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Abstract

In machine learning research, many emerging applications
can be (re)formulated as the composition optimization prob-
lem with nonsmooth regularization penalty. To solve this
problem, traditional stochastic gradient descent (SGD) algo-
rithm and its variants either have low convergence rate or
are computationally expensive. Recently, several stochastic
composition gradient algorithms have been proposed, how-
ever, these methods are still inefficient and not scalable to
large-scale composition optimization problem instances. To
address these challenges, we propose an asynchronous par-
allel algorithm, named Async-ProxSCVR, which effectively
combines asynchronous parallel implementation and variance
reduction method. We prove that the algorithm admits the
fastest convergence rate for both strongly convex and gen-
eral nonconvex cases. Furthermore, we analyze the query
complexity of the proposed algorithm and prove that linear
speedup is accessible when we increase the number of pro-
cessors. Finally, we evaluate our algorithm Async-ProxSCVR
on two representative composition optimization problems in-
cluding value function evaluation in reinforcement learn-
ing and sparse mean-variance optimization problem. Exper-
imental results show that the algorithm achieves significant
speedups and is much faster than existing compared methods.

Introduction
Composition optimization problem proposed recently by
Wang et al. (Wang, Fang, and Liu 2014) arises in many
important applications including reinforcement learning
(Wang, Liu, and Tang 2017), statistical learning (Hinton and
Roweis 2003), risk management (Shapiro, Dentcheva, and
Ruszczyński 2009), and multi-stage stochastic programming
(Shapiro, Dentcheva, and Ruszczyński 2009). In this paper,
we study the finite-sum scenario for the regularized com-
position optimization problem whose objective function is
the composition of two finite-sum functions plus a possibly
nonsmooth regularization term, i.e.,

min
xPRN

Hpxq “ fpxq ` hpxq, (1)
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where

fpxq “
1

n1

n1
ÿ

i“1

Fip
1

n2

n2
ÿ

j“1

Gjpxqq, (2)

where Gj : RN Ñ RM , Fi : RM Ñ R, and
f : RN Ñ R are continuously differentiable functions.
We denote Gpxq :“ 1

n2

řn2

j“1Gjpxq, y :“ Gpxq, and
F pyq :“ 1

n1

řn1

i“1 Fipyq. And we call Gpxq the inner func-
tion and F pyq the outer function. Often fpxq is used as
the empirical risk approximation to the composition of two
expected-value function EiFipEjGjpxqq. The regularization
h : RN Ñ RYt`8u is an extended real-valued closed con-
vex but possibly nonsmooth function, which is often used to
constrain the capacity of the hypothesis space.

In general, problem (1) is substantially more chal-
lenging than its non-composition counterpart, i.e., empiri-
cal risk minimization (ERM) problem (Friedman, Hastie,
and Tibshirani 2001) with the finite-sum form fpxq “
1{n

řn
i“1 Fipxq. On the one hand, the composition objec-

tive is nonlinear with respect to the joint distribution of data
indices pi, jq, which leads to the difficulty of an unbiased
sampling for estimating the full gradient ∇fpxq. On the
other hand, the two finite-sums structure causes unprece-
dented computational challenges for traditional stochastic
gradient methods in solving problem (1). For example, to
apply stochastic gradient descent (SGD) method, we need
to compute pBGjpxqqT∇FipGpxqq in each iteration. The in-
ner function Gpxq is computationally expensive with per-
iteration queries proportional to n2.

To solve problem (1), Wang et al. (Wang, Fang, and
Liu 2014; Wang, Liu, and Tang 2017) first propose a class
of stochastic compositional gradient descent methods, i.e.,
SCGD and ASC-PG, which are based on the random eval-
uations of Gpxq, F pyq and their gradients with a low per-
iteration cost. However, SCGD and ASC-PG suffer from
low convergence rate because of the variance induced by
the random samplings. In recent years, variance reduction
based methods have been proposed to improve the con-
vergence rate for the composition optimization problem
(1). Some algorithms employ stochastic variance reduc-
tion gradient (SVRG) method to improve SCGD, includ-
ing Compositional-SVRG-1(Lian, Wang, and Liu 2017),
Compositional-SVRG-2 (Lian, Wang, and Liu 2017), and
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Table 1: Comparisons of query complexity for existing stochastic composition gradient algorithms including ASC-PG (Wang,
Liu, and Tang 2017), Compositional-SVRG-1 (Lian, Wang, and Liu 2017), Compositional-SVRG-2 (Lian, Wang, and Liu
2017), com-SVR-ADMM (Yu and Huang 2017), VRSC-PG (Huo, Gu, and Huang 2018), and our proposed Async-ProxSCVR
algorithm. n1 denotes the number of outer component functions. n2 denotes the number of inner component functions. κ is the
condition number defined in section Convergence Analysis.

Method hpxq ı 0 Asynchronous Strongly convex problem General nonconvex problem
ASC-PG Yes No Op1{ε

5
4 q Op1{ε

9
4 q

Compositional-SVRG-1 No No Oppn1 ` n2 ` κ
4q logp1{εqq -

Compositional-SVRG-2 No No Oppn1 ` n2 ` κ
3q logp1{εqq -

com-SVR-ADMM Yes No Oppn1 ` n2 ` κ
4q logp1{εqq -

VRSC-PG Yes No Oppn1 ` n2 ` κ
3q logp1{εqq Oppn1 ` n2q

2
3 {εq

Async-ProxSCVR (Ours) Yes Yes Oppn1 ` n2 ` κ
3q logp1{εqq Oppn1 ` n2q

2
3 {εq

VRSC-PG (Huo, Gu, and Huang 2018). Compositional-
SVRG-1 and Compositional-SVRG-2 are designed for prob-
lem (1) where hpxq ” 0, while VRSC-PG can deal with
problem (1) with nonsmooth regularization term. In addi-
tion, (Yu and Huang 2017) proposes an algorithm, com-
SVR-ADMM, which combines ideas of SVRG and ADMM
for the composition optimization problem (1) with linear
constraints. The query complexity1 of these stochastic com-
position gradient algorithms are shown in Table 1. Although
these existing methods for problem (1) may have good the-
oretical guarantees and analytical properties, they are inher-
ently non-parallel (i.e., sequential) which are not scalable to
modern large-scale composition optimization problems.

Another approach to improve the efficiency for solving
problem (1) is the asynchronous parallel implementation,
which has been successfully applied to speedup many state-
of-the-art algorithms (Recht et al. 2011; Reddi et al. 2015;
Zhang and Kwok 2014; Liu and Wright 2014; Liu et al.
2015). However, existing asynchronous parallel algorithms
focus on solving the ERM problem. When directly utilizing
existing asynchronous parallel methods, e.g., HOGWILD!
(Recht et al. 2011) and Async-ProxSVRG (Meng et al.
2017) to solve problem (1), the inner function Gpxq and its
Jacobi matrix BGpxq still need to be computed in each itera-
tion, which usually costs too much time and is inefficient for
practical applications.

To fill this important gap, in this paper, we propose an
asynchronous proximal variance reduction based algorithm,
Async-ProxSCVR, for the composition optimization prob-
lem (1) with nonsmooth regularization term. We provide the
convergence guarantees of the algorithm for both strongly
convex and general nonconvex cases. We also prove that the
total query complexity of our asynchronous algorithm would
be comparable to its serial counterpart, which indicates a lin-
ear speedup. Our main contributions are listed as follows:
• By effectively combining the asynchronous parallel im-

plementation with the variance reduction method, we
develop an asynchronous proximal variance reduction
method, Async-ProxSCVR, for problem (1) with nons-
mooth regularization. Our method is time-efficient with
low computational cost per iteration.
1The query complexity is measured in terms of the total number

of component function queries to find an ε-accurate solution.

• We prove that Async-ProxSCVR achieves a query com-
plexity of Oppn1 ` n2 ` κ3q logp1{εqq for strongly con-
vex case and Oppn1 ` n2q

2
3 {εq for general nonconvex

case, which match the best results for existing stochastic
composition algorithms. Furthermore, our analysis show
that Async-ProxSCVR can achieve linear speedup with
respect to the number of processors.

• We test our asynchronous parallel algorithm on two rep-
resentative composition optimization problems including
value function evaluation in reinforcement learning and
sparse mean-variance optimization. The experimental re-
sults prove that our method achieves significant speedup
and can converge faster than other existing stochastic
composition gradient methods.

Notations
Throughout this paper, we use the following notations:
• x˚ P RN denotes the optimal solution for problem (1).
• || ¨ || denotes the Euclidean norm || ¨ ||2.
• BGjpxq denotes the Jacobi matrix of multivariate function
Gjp¨q at point x.

• ∇Fipyq denotes the derivative function of multivariate
function Fip¨q at point y.

Related Work
Asynchronous Parallel Algorithms. In recent years,
asynchronous parallel algorithms have received broad at-
tention and been successfully used in solving the ERM
problem. Asynchronous parallel variants of many classical
stochastic gradient algorithms have been proposed and ana-
lyzed in theory. Such as, stochastic gradient descent (SGD)
(Recht et al. 2011), stochastic variance reduction gradient
(SVRG) (Reddi et al. 2015), alternating direction method of
multipliers (ADMM) (Zhang and Kwok 2014) and coordi-
nate descent (Liu and Wright 2014; Liu et al. 2015). Inspired
by these recent theoretical advances and successful applica-
tions in the ERM problem, we study the asynchronous par-
allel stochastic gradient method for problem (1) with non-
smooth regularization penalty. The closest work to ours is
the Async-ProxSVRG (Fang and Lin 2017) designed for the
regularized ERM problem. However, to solve problem (1),
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the Async-ProxSVRG requires high Opn2q queries per iter-
ation which are computationally expensive.

Variance Reduction Methods. To alleviate the adverse
effect of randomness inherent in stochastic gradient al-
gorithms, several variance reduction methods have been
proposed, e.g., SVRG (Johnson and Zhang 2013), SAG
(Schmidt, Le Roux, and Bach 2017), SDCA (Shalev-
Shwartz and Zhang 2013) and SAGA (Defazio, Bach, and
Lacoste-Julien 2014). Due to its low memory overhead,
we focus on the SVRG method, which is initially used to
solve the ERM problem with the finite-sum form fpxq “
1{n

řn
i“1 Fipxq. The SVRG algorithm has double loops.

More specifically, at the sth epoch, the SVRG keeps a snap-
shot of iteration vector rxs and compute its full gradient
∇fprxsq. In the kth inner loop, the SVRG compute gradient
estimator based on the following update rule:

vsk “ ∇Fikpxskq ´∇Fikprxsq `∇fprxsq, (3)

where ik is randomly selected from rns. This update rule has
a lower iteration cost, because there is no need to calculate
the full gradient in each iteration. The gradient estimator is
unbiased, i.e., Ervsks “ ∇fpxskq. Besides, the variance of the
gradient estimator induced by the random sampling is upper
bounded (Johnson and Zhang 2013):

Er||vsk||2s ď 4Lf rfpx
s
kq ´ fpx

˚q ` fprxsq ´ fpx˚qs. (4)

When xsk and rx approach the optimal solution x˚, the vari-
ance of gradient goes to 0. Furthermore, The SVRG method
has a provably faster convergence rate, i.e., Opn log 1

ε q for

strongly convex case (Johnson and Zhang 2013) and Opn
2
3

ε q

for nonconvex case (Reddi et al. 2016). Recently, many vari-
ants of the SVRG method have achieved great success, e.g.,
the proximal SVRG method (Xiao and Zhang 2014), the
asynchronous SVRG method (Reddi et al. 2015) and the dis-
tributed SVRG method (Lee et al. 2015). In our method, we
introduce a SVRG-based compositional variance reduction
method to effectively solve the composition problem (1).

Asynchronous Proximal Stochastic
Compositional Variance Reduction Algorithm
In this section, we propose Async-ProxSCVR to solve the
composition optimization problem (1) with nonsmooth reg-
ularization penalty. Our proposed Async-ProxSCVR ex-
ploits the asynchronous parallel scheme and compositional
variance reduction method, which is significantly different
from existing works (Fang and Lin 2017; Huo, Gu, and
Huang 2018; Yu and Huang 2017) as discussed before.

1. For asynchronous parallel implementation, we use the
shared memory multi-core computational model that mul-
tiple processors have free access to the vector x stored in
the shared memory and independently execute the itera-
tive task concurrently without using any locks2.

2This may result in the inconsistent reading and writing,
which makes the convergence analysis of the proposed Async-
ProxSCVR method more challenging.

Algorithm 1: Async-ProxSCVR

Input: initial vector rx0, step size η, number of inner
loops m, number of outer loops S, size of
mini-batch A, B and I .

Output: rxS and xa, where xa is uniformly selected
from ttxsku

m´1
k“0 u

S´1
s“0 .

for s “ 0, 1, ¨ ¨ ¨ , S ´ 1 do
xs0 “ rxs;
// n2 queries
Gprxsq “ 1

n2

řn2

j“1Gjprx
sq;

// n2 queries
BGprxsq “ 1

n2

řn2

j“1 BGjprx
sq;

// n1 queries
∇fprxsq “ pBGprxsqqT 1

n1

řn1

i“1∇FipGprxsqq;
Parallel Computation on Multiple Threads
for k “ 0, 1, ¨ ¨ ¨ ,m´ 1 do

Read xsDpkq from the shared memory;
Randomly choose Ak Ă rn2s with |Ak| “ A;
// 2A queries

Compute ĜsDpkq from Eq.(6);
Randomly choose Bk Ă rn2s with |Bk| “ B;
// 2B queries

Compute BĜsDpkq from Eq.(7);
Randomly choose Ik Ă rn1s with |Ik| “ I;
// 2I queries
Compute vsk from Eq.(8);
Update xsk`1 “ Proxηhpxsk ´ ηv

s
kq;

end
Option I: rxs`1 “ xsm;
Option II:rxs`1 “ 1

m

řm
k“1 x

s
k;

end

2. For compositional variance reduction method, consid-
ering the two finite-sums structure in problem (1), our
proposed Async-ProxSCVR employs variance reduction
method to estimate the inner function Gp¨q, the partial
gradient of inner function BGp¨q, and the gradient of full
function∇fp¨q with low per-iteration queries.

More specifically, following the SVRG method (Johnson
and Zhang 2013), the proposed Async-ProxSCVR algorithm
has two-layer loops. At the beginning of outer epoch s, we
compute the full gradient∇fprxsq at the snapshot point rxs:

∇fprxsq “ pBGprxsqqT∇F pGprxsqq, (5)

where Gprxsq “ 1
n2

řn2

j“1Gjprx
sq denotes the value of the

inner function and BGprxsq “ 1
n2

řn2

j“1 BGjprx
sq denotes the

full gradient of inner function. Computing the full gradient
∇fprxsq requires a total of pn1 ` 2n2q queries.

In the inner loop, each processor repeatedly runs the fol-
lowing steps: read the iteration vector from the shared mem-
ory, compute the gradient estimator, and then update the
iteration vector stored in the shared memory. Specifically,
at the k-th iteration of s-th outer epoch, with Ak Ă rn2s,
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Bk Ă rn2s being random sampling sets, |Ak| “ A and
|Bk| “ B, we compute the estimated values of Gp¨q and
BGp¨q at the iteration vector xsDpkq read from the shared
memory:

ĜsDpkq : “
1

A

ÿ

1ďjPA

pGAkrjs
pxsDpkqq ´GAkrjs

prxsqq

`Gprxsq, (6)

BĜsDpkq : “
1

B

ÿ

1ďjďB

pBGBkrjs
pxsDpkqq ´ BGBkrjs

prxsqq

` BGprxsq, (7)

whereAk andBk are independent. Note that the query com-
plexities of computing ĜsDpkq and BĜsDpkq are independent
of the number of inner component functions, i.e., n2.

Now, we compute the gradient estimator as follows:

vsk :“
1

I

ÿ

ikPIk

ppBĜsDpkqq
T∇FikpĜsDpkqq

´ pBGprxsqqT∇FikpGprxsqqq `∇fprxsq, (8)

where Ik Ă rn1s is random sampling set with |Ik| “ I . Fi-
nally, we update the iteration vector xst`1 through a proximal
operator:

xsk`1 “ Proxηhpxsk ´ ηv
s
kq, (9)

where η is the learning rate. For each inner loop, computing
the gradient estimator requires 2pA`B ` Iq qeuries. After
m inner iterations, we update the snapshot point rxs`1 based
on Option I or Option II for the next epoch. The detailed
Async-ProxSCVR algorithm is presented in Algorithm 1.

In the inner loop, we maintain the iteration counter k to
track the number of update operations. Since update hap-
pens asynchronously, there will generally be a delay be-
tween the current iteration vector and the iteration vector
used to calculate the gradient estimator. In Eq.(6), Eq.(7),
and Eq.(8), we use Dpkq to denote the iteration counter cor-
responding to the time that the iteration vector in the shared
memory is read at the kth iteration. The iteration value xsDpkq
can be represented as below:

xsDpkq “ xsk´τk `
ÿ

hPJpkq

pxh`1 ´ xhq, (10)

where Jpkq Ă tk´ τk, ¨ ¨ ¨ , k´ 1u, and τk denotes the time
delay of the gradient estimator at the kth iteration.

Note that the gradient estimator vsk in Algorithm 1 is a
biased estimation of ∇fpxsDpkqq significantly different from
the unbiased estimation in standard SVRG method. Hence,
the convergence analysis of Async-ProxSCVR is more com-
plex than existing asynchronous variance reduction algo-
rithms (Reddi et al. 2015; Meng et al. 2017).

Convergence Analysis
We now proceed to analyze the convergence behavior and
evaluate the query complexity of our proposed Async-
ProxSCVR for both strongly convex and general noncon-

vex cases. We first make some commonly used assump-
tions in the literatures of composition optimization prob-
lems (Lian, Wang, and Liu 2017; Huo, Gu, and Huang 2018;
Yu and Huang 2017).
Assumption 1 (Lipschitzian Gradients). For i P rn1s, j P
rn2s, there exist constants 0 ă LF , LG, Lf ă 8 such that

||∇Fipy1q ´∇Fipy2q|| ď LF ||y1 ´ y2||,@y1, y2 P RM ,
||BGjpx1q ´ BGjpx2q|| ď LG||x1 ´ x2||,@x1, x2 P RN ,
||pBGjpx1qq

T∇FipGpx1qq ´ pBGjpx2qq
T∇FipGpx2qq||

ď Lf ||x1 ´ x2||,@x1, x2 P RN .

Assumption 2 (Bounded Gradients). For i P rn1s, j P rn2s,
there exist some constants 0 ă BF , BG ă 8 such that

||∇Fipyq|| ď BF , ||BGjpxq|| ď BG,@x P RN ,@y P RM .

Assumption 3 (Bounded Delay). There exists a delay pa-
rameter τ such that the random delay variables τk are upper
bounded by τ , i.e., τk ď τ in Async-ProxSCVR.

Let σ :“ B4
GL

2
F {A ` B2

FL
2
G{B. According to Assump-

tion 1, we can immediately arrive at a corollary that fpxq is
Lf -smooth function, i.e.,

||∇fpx1q ´∇fpx2q|| ď Lf ||x1 ´ x2||,@x1, x2 P RN .

Convergence Analysis in Strongly Convex Case
For the strongly convex case, we prove that our Async-
ProxSCVR admits linear convergence rate, and the query
complexity to achieve ε-accurate solution is Oppn1 ` n2 `

κ3q logp1{εqq. As in (Reddi et al. 2015; Recht et al. 2011;
Meng et al. 2017), we consider our algorithm in the sparse
setting that Fipyq acts only some components of y. We in-
troduce the sparse constant ∆ into our convergence analysis.
Assumption 4. The objective fpxq and hpxq are both con-
vex. Furthermore, the objective Hpxq is µ-strongly convex,
i.e., @x1, x2 P RN and @ξ P BHpx1q, we have:

Hpx2q ě Hpx1q ` ξ
T px2 ´ x1q `

µ

2
||x2 ´ x1||

2.

Theorem 1. Assume that Assumptions 1-4 hold. If the step
size η ď mint µ

128στ2 ,
1

4Lf I∆τ2 ,
1

6Lf
u, the mini-batch sizes

A, B, I and the inner loop size m are selected properly so
that

ρ :“

2
µ ` 2ηp

12ηLf
I ` pη ` 4

µ q
16σ
µ qpm` 1q

2η
´

7
8 ´ p

12ηLf
I ` pη ` 4

µ q
16σ
µ q

¯

m
ă 1, (11)

then the Async-ProxSCVR with Option II has linear conver-
gence rate in expectation:

ErHprxsq ´Hpx˚qs ď ρsrHprx0q ´Hpx˚qs. (12)

Proof. See Section C.1 in the supplementary material.

Remark 1. We now emphasize that there exist values of the
parameters m, A, B and I for which the inequality (11)
in Theorem 1 are easily satisfied. For instance, setting the
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mini-batch sizesA “ maxt
1024B4

GL
2
F

µ2 ,
256ηB4

GL
2
F

µ u andB “

maxt
1024B2

FL
2
G

µ2 ,
256ηB2

FL
2
G

µ u, we then have pη ` 4
µ q

16σ
µ ď

1{4. If we set η “ 1
6Lf

and I is sufficiently large (s.t. 1
6Lf

ď

I
192Lf

), we have 12ηLf
I ď 1

16 , and then ρ ď 5
9 `

16
µm`

5η
m

9η .

With the number of inner loop m “ 16p1 ` 1
µη q, we have

ρ ď 2
3 . According to Theorem 1 and the aforementioned dis-

cussions, we provide the following corollary.
Corollary 1. According to Theorem 1, if the delay param-
eter satisfies τ2 ď mint 3

2I∆ ,
3µLf
64σ u, we set η “ 1

6Lf
,

m “ 16p1 `
6Lf
µ q, A “

1024B4
GL

2
F

µ2 ,B “
1024B2

FL
2
G

µ2 , I is
sufficiently large (s.t. 1

6Lf
ď I

192Lf
), the Async-ProxSCVR

with Option II has the following linear convergence rate:

ErHprxsq ´Hpx˚qs ď p
2

3
qsrHprx0q ´Hpx˚qs. (13)

Remark 2. Corollary 1 presents an example to show how
to choose m, A, B and I appropriately. It can be observed
that the values of our selected parametersm,A,B and I for
Algorithm 1 are comparable to ones of its sequential coun-
terpart (Huo, Gu, and Huang 2018). According to the def-
inition of Sampling Oracle in (Wang, Liu, and Tang 2017),
to make ErHprxsq ´ Hpx˚qs ď ε, the total query complex-
ity is O

`

pn1 ` n2 `mpA`B ` Iqq logp 1
ε q
˘

. We denote
κ :“ maxtLFµ ,

LG
µ ,

Lf
µ u and set the parameters m “ Opκq,

A “ Opκ2q, B “ Opκ2q, I “ Op1q as in Corollary 1. The
total query complexity is Oppn1 ` n2 ` κ3q logp 1

ε qq which
is the same as the optimal sequential algorithm VRSC-PG
(Huo, Gu, and Huang 2018). From inequality (13), we know
that the convergence rate has nothing to do with the delay

parameter if it is upped bounded by mint
b

3
2I∆ ,

b

3µLf
64σ u,

and then linear speedup is accessible under this condition.

Convergence Analysis in General Nonconvex Case
In this subsection, we consider the proposed Async-
ProxSCVR in general nonconvex case. We remove the
sparse assumption that appears in the strongly convex case.
For general nonconvex problems, there is no guarantee that
the optimal solution x˚ is finally reached. Consequently, we
employ the alternative evaluation metric Gηpxq :“ 1

η px ´

Proxηhpx´∇fpxqqq, which is common for general noncon-
vex problem (J. Reddi et al. 2016; Huo and Huang 2017).
Theorem 2. Assume that Assumptions 1-3 hold. If the step
size η ď 1?

12στ
, the mini-batch sizes A, B, I , and the inner

loop size m are selected properly such that:

Lf
2
` 12ηm2p

B4
GL

2
F

A
`
B2
FL

2
G

B
`
L2
f

2I
q ď

1

4η
, (14)

then the Async-ProxSCVR with Option I has a sublinear
convergence rate in expectation:

Er||Gηpxaq||2s ď
2η

p1´ 2ηLf q

Hprx0q ´Hpx˚q

T
, (15)

where xa is uniformly selected from ttxs`1
k u

m´1
k“0 u

S´1
s“0 , and

T be a multiple of m.

Proof. See Section C.2 in the supplementary material.

We now provide an example to show how to select these
parameters A, B, I and m to satisfy the inequality (14).

Corollary 2. If the delay parameter τ ď
b

12L2
f {σ, we

set η “ 1
12Lf

, the mini-batch sizes A “
2m2B4

GL
2
F

L2
f

, B “

2m2B2
FL

2
G

L2
f

, I “ pn1`n2q
2
3 andm “ tpn1`n2q

1
3 u, we have

the inequality (14) holds. Then, the Async-ProxSCVR with
Option I has the following sublinear convergence rate:

Er||Gηpxaq||2s ď
1

5Lf

Hprx0q ´Hpx˚q

T
. (16)

Remark 3. Corollary 2 presents an example to show how
to choose m, A, B and I appropriately. To achieve the ε-
accurate solution, i.e., Er||Gηpxaq||2s ď ε, the query com-
plexity we need to take isOppn1`n2`mpA`B`Iqq

1
mε q.

With the same parameters as in Corollary 2, we set m “

Oppn1`n2q
1
3 q, A “ Oppn1`n2q

2
3 q, B “ Oppn1`n2q

2
3 q,

I “ Oppn1 ` n2q
2
3 q, the total query complexity becomes

Oppn1 ` n2q
2
3 {εq, which is the same as the optimal sequen-

tial algorithm VRSC-PG (Huo, Gu, and Huang 2018). In in-
equality (16), we find out that the convergence rate has noth-
ing to do with the delay parameter τ , if it is upper bounded
by

b

12L2
f {σ. Thus in this specific domain, a linear speedup

is accessible when we increase the number of processors.

Experiments
In this section, we conduct numerical experiments to ver-
ify the convergence guarantees and the linear speedup of
the proposed Async-ProxSCVR algorithm in a shared mem-
ory multi-core system. In our experiments, we involve two
representative composition optimization problems includ-
ing value function evaluation in reinforcement learning (RL)
and sparse mean-variance optimization problem.

Application to Value Function Evaluation in RL
Almost all reinforcement learning algorithms involve value
function estimation. It is known that value function satisfies
the Bellman equation (Sutton and Barto 1998), that is,

vπps1q “ Eπrrs1,s2 ` γ ¨ vπps2q|s1s, (17)

where s1, s2 P t1, 2, ¨ ¨ ¨ , Su, π is the policy and vπpsq de-
notes the value function that starting from state s and fol-
lowing policy π thereafter. To solve the linear value func-
tion evaluation through the Bellman Equation, the objective
function can be formulated as follows:

w˚ “ arg min
xPRd

S
ÿ

s“1

pwTϕpsq ´ qπ,spwqq
2 ` λ||w||1, (18)

where wTϕpsq is the linear approximation to vπpsq, ϕp¨q P
Rd is a pre-defined feature map of state s, and qπ,spwq “
Eπrrs,s1 ` γ ¨ wTϕps1qs “

ř

s1 Pπs,s1prs,s1 ` γ ¨ wTϕps1qq.
Pπs,s1 is the transition probability from state s to s1 under
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Figure 1: Results of the speedup experiment. Columns, from left to right, are the results on MDPs (100 states, 3 actions), MDPs
(400 states, 10 actions), mean-variance problem (N=2000,d=300) and mean-variance problem (N=5000,d=300). The top row
shows the curve of objective w.r.t the running time. The middle row shows the curve of objective w.r.t the number of iterations.
The bottom row represents the time speedup with varying threads, where gray line represents ideal linear speedup.

policy π, rs,s1 is the immediate reward from s to s1, and
||w||1 is the regularization term for sparsity. As mentioned
in (Wang, Liu, and Tang 2017), the objective function can be
reformulated as the composition optimization problem (1) in
which:

Gpwq “
`

wTϕp1q, qπ1pwq, ¨ ¨ ¨ , w
TϕpSq, qπSpwq

˘

, (19)

F ppx1, y1, ¨ ¨ ¨ , xS , ySqq “
S
ÿ

s“1

pxs ´ ysq
2. (20)

Following (Wang, Liu, and Tang 2017; Dann, Neumann,
and Peters 2014), our experiments are conducted on random
MDPs. In our first experiment, the MDP instance contains
100 states, and 3 actions at each state. The transition prob-
abilities and rewards for each transition are uniformly sam-
pling form [0, 1]. The sum of transition probabilities is then
normalized to one. In our second experiment, the MDP in-
stance contains 400 states, and 10 actions at each state. The
transition probabilities and rewards are similarly sampling
as in the first experiment. For both two experiments, we set
regularization parameter γ “ 10´5, the discounted factor
λ “ 0.95. These are well-known examples to test the off-
policy convergent algorithms (Geist and Scherrer 2014).

Application to Sparse Mean-variance Optimization
For the high-dimensional sparse portfolio management
problem, the goal is to create a portfolio that have maximum

expected return but minimal variance of return. Specifically,
given d assets, let triuNi“1 Ă Rd be the reward vectors at dif-
ferent time points, the objective function can be formulated
as the following sparse mean-variance optimization:

x˚ “ arg min
xPRd

r
1

N

N
ÿ

i“1

pxri, xy ´
1

N

N
ÿ

j“1

xrj , xyq
2

´
1

N

N
ÿ

i“1

xri, xy ` λ||x||1s, (21)

where x P Rd denotes the investment quantity in d assets.
Following (Huo, Gu, and Huang 2018; Yu and Huang 2017),
the problem (21) is in the form of problem (1) in which:

Gjpxq “ px,´xrj , xyq
T , x P Rd, (22)

Fippx, yqq “ pxri, xy ` yq
2 ´ xri, xy, x P Rd, y P R. (23)

In the experiment, we set N P t2000, 5000u, d “ 300,
m “ 30 and the regularization parameter γ “ 10´5. The
reward vectors are generated through Gaussian distributions
with zero mean and positive semi-definite co-variance ma-
trix Σ “ LTL, where L P Rdˆm and m ă d. Each element
of L is drawn from the normal distribution.

Compared Methods. In our experiments, there are five
compared methods. More specifically, HOGWILD! (Recht
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Figure 2: Comparison of five compared methods: HOGWILD!, Async-ProxSVRG, ASC-PG, com-SVR-ADMM and our pro-
posed Async-ProxSCVR. As in Figure 1, columns, from left to right, are the results on MDPs (100 states, 3 actions), MDPs
(400 states, 10 actions), mean-variance problem (N=2000,d=300) and mean-variance problem (N=5000,d=300). The rows from
top to bottom represent the results on 1, 8, and 16 threads, respectively.

et al. 2011), Async-ProxSVRG (Meng et al. 2017), ASC-
PG (Wang, Liu, and Tang 2017), com-SVR-ADMM (Yu
and Huang 2017) and the proposed Async-ProxSCVR.

Experimental Setting. For a fair comparison, we use the
best tuned learning rates for compared methods, specifically,
we select them from t100, 10´1, 10´2, 10´3, 10´4, 10´5u.
For variance reduction based algorithms, we set the inner
loop sizem “ kn1, in which k is best tuned from t0.5, 1, 2u.
The mini-batch sizes ofA,B and I are chosen casually as in
(Huo, Gu, and Huang 2018). Furthermore, all of the meth-
ods are coded in C++ using the standard thread library. We
conduct all the experiments on an identical server which has
16 Intel(R) Xeon(R) E5-2650 CPUs and 64GB memory.

Experimental Results
Scaling with Number of Threads. In Figure 1, we show
the speedup results of Async-ProxSCVR with varying num-
ber of threads. The top line are results of objective function
value with respect to running time. We observe that when we
use more threads, the objective curve decreases faster. The
middle line represents results of objective function value
with respect to the number of iterations. The figures show
that objective curves with different threads are almost coin-
cident. It means that the negative effect of using stale iter-
ation vector for calculating the gradient estimator vanishes
to some extent. The bottom line shows results of the run-

ning time speedup. We can observe that the algorithm has a
strong scaling when we use multiple threads. For instance,
our proposed algorithm can achieve about 12ˆ speedup on
16 threads. Besides, results show that when the number of
threads increases, our method has a nearly linear speedup in
all experiments. These findings in the experiment are com-
patible with our theoretical analysis.

Comparison with Other Methods. To demonstrate the
superiority of our proposed Async-ProxSCVR, we conduct
comparison experiments with all baseline methods. Figure 2
presents the objective curves versus the running time on 1, 8
and 16 threads, respectively. Results show that our proposed
algorithm Async-ProxSCVR achieves fast empirical conver-
gence rate compared with other benchmark algorithms in all
four experiments. Furthermore, we see that our proposed al-
gorithm is more robust to increasing threads.

Conclusion
In this paper, we introduce an asynchronous parallel method
Async-ProxSCVR for problem (1) with nonsmooth reg-
ularization penalty. We prove that our proposed Async-
ProxSCVR can achieve a linear convergence rate Oppn1 `

n2 ` κ
3q logp1{εqq for strongly convex case and a sublinear

convergence rate Oppn1 ` n2q
2
3 {εq for general nonconvex

case. Furthermore, linear speedup is accessible when the de-
lay parameter is upper bounded. Numerical experiments on
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two representative composition optimization problems are
conducted to demonstrate our convergence analysis.
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