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Abstract

This paper proposes a new algorithm for solving MAX2SAT
problems based on combining search methods with semidef-
inite programming approaches. Semidefinite programming
techniques are well-known as a theoretical tool for approx-
imating maximum satisfiability problems, but their applica-
tion has traditionally been very limited by their speed and
randomized nature. Our approach overcomes this difficult by
using a recent approach to low-rank semidefinite program-
ming, specialized to work in an incremental fashion suitable
for use in an exact search algorithm. The method can be used
both within complete or incomplete solver, and we demon-
strate on a variety of problems from recent competitions. Our
experiments show that the approach is faster (sometimes by
orders of magnitude) than existing state-of-the-art complete
and incomplete solvers, representing a substantial advance in
search methods specialized for MAX2SAT problems.

1 Introduction
The maximum satisfiability (MAXSAT) task — the
optimization-based version of satisfiability, where the goal
is to find a maximal set of clauses to be satisfied — is a
foundational problem in combinatorial optimization. These
problems can be written as the optimization task

maximize
v1,...,vn∈{0,1}

m∑
j=1

⋁
i∈S+

j

vi
⋁

i∈S−
j

¬vi, (1)

where v1, . . . , vn denote the binary optimization variables,
and S+

j /S−
j denotes the set of variables and negated vari-

ables respectively in the jth clause. MAXSAT problems
have been used to solve probabilistic inference (Park, 2002),
planning (Zhang and Bacchus, 2012), and clustering (Berg
and Järvisalo, 2017). And the recent MAXSAT contests
(Argelich et al., 2016) have aimed at evaluating a wide num-
ber of different solution methods on a wide variety of both
real and synthetic problems.

In this paper, we present an approach based upon low-
rank semidefinite programming (SDP) and a simple branch-
and-bound strategy for solving the simplest case of the
MAXSAT problem: the MAX2SAT problem, where each
clause contains only two variables. While this is naturally
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a very limited special case of the MAXSAT problem, un-
like the SAT setting (where 2-SAT can be solved in polyno-
mial time), the MAX2SAT problem is NP-COMPLETE and
forms a non-trivial starting point for more general MAXSAT
problems. Although SDP relaxations of the MAX2SAT
problem have been known for some time (Goemans and
Williamson, 1994, 1995; Gomes, van Hoeve, and Leahu,
2006), they have not generally been viewed as practical
strategies for solving MAXSAT problems (of any type),
owing to the high computational cost of solving SDPs via
standard methods (e.g., interior point methods, whose run-
time grows cubically in the number of variables). Indeed,
to the best of our knowledge, no entry in the history of the
MAXSAT competition (Argelich et al., 2016) has ever used
an approach based upon semidefinite programming. Further-
more, our approach also applies to more general MAXSAT
problems, though the practical efficiency is much less for
settings with a large number of variables per clause; but later
in the paper, we will also highlight MAX3SAT results, for
example, where the method is also still competitive.

In this work, we show that a recent method for low-
rank semidefinite programming (the Mixing method (Wang,
Chang, and Kolter, 2017)) combined with branch-and-bound
strategy, warm-starts, and simple pruning based upon a
dual bound, can achieve state-of-the-art performance for
MAX2SAT problems. Specifically, for the MAXSAT 2016
competition problems1, our single proposed approach dom-
inates the best solvers (selecting the best solver for each
individual problem instance for all the 2016 problems) in
both the incomplete and complete tracks of the competition.
While naturally these results need to be taken with a grain of
salt, as the MAXSAT competition solvers of course did not
specialize for the MAX2SAT case, it is notable our single
solver, using ultimately a very simple search procedure, can
outperform highly specialized and tuned solvers so heavily
in this domain across both competition tracks. Thus, while a
great deal of work remains to turn the approach into a gen-
eral MAXSAT solver, the work here strongly suggests that
semidefinite programming techniques can play a sizable role
in the solution to MAXSAT problems going forward.

1 The 2016 MAXSAT competition was the last year of the com-
petition to features MAX2SAT instances, as the “random” problem
track was removed in subsequent years.
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2 Preliminaries and related work
In this section we highlight a number of current approaches
for solving MAXSAT problems, and review relevant recent
work on semidefinite approximations and fast semidefinite
programming methods. We will specifically highlight the
recent Mixing method (Wang, Chang, and Kolter, 2017),
which forms the basis of our inner solution method.

2.1 Discrete MAXSAT solvers
The vast majority of modern methods for the MAXSAT
problem are based upon discrete search method. As our pro-
posed approach in this work (which based upon continu-
ous optimization) differs quite substantially from these ap-
proaches, we refer the reader to a recent survey (Morgado
et al., 2013) for much more detailed descriptions about the
current state of the art. However, broadly speaking, there
have been two main classes for these discrete solvers: 1)
those based upon bounding the solution via SAT method
(Marques-Sila and Planes, 2011; Koshimura et al., 2012;
Ansótegui, Bonet, and Levy, 2013; Fu and Malik, 2006;
Le Berre and Parrain, 2010; Eén and Sorensson, 2006)
which in turn exploit the heuristic developed by the SAT
community such as those in the MiniSAT solver; these
solvers typically are complete in that they will both produce
a satisfying assignment with some number of clauses sat-
isfied and a verification that this is the optimal solution to
the problem. And 2) those based upon local search (Luo et
al., 2015, 2017), which maintain and locally adjust a solu-
tion to satisfy an increasing number of clauses; these solvers
typically are incomplete in that they may quickly find an as-
signment, but often cannot prove whether or not it is opti-
mal. There are also aggregation-based solvers such as Open-
WBO (Martins, Manquinho, and Lynce, 2014), which inte-
grate several solvers for different instances.

2.2 Approximation algorithms for MAXSAT
In addition to exact solvers based upon combinatorial
search, several approaches have also considered approxima-
tion algorithms for the MAXSAT problem, both from theo-
retical and practical standpoints. Generally speaking, these
focus on obtaining a high approximation ratio α, such that

Approximated objective ≥ α · Optimal objective. (2)

Specifically, Goemans and Williamson (1994) proposed an
LP approximation algorithm for MAXSAT with α = 0.75.
They latter proposed also an SDP approximation (Goemans
and Williamson, 1995) for MAX2SAT with α = 0.878,
which will form the basis for the SDP problem we solve
here, and which we describe in more detail below. Feige and
Goemans (1995) used a different and more refined SDP to
raise the approximation ratio to α = 0.931, and Karloff and
Zwick (1997) extend the result to deal with MAX3SAT with
α = 0.875. Interested readers can refer to Biere, Heule, and
van Maaren (2009) for a comprehensive introduction.

Although several authors have noted the effectiveness of
the SDP relaxation for the MAX2SAT problem (Lotgering,
2012; Gomes, van Hoeve, and Leahu, 2006) in terms of the
approximation quality, no previous works we are aware of

have succeeded at turning this into a practical algorithm.
Several efforts were made: Anjos (2004) investigated the ef-
fectiveness of different SDPs for the MAXSAT problems,
but didn’t consider their integration into an exact solver. van
Maaren, van Norden, and Heule (2008) investigated the ef-
fectiveness of sum-of-squares based SDP solvers and found
them not practical. And Rendl, Rinaldi, and Wiegele (2010);
Krislock, Malick, and Roupin (2017) demonstrated an SDP-
based branch-and-bound framework for the related MAX-
CUT and binary quadratic problem (using interior point and
bundle solvers) and created the Biq Church tool; however,
this method was only feasible for small dense instances.

2.3 Low-rank semidefinite programming
As mentioned, the approach we ultimately use is one based
upon semidefinite programming. A general SDP can be writ-
ten as the optimization problem

minimize
X∈Rn×n

⟨C,X⟩

subject to ⟨Ai, X⟩ = bi, i = 1, . . .m,

X ≽ 0

(3)

where Ai ∈ Rn×n, bi ∈ R, i = 1, . . . , n and C ∈ Rn×n

are problem data, and X is the optimization variable. Most
general purpose semidefinite programs typically use interior
point methods (Nocedal and Wright, 2006) to solve prob-
lems to very high precision, but the methods scale very
poorly: interior point solvers operate in the space of X ∈
Rn×n, and the solution time is cubic in the number of vari-
ables, i.e., O(n6).

Owing to this fact, a number of approaches based upon
low-rank factorization have become popular for solving
large-scale semi-definite programs. Specifically, a now-
classic result (Pataki, 1998) guarantees that for a problem
with m constraints, there exists a rank-

√
2m optimal solu-

tion. Motivated by this fact, in a seminal work, Burer and
Monteiro (2003) proposed to solve the semidefinite program
directly in terms of the low-rank factorization X = V TV
for V ∈ Rk×n, where one can omit the semidefinite con-
straint (because it is implied by the factorization), and where
k could be chosen for instance to satisfy k ≥

√
2m; this

leads to many fewer variables in the problem of interest.
They specifically used an augmented Lagrangian method to
solve the constrained optimization problem, and noticed that
despite the fact that the resulting problem is of course non-
convex, in practice this would virtually always find the op-
timal solution to the original SDP. Although this remained
an empirical rather than theoretical property for many years,
very recently Boumal, Voroninski, and Bandeira (2016) has
shown that there are no spurious local optima in the aug-
mented Lagrangian form for these problems, and thus such
methods are guaranteed to find the optimal solution.

2.4 The Mixing method
Despite the appeal of the low-rank solution approach, the
method is still relatively slow for even medium-sized SDPs;
because augmented Lagrangian methods require a carefully-
tuned gradient descent procedure to optimize the augmented
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Lagrangian and adjust the Lagrangian penalty parameter.
For a specific class of semidefinite program, however, Wang,
Chang, and Kolter (2017) developed a specific form of
block coordinate descent, called the Mixing method, which
substantially improves upon the generic low-rank approach
both practically and theoretically. Specifically, the Mixing
method aims to solve the diagonally-constrained SDP

minimize
X≽0∈Rn×n

⟨C,X⟩, s.t. Xii = 1, i = 1, . . . , n (4)

i.e., an SDP where there are only n equality constraints, con-
straining each diagonal entry of X to be 1. This is referred
to as the MAXCUT SDP, since it corresponds to the SDP
relaxation of the maximum cut problem, where C is the ad-
jacency matrix of a graph. In factorized form X = V TV ,
this corresponds to the non-convex problem

minimize
V ∈Rk×n

⟨C, V TV ⟩, s.t. ∥vi∥2 = 1, i = 1, . . . , n, (5)

where vi ∈ Rk denotes the ith column of V . The approach
is then quite simple: if we hold all but one vi fixed, there is
a simple closed-form solution for the remaining vi given by

vi := normalize

⎛⎝−
∑
j ̸=i

cijvj

⎞⎠ . (6)

The Mixing method simply repeats this iteration until con-
vergence; unlike the augmented Lagrangian approach, the
method does not require any step size or tuned penalty pa-
rameter. In practice, it is also an order of magnitude or more
faster than any other state-of-the-art solver for such prob-
lems. And as shown by Wang, Chang, and Kolter (2017), as
long as k is chosen such that k >

√
2n, the method will still

converge to the global optimum of the original SDP. This
fast method for low-rank semidefinite programming will be
the basis for our fast SDP-based MAX2SAT solver.

3 MAXSAT and the semidefinite relaxation
In this section we first derive a general SDP relaxation for
the MAXSAT problem (although in the subsequent section
we will focus on the MAX2SAT problem, we note that the
formulation here is general and applies to any MAXSAT
problem, though it is substantially looser for settings with
more than two variables per clause). We then derive a ver-
sion of the Mixing method specifically for this SDP; because
the SDP is virtually identical to that for the MAXCUT prob-
lem, the algorithm is mathematically the same as the original
Mixing method, with just a few additional elements intro-
duced to make it computationally efficient for the specific
problem structure of the MAXSAT.

3.1 The MAXSAT SDP
For the purposes of this section, we will define the general
MAXSAT problem slightly different than in the introduc-
tion, as the optimization problem

maximize
v∈{−1,1}n

m∑
j=1

n⋁
i=1

1{sjivi > 0}, (7)

where vi ∈ {−1, 1} are the binary optimization variables
(i.e., making these +1/ − 1 instead of 0/1 as we did in the
introduction); and where sji = ±1 for variable in the clause
(and taking each value depending on whether the variable
is negated or not in that clause), and sji = 0 otherwise.
For conversion to SDP form it is slightly more convenient to
formulate this in minimization, or unsatisfiability, form

minimize
V ∈{−1,1}n

m∑
j=1

n⋀
i=1

1{sjivi < 0}, (8)

where
⋀

is the logical and symbol. At this point, we now
seek a continuous lower-bound on this objective, which we
refer to simply as the loss, and which takes the value +1 if
an only if all variables within the clause are false (-1) and is
zero or less otherwise, i.e.,

loss(v; sj) ≤ unsat(v, sj), ∀vi ∈ {−1, 1}n. (9)

In order to translate the problem specifically to an SDP, we
specifically search for a quadratic loss; taking the greatest
such lower bound that satisfies the conditions above, we ar-
rive at the loss function

loss(v; sj) =
(
∑n

i=0 visji)
2 − (nj − 1)2

4nj
, (10)

where nj is the number of variables in clause j (i.e, 2 in
all cases for MAX2SAT), and where we define v0 = 1 and
sj0 = −1 (we introduce these variables to make the subse-
quent SDP relaxation easier to write, with purely quadratic
terms in the objective). This loss is best illustrated graphi-
cally, as shown in Figure 1 for the case of nj = 2. For the
case of any nj , it’s easy to verify that this quantity is equal
to +1 if no clauses are satisfied, 0 if exactly one or exactly
nj clauses are satisfied, and is strictly less than 0 otherwise;
these are exactly the conditions that the loss was required to
meet.

We can now relax this binary problem into its vector form
by relaxing the variable vi ∈ {−1,+1} to vi ∈ Rk with
∥vi∥2 = 1. In this vector form, the loss above becomes sim-
ply

loss(v; sj) =
∥V sj∥2 − (nj − 1)2

4nj
(11)

which is equivalent to the SDP

minimize
V ∈Rk×n

⟨STD−1S, V TV ⟩, s.t. ∥vi∥2 = 1, i = 1, . . . , n, (12)

where the matrices are all as defined above and with Djj =
4nj . This is precisely the form of the SDP solved by the
Mixing method, with the only difference being the spe-
cial form of the C = STD−1S matrix, which requires
some slight optimizations to produce an efficient method,
which we discuss next. We also highlight that for the case of
MAX2SAT, this is precisely the same form as the SDP relax-
ation of Goemans and Williamson (1995), but generalizes to
longer clauses as well.
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Figure 1: Convex lower bound of the unsatisfiability loss.

1 Initialize all vi randomly on a unit sphere;
2 Let zj =

∑n
i=0 sjivi for j = 1, . . . ,m;

3 while not yet converged do
4 for i = 1, . . . , n do
5 foreach sji ̸= 0 do zj := zj − sjivi;

6 vi := normalize
(
−
∑m

j=1
sji
4nj

zj

)
;

7 foreach sji ̸= 0 do zj := zj + sjivi;
8 end
9 end
Algorithm 1: The Mixing method for MAXSAT relaxation

3.2 The Mixing method for the MAXSAT SDP
Recall from the previous section that the Mixing method for
solving the SDP above reduces to the iterations

vi := normalize

⎛⎝−
∑
k ̸=i

(STD−1S)ikvk

⎞⎠ . (13)

To compute this term efficiently without requiring precom-
putation of the entire STD−1S matrix ahead of time (which
is actually a dense matrix owing to the fact that the “0th”
variable v0 participates in ever clause), note that we can
cache the vectors zj ∈ Rk, j = 1, . . . ,m, with

zj =

n∑
i=0

sjivi. (14)

Then the update equation can be written as

vi := normalize

⎛⎝−
m∑
j=1

sji
4nj

zj

⎞⎠ . (15)

if we first remove all the terms in each zj that depends on
vi. The final form of the Mixing method for this MAXSAT
SDP is given in Algorithm 1. Notice that updating the vari-
able vi only requires time O(k · nnz) times, where nnz is
the number of clauses that contain the ith variable. Further-
more, although this would be a large number for the v0 term,
we can avoid updating v0 entirely, as it plays the role of an
arbitrary “truth direction” that need not be updated from its
original setting.

1 Initialize a priority queue Q = {initial problem};
2 while Q is not empty do
3 New SDP root P = Q.pop();
4 Solve f∗ := SDP(P ) with the Mixing method;
5 if ⌈f∗ − ϵ⌉ ≥ best then continue;
6 Update best and resolution orders by randomized

rounding on V := arg SDP(P );
7 foreach subproblems of P do
8 Initialize primal and dual objective values;
9 if primal ≤ best then Expand;

10 else if ⌈dual⌉ ≥ best then Prune;
11 else Push the subproblem into the Q;
12 end
13 end

Algorithm 2: The MIXSAT algorithm

4 The MIXSAT algorithm
In this section, we combine the previous SDP approach
within a simple branch and bound framework to derive a
exact and complete solver for MAX2SAT instances.2 Al-
though the SDP relaxation and fast solution method plays
the largest role in our solver, a number of other elements are
crucial as well, such as warm starting based upon previous
solutions in the tree, rounding to find feasible solutions at
intermediate stages, and bounding the SDP optimal value by
a particular set of primal and dual feasible points. We also
introduce data structures such as a watched stack (similar to
those used by SAT solvers) to efficiently make inferences
about those clauses that have been fulfilled or falsified. De-
spite some additional complexity, we highlight that the ul-
timate algorithm here is still relatively simple compared to
many state-of-the-art MAXSAT sovlers: just a branch and
bound strategy with well-established optimizations adapted
to this particular SDP-based heuristic. The fact that the ap-
proach can nonetheless outperform existing solvers both for
complete and incomplete versions highlights the potential
power of this SDP relaxation, not just from the theoretical
side (which has been well-studied by past work), but from
the practical side as well.

The basic method, which we refer to as MIXSAT (for
Mixing applied to MAXSAT), is shown in Algorithm 2. The
basic approach proceeds like a generic branch and bound
search, with a priority queue storing problem instances (by
using a priority queue ordered by heuristic values versus a
stack, we can recover either a best first or depth first search,
which we use in the incomplete and complete versions of the
solver respectively). We pop these problems off the queue,
solve the SDP via the Mixing method, and then round the re-
sult to potentially obtain a new candidate solution (the SDP
solution also leads to a subsequent ordering of variables to
split on). For each split, we set the relevant set of variables be
either true or false, and we initialize the primal and dual ob-

2Since the aforementioned bound works for MAXSAT prob-
lems of any size, the methods here could be in theory applied to
any MAXSAT problem. We will show that the methods generalize
to MAX3SAT instances later in the paper, though theoretically the
bound would be looser for longer clauses.
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primal init:

expand

dual init: 

prune

uncertain: 

new  root

SDP root

Figure 2: Illustration of primal and dual initialization.

jectives of each new subproblem, as described below, then
push these on to the queue and continue until the queue is
empty (for the complete solver). There are indeed several
details of the process, which we describe next throughout
this section.

4.1 Pruning and rounding via SDP
Pruning. Because our SDP approximation is a lower
bound of the exact minimum unsatisfiability problem, it can
serve as a lower-bound in the branch-and-bound framework.
Specifically, as is standard in branch and bound, if the objec-
tive value of a solved SDP value is higher than the current
best known candidate solution, we can prune the entire sub-
tree below that problem. Otherwise, we expand the subtree
and push the subproblems on to the queue.

Rounding. The SDP solutions also serve as a good
method for obtaining candidate solutions via rounding,
which can usually very quickly provide a good best known
value, even in early stages of the algorithm. The random-
ized rounding method works by repetitively drawing random
vectors r uniformly from the sphere, and assigning binary
vi = sign(vT0 r · vTi r) as a candidate binary solution. That
is, if a variable vi is at the same side with the truth direction
v0, we assign it to be true (+1) and otherwise false (−1). Fi-
nally, if the rounded solution ever obtains the same integer
objective value as the best lower bound, we know we have
found an optimal solution.

4.2 Bounding SDP values by initializations
Even with the pruning and rounding strategies above, it typ-
ically requires a large number of node expansions to solve
even most MAX2SAT problem. As one data point, for in-
stance for the MAX2SAT problems with 120 variables, it
typically requires searching through about 10k nodes in or-
der to provide a verified solution to the problem. However,
we reduce the number of expanded nodes (and hence the
number of SDP solves) by reusing the solution of an SDP
to quickly find both primal and dual feasible initialization to
its subproblems. Indeed, sometimes we don’t even need to
solve the SDP in order to expand or prune a subproblem.

Recall the vector program equivalent to our diagonal con-
strained SDP relaxation

minimize
V ∈Rk×n

f(V ) := ⟨C, V TV ⟩, s.t. ∥vi∥2 = 1. (16)

By the SDP duality, we have the following dual problem
maximize

λ∈Rn
D(λ) := −1Tλ, s.t. C +Dλ ≽ 0. (17)

Any feasible primal and dual solution will provide an upper
and lower bound respectively of the optimal SDP objective
value f∗. Furthermore, we know that the best known discrete
solution, BEST, is always larger than the optimal discrete
solution UNSAT. That is,

f(V ) ≥ f∗ ≥ D(λ) and BEST ≥ UNSAT ≥ ⌈f∗⌉.
Thus, for any feasible primal solution V and any feasible
dual solution λ, we can prune or expand the subproblem
when the following condition happens, as illustrated by Fig-
ure 2.
• f(V ) ≤ BEST ⇒ Expand (not prunable by SDP)
• ⌈D(λ)⌉ ≥ BEST ⇒ Prune (not contain optimal solution)

Upper bound by primal initialization. The primal ini-
tialization is very simple: we simply copy all unassigned
variables from the root solution into its subproblems, which
will still provide a feasible solution. The effective length of
the remaining clauses do change when this occurs, which
can be updated efficiently by maintaining each zj properly
after such updates.

Lower bound by dual initialization. The dual initializa-
tion is more complex than the primal initialization because
it involves the semidefinite C +Dλ ≽ 0 constraint. The key
here is that variable assignment can be viewed equivalently
as moving the necessary coefficients from sji to sj0. For ex-
ample, assigning v1 as false can be written as

zj = 1·v1+1·v2−1·v0
v1:=F
====⇒ zj = 0·v1+1·v2−2·v0.

Thus, if we look at the loss function, the coefficients cij for
unassigned i and j actually remains the same in the new cost
matrix Ĉ. Thus, the difference in cost matrices C and Ĉ after
variable assignment will only reflects in the first column and
row

C − Ĉ =

(
0 δT

δ 0

)
(18)

If we add a proper vector ξ =

(
∥δ∥1
|δ|

)
, we can see that

C +Dλ∗+ξ = (C +Dλ∗) +

(
∥δ∥1 δT

δ D|δ|

)
≽ 0, (19)

where λ∗ is the optimal solution from the root. That is, λ∗+ξ
is a feasible solution for the new dual problem, which pro-
vides our lower bound as desired.

We also note that given an optimal solution of the SDP (as
computed by Mixing), the optimal dual variable is simply
given by

λi = ∥V ci∥2. (20)
Thus, when we solve the SDP optimally via the Mixing
method, we also recover the optimal dual solution which
serves as the starting point for future bounds.
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watched[lit]:= 

lit next ...
ptr

stack

clause

Figure 3: Illustration the watched stack.

4.3 Data structures and implementation details
Finally, there are a number of data structures and/or imple-
mentation details that are important for an efficient imple-
mentation of the branch and bound. For the full implemen-
tation and more technical details, please see the source code
in https://github.com/locuslab/mixsat .

Variable ordering. We have found that the dual variable
λ in (20) is also very useful in determining the resolution
order (the order for splitting on variables to create the new
subproblems). Thus, every time we solve an SDP, we will
reorder the remaining variables according to the descending
order of λ (that is, variable with larger λi will be resolved
first).

Inference via watched stack. In order to efficiently find
the set of all clauses that contain a certain variable (includ-
ing after variable reordering) and efficiently inferring which
clauses have been fulfilled/falsified, we use a data struc-
ture similar to the watched literal technique in SAT solvers
(Moskewicz et al., 2001). Specifically, to accomplish this
we used a watched stack data structure. For each literal,
we maintain a stack of pointers, pointing to the next lit-
eral (in pivot order) in a clause. The pointer is only pushed
to the stack if it’s the last pointer being able to falsify the
clause. This way, assigning/freeing variables only touches
those clauses that haven’t been satisfied, and evaluating a
set of variable assignment takes exactly O(nnz) time. The
watched stack is illustrated in Figure 3.

Estimating SDP objective and balancing prun-
ing/rounding. Because the Mixing method is iterative, it
is usually desirable to only solve to some given precision,
and not solve the SDPs exactly. Since the Mixing method
attains linear convergence (Wang, Chang, and Kolter, 2017),
we estimate the converging constant by function decrease
and estimate the distance to the optimal objective values.
Furthermore, we need to balance between the time spent
in solving SDPs and the randomized roundings (because
we rounds multiple times). We have empirically found that
taking rounding time proportion to the square root of the
remaining variables works best.

DFS vs BFS. We have described our branch-and-bound
solver in an abstract manner in Algorithm 2, where the prior-
ity queue could prioritize by any ordering. When implement-
ing the complete solver, where the full search tree needs to
be searched anyway, we let the queue Q be an stack; that is,
we evaluate the nodes in the deep-first search (DFS) order.

Figure 4: The approximation ratio versus running time. We
demonstrated that the Mixing method not only outputs solu-
tions faster than LPs, but also admits higher approximation
ratio.

For the incomplete version, we let Q be the priority queue
ordered by the clipped loss (

∑
j max(0, loss(V, sj))); that

is, we explore the nodes in a best-first search (BFS) order.
However, the primal and dual initialization requires the DFS
order to be efficiently implemented. Thus, we run one depth-
limited DFS for each of the BFS node evaluated even in
the incomplete version. Specifically, we limit the depth to
be less than 8 to limit the number of nodes (subproblems)
pushed to the heap at each root.

5 Experimental results
In this section we present the experimental results highlight-
ing the performance of the MIXSAT method on the rele-
vant problems from the MAXSAT 2016 competition (later
years have eliminated the “random” track of the competi-
tion, and thus don’t have a sufficient number of MAX2SAT
problems). Specifically, we test our solvers on all 228 the
MAX2SAT instances (s2v instances) from the unweighted
random categories. As a comparison point, for each prob-
lem we selected the best performing entry for both the com-
plete and incomplete tracks in the MAXSAT 2016 con-
test; since different solvers often performed best on different
problems, this sets a very high bar for comparison, though
with the large caveat mentioned earlier that of course the
other solvers were attempting to optimize performance over
all tasks, not just MAX2SAT problems. Nonetheless, given
the level of specializing in existing approaches, we feel that
the comparison provides strong evidence that our SDP can
achieve compelling performance in this domain. Further,
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Figure 5: Experimental result of MAX2SAT in the com-
plete track. We demonstrate that the MIXSAT algorithm
consistently outperforms the best complete solvers in the
MAXSAT 2016 competition in every MAX2SAT instances.
Specifically, we solved 169/228 instances in 30 mins in avg
273 secs, while the best solvers solved only 145/228 in-
stances in avg 341 secs.

to test the performance on harder problems, we evaluated
our solver on the 107 crafted MAXCUT instances in the
2016/2018 competitions, comparing it to the best solvers
in 2016/2018. We also tested our solver on all the random
MAX3SAT instances in 2016 to see how it generalized to
different clause length. For fair comparison, we replicate the
experimental setup of the 2016 environment, with exactly
the same CPU (Intel Xeon E5-2620) in single core mode
and a 3.5 GB memory limit.

The approximation ratio of MAXSAT SDPs. As a start-
ing point, we first highlight the power of the MAXSAT Mix-
ing solver combined just with randomized rounding (i.e.,
just looking at a single relaxation, without any branch and
bound). These results are shown in Figure 4. The starting
points of the blue and green curves indicate the time that
the Mixing / LP solver (by Gurobi) output the solution, and
the following curves indicate the highest approximation ra-
tio generated by the LP/SDP randomized rounding proce-
dures. We can see that the Mixing method actually output
solution faster than the LP solver, and has much higher ap-
proximation ratio than LPs. Indeed, sometimes the simple
randomized rounding procedure can output the optimal so-
lution faster than the best complete and incomplete solvers
(vertical black and purple lines).

Complete solvers. Next, we evaluate our solver on the
above mentioned 228 MAX2SAT instances using the com-
plete track rules, which only allows to output verified op-
timal solution and has a 30 minutes time limit. The result
is presented in Figure 5, showing the number of solved
problems versus time for MIXSAT shown against the best
MAXSAT 2016 solver results. We solved 169 out of the 228

0 50 100 150 200 250
instances

10-3

10-2

10-1

100

101

se
co

n
d
s

MAX2SAT in the incomplete track

MIXSAT

Best incomplete 2016

Figure 6: Experimental result of MAX2SAT in the incom-
plete track. We demonstrate that the MIXSAT algorithm out-
perform the best incomplete solvers in the MAXSAT 2016
competition in every MAX2SAT instances. The MIXSAT
algorithm used 0.22 sec in average to obtain the optimal so-
lution, while the best solvers use 1.92 sec in average. That is,
we are approximately 8.72 times faster than the best solvers.

MAX2SAT instances in the random categories for the com-
plete solvers in an average of 273 sec, while the best solvers
solved only 145 instances in an average of 341 seconds (note
however that the average times are not truly comparable here
as we solve substantially more problems).

Incomplete solvers. We test our solvers on the 228
MAX2SAT instances using the incomplete track rules,
which allows the solver to output solutions before verifi-
cation and has a 5 minutes time limit. The result is pre-
sented in Figure 6. We recovered the optimal solution of
all the 228 MAX2SAT instances in the random categories
for the incomplete solvers in an average of 0.22 sec, while
the best solvers solved in averagely 1.92 sec. That is, we
are 8.72x faster than the best solvers in average. To be spe-
cific, we found that the 2016 best solvers we compared with
are usually one of CCLS (Luo et al., 2015), CnC-LS Luo et
al. (2017), SC2016 (Wagner), and Swcca-ms (Cai and Su,
2013).

Crafted MAXCUT and random MAX3SAT instances.
Finally, we evaluate our solver against the 107 crafted MAX-
CUT instances in the 2016/2018 completions, as shown in
Figure 7. The result demonstrates our solver also performed
well in harder instances: we recovered all optimal solution
in avg 0.63 sec, which is 3x faster comparing to the best
solvers in 2016/2018 (avg 1.92s). Out of curiosity, we also
tested our solver on the 144 random MAX3SAT instances
in the 2016 competition. The result, shown in Figure 8, sug-
gests that our solver is still competitive even if it is not de-
signed for MAX3SAT. It outperformed the best solvers in
2016 on 114/144 of the instances, though didn’t recover the
optimal solution for 2 instances.
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Figure 7: Experimental result of the crafted MAXCUT in-
stances in the 2016/2018 incomplete track. The MIXSAT
algorithm used 0.62 sec in average to obtain the optimal so-
lution, while the best solvers in 2016/2018 took 1.84 sec in
average. That is, we are still 3x faster in the crafted tracks.

6 Conclusion
This paper has highlighted that an approach, based upon
low-rank semidefinite programming and a simple branch-
and-bound strategy, is extremely competitive for solving
the MAX2SAT problem, compared with some state-of-the-
art solvers in previous contest on MAXSAT solving. Fur-
ther, preliminary experiments demonstrate the performance
also generalizes to the MAX3SAT problem. Although the
MAX2SAT/MAX3SAT domain is obviously a limited set-
ting, the fact that an approach based upon SDP relaxations
can perform well here offers substantial evidence that with
modern methods for SDP solving, such relaxations can fi-
nally go beyond merely theoretically interesting, but become
practical tools in the toolset of combinatorial optimization.
These results suggest that they could be a powerful tool
(one of many) to integrate into current solvers. More fun-
damentally, we hope that the work serves as a starting point
for more continuous approaches integrated into combinato-
rial search, ultimately providing a powerful new avenue for
some fundamental problems in AI.
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