by lemma 2 (in teal) and the
best one after 20 iterations. For both the cases order changes
have been triggered multiple times resulting in the final best
with a considerable higher order (8 for monotonicity and 9
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Figure 5: Short polymer fibre production: Best recircula-
tion control functions g(t) found compared to baseline.
g1(t) and g2(t) gave highest score (9).

for unimodality). The final best ones appear much closer to
the optimal one. The results are compared with the method
proposed by (Vien, Zimmermann, and Toussaint 2018) (in
green), where incorporating prior is not possible.

Short polymer fibre production
We optimise the butanol flow profile over the recirculation
period to achieve a high quality yield of concentrated fibres.
All other variables (device geometry and polymer flow) are
fixed to the known best setting. The recirculation is run till
a fixed time, limited by the maximum concentration achiev-
able with the chosen polymer flow. At the end of each exper-
iment a sample of fibre is looked at under a powerful optical
microscope to inspect fibre length and diameter distribution.
Quality score is given between 1-10, with 10 being the high-
est for fibre distribution with small variance. Experimenters
had a hunch that an increasing flow profile will result in a
higher quality yield, which we used as our shape prior. We
used GP-UCB-PE with batch size of 6.

We have been able to reach a score of 9 out of a max-
imum score of 10, within 5 iterations. Fig 5 shows exam-
ples of butanol flow schedules for which high scores were
recorded. Both a flat and increasing profile results in a score
of 9, thus validating the experimenter’s hunch. These are im-
provements over their current baseline with a fixed butanol
flow (8). The markers on each function are time intervals at
which the butanol flow is changed.

Learning rate schedule optimisation
For neural network training it has been observed that
stochastic gradient descent (SGD) performs better if the
learning rate is varied as a function of training duration
(Bengio 2012). Specifically, it has been reported that start-
ing with an adequately high learning rate and decreasing it
over the training duration can significantly speed-up conver-
gence. We optimise for a schedule of learning rate f(η) for a
couple of neural networks, each for the CFIR10 and MNIST
datasets, while keeping the other parameters the same for all
the experiments.
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Dataset Validation error
BFO-SP + SGD SGD Adam BFO + SGD (Vien et al. 2018)

CFIR10 18.81% 20.30% 20.20% 22.2%
MNIST 0.74% 1.26% 0.86% 0.87%

Table 1: Comparison of prediction error of Bayesian optimisation of learning rate schedule against SGD and Adam with
exponential decay for both CFIR10 and MNIST datasets.
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Figure 6: Learning rate schedules that resulted in the
highest accuracy on CFIR10 and MNIST datasets using
the BFO-SP with known prior - monotonicity constraint.
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Figure 7: Learning rate schedules that resulted in the
highest accuracy on CFIR10 and MNIST datasets using
(Vien, Zimmermann, and Toussaint 2018)

For CFIR10 we use a network architecture that be sum-
marised as (Conv2D → Dropout → Conv2D →
Maxpooling2D) × 3 → Flatten → (Dropout →
Dense) × 3. Whereas for MNIST the network architecture
used is (Conv2D → Maxpooling2D → Dropout →
Flatten → Dense → Dense). (Details about the network
architecture are given in the supplementary material). Fig
6 shows the optimised learning schedules for CFIR10 and
MNIST datasets using the proposed method. For Bayesian
optimisation the range of learning rate was chosen between
0.2 and 0.0001. For Adam and SGD the starting learning rate
used was 0.01, with 0.8 momentum for SGD and default
values for hyper-parameters of Adam (Kinga and Adam
2015). We compare the performance of learning rate opti-

mised stochastic gradient descent (SGD) optimiser against
a) SGD with an exponential decay and b) Adam. Tab 1
shows the performance comparison with the baselines af-
ter 20 Bayesian optimisation iteration. On both the datasets
our method BFO-SP achieved higher performance than the
baselines. The results are also compared with BFO by (Vien,
Zimmermann, and Toussaint 2018) as shown in Fig 7. By ad-
mitting prior knowledge, our proposed method turns out to
be the most efficient .

Conclusion

We present a novel approach for functional optimisation
with Bayesian optimisation. We use Bernstein polynomials
to model the control function and in turn optimise the Bern-
stein coefficients to learn the optimum function shape. Prior
shape information (e.g. monotonicity, unimodality etc) is in-
tegrated and the polynomial order is dynamically adjusted
during the optimisation process. We demonstrate the perfor-
mance of our method by applying it for short polymer fi-
bre production via a recirculating process, and for modelling
learning rate schedule for deep learning networks. For fibre
production we use monotonically increasing prior, whereas
for deep networks we use monotonically decreasing shape
prior. Our method outperform baselines in all the cases.

Currently, the method proposed is built to work for uni-
modal and increasing or decreasing shape priors. A natural
progression is to extend this for other complex shape pri-
ors (eg. multimodal) as well. It would also be interesting to
consider multi-variate Bernstein polynomial when multiple
variables may form inter-related function of time. An inte-
gration of stable Bayesian optimisation (Dai Nguyen et al.
2017) will be important for industrial applications. It would
be interesting to analyse how variation in the final schedule
dictates variation in the coefficients of the Bernstein polyno-
mials. The proposed method can be applied in a variety of
domains including plastic recycling industry, drug manufac-
turing and even in alloy heat treatment optimisation where
the usual process of constant temperature heat treatment can
be replaced by a variable temperature treatment to achieve
faster result with possibly lower energy usage.
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