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Abstract

Using observation data to estimate unknown parameters in
computational models is broadly important. This task is of-
ten challenging because solutions are non-unique due to the
complexity of the model and limited observation data. How-
ever, the parameters or states of the model are often known
to satisfy additional constraints beyond the model. Thus, we
propose an approach to improve parameter estimation in such
inverse problems by incorporating constraints in a Bayesian
inference framework. Constraints are imposed by construct-
ing a likelihood function based on fitness of the solution to
the constraints. The posterior distribution of the parameters
conditioned on (1) the observed data and (2) satisfaction of
the constraints is obtained, and the estimate of the parame-
ters is given by the maximum a posteriori estimation or pos-
terior mean. Both equality and inequality constraints can be
considered by this framework, and the strictness of the con-
straints can be controlled by constraint uncertainty denot-
ing a confidence on its correctness. Furthermore, we extend
this framework to an approximate Bayesian inference frame-
work in terms of the ensemble Kalman filter method, where
the constraint is imposed by re-weighing the ensemble mem-
bers based on the likelihood function. A synthetic model is
presented to demonstrate the effectiveness of the proposed
method and in both the exact Bayesian inference and ensem-
ble Kalman filter scenarios, numerical simulations show that
imposing constraints using the method presented improves
identification of the true parameter solution among multiple
local minima.

1 Introduction
Computational models are pervasively used in wide-ranging
engineering applications. Recent advances in computer plat-
forms and numerical methods have enabled models to be
increasingly sophisticated and comprehensive.With greater
model complexity comes greater challenge to determine
model parameters (including initial/boundary conditions),
which are often unknown or uncertain. To address this
challenge, one typically solves an inverse problem by us-
ing observational data to specify model parameters so that
the model output matches the observational data. Many in-
version techniques have been developed and used by dif-
ferent communities. These methods can be roughly cat-
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egorized into two classes: variational and statistical ap-
proaches (Asch, Bocquet, and Nodet 2016). The varia-
tional approach aims to minimize a specific cost function
based on classical optimization theory and calculus of vari-
ations (Smedstad and O’Brien 1991), while the statistical
approach aims to evaluate or maximize posterior functions
based on statistics and Bayesian theory (Cotter et al. 2009).

Because of its robustness and capability for uncertainty
quantification, Bayesian inversion techniques are widely
used for hidden state and parameter estimation for many
physical systems (Iglesias, Lin, and Stuart 2014; Wang et al.
2017; Wang and Xiao 2016; Li et al. 2017). In the Bayesian
framework, both the hidden state/parameters (prior) and
observable quantities (likelihood) are described as random
variables with statistical distributions. The Bayesian esti-
mation aims to calculate the posterior distributions of the
inferred quantities from the prior and likelihood based on
Bayes theorem. Directly computing the posterior distribu-
tion based on the prior and likelihood functions is referred
to as the exact Bayesian approach. In general, the posterior is
obtained by sampling the prior and likelihood distributions
based on efficient Monte Carlo sampling such as the Markov
chain Monte Carlo (MCMC) method. However, since
MCMC requires an enormous amount of samples, which
is computationally infeasible when the likelihood calcula-
tion involves expensive model evaluations, many approxi-
mate Bayesian inversion approaches have been developed,
such as the extended Kalman filter (EKF) (Haykin 2004),
unscented Kalman filter (UKF) (Wan and Van Der Merwe
2000), ensemble Kalman filter (EnKF) (Evensen 2003), and
sequential Monte Carlo (SMC) method (Del Moral, Doucet,
and Jasra 2006).

A common challenge in solving inverse problems is iden-
tifiability. Measurement data is typically very limited and so-
lutions for the hidden states and parameters are nonunique.
Moreover, numerical stability of the inversion can be sig-
nificantly reduced for ill-posed problems and uncontrolled
inference may happen due to small random noise in the ob-
servation data. To address these issues, a general strategy is
to incorporate additional information into the inversion pro-
cess, either by including more observation data or imposing
additional constraints. In most mission-critical applications,
data are difficult to collect and limited in quality. In such
cases, additional constraints can be significantly useful to
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help regularize the inversion results to consistent ranges and
relieve ill-posedness. Fortunately, for many physical sys-
tems, constraints on the state and parameters are available
based on existed knowledge (He and Xiu 2016). Nonethe-
less, most existing Bayesian methods do not take constraints
into account (Shao, Huang, and Lee 2010).

Initial progress has been made to incorporate constraints
into certain Bayesian filters. For example, Simon et al. (Si-
mon and Chia 2002) considered equality constraints in the
standard Kalman filter by projecting the Kalman updated
solution onto the state constraint surface. Shao et al. (Shao,
Huang, and Lee 2010) developed a constrained sequential
Monte Carlo algorithm based on acceptance/rejection and an
optimization strategy. Most recently, Gardner et al. (Gard-
ner et al. 2014) also considered inequality constraints in the
context of Bayesian optimization. However, the existing ap-
proaches to incorporate constraints have been developed for
each specific Bayesian filter, and most of them are based on
a linearized form of the constraints, which is limiting when
constraint functions are complicated and highly nonlinear.
Moreover, in many complex systems, the constraints are ap-
proximations to reality and formulating the constraint in a
deterministic way may neglect the uncertainties associated
with constraint itself. In this work, we proposed a general
approach to incorporate physics-based constraints into the
Bayesian inversion framework, where uncertainty associated
with the constraint itself can also been considered. More-
over, this idea is also extended to an approximate Bayesian
approach–the ensemble Kalman filter.

2 Methodology
A mathematical model of system defines a forward problem
that can be formulated as

x = F (θ), (1)
where θ ∈ Rdθ are model parameters and x ∈ Rdx are the
states of the system. The forward operator F is nominally
assumed to describe a physical system, whereby F typically
represents a suite of algebraic and/or differential equations.
In most cases, the model parameters θ are uncertain or un-
known, and the state variables x are largely unobservable.
Therefore, the unknown parameters and hidden states need
to be inferred from observations y ∈ Rdy . These observations
indirectly and incompletely describe the state of the system,
which can be formulated mathematically as

y = Hx + ϵ, (2)
where H is a projection operator projecting the full state
to the observed space and ϵ represents measurement error.
The standard inverse problem deals with estimating the un-
known parameters θ (or the hidden states x) based on the
observations y. In practice, approximate Bayesian inversion
frameworks, such as Kalman filtering and Sequential Monte
Carlo, are used for computational efficiency.

Constraints in Exact Bayesian Inference
Inverse problems are typically ill-posed because the obser-
vational data is not sufficient to uniquely determine the un-
known parameters. Thus, specification of additional con-
straints can be useful to regularize the inverse problem.

Equality constraints can be defined with respect to the state
variables x as,

G(x) =
[
g1(x), g2(x), ..., gdg (x)

]T
= 0 , (3)

where gi(x), i = 1, 2, ..., dg represent different equality con-
straints. In many application, the constraint only approxi-
mates reality. Thus, instead of directly imposing a hard con-
straint, we assume that each constraint satisfies a zero-mean
Gaussian distribution, expressed as

G(x) ∼ N (0,Σc) . (4)

where the Σc is a covariance matrix used to control the strict-
ness of each constraint. Since x is intrinsically a function of
θ, the constraints can alternatively be expressed in terms of
the parameters

G(x) = G(F (θ)) ∼ N (0,Σc) . (5)

As such, these constraints on the parameters θ can be more
naturally considered within the Bayesian framework by im-
posing additional likelihood functions introduced by these
nondeterministic constraints.

Without loss of generality, both the prior and likelihood
are assumed Gaussian. Namely, the prior of the parameters
θ is defined by

p(θ) =
1√

(2π)dθ |Σθ |
exp

(
−

1

2
(θ − θ̂)

T
Σ
−1
θ

(θ − θ̂)

)
, (6)

where θ̂ and Σθ are the prior mean and covariance, which are
based on existing knowledge or preliminary estimation. The
observation data errors are also assumed to follow a zero-
mean Gaussian distribution, i.e., ϵ ∈ N(0,Σl), thus the likeli-
hood of the observed data set on y is,

p(D|θ) =
1√

(2π)dy |Σl|
exp

(
−

1

2
(y − HF (θ))

T
Σ
−1
l

(y − HF (θ))

)
.

(7)

The covariance matrix Σl is obtained by estimating the sam-
ple variance of the observed data sets D. The constraints are
imposed by considering the following likelihood function,

p (G(x) = 0 | θ)

=
1√

(2π)dg |Σc|
exp

(
−

1

2
G(F (θ))

T
Σ
−1
c G(F (θ))

)
. (8)

The likelihood of the constraints defines a fitness of a spe-
cific value of θ based on the satisfaction of the constraints.
By introducing this Gaussian-type likelihood function, we
enable a “soft” enforcement of the constraints. The strictness
of the constraint can be controlled by the diagonal variance
matrix Σc,

Σc = diag{σ2c,1, σ
2
c,2, ..., σ

2
c,dg

} . (9)

where the variance σi represent a confidence on the accu-
racy of the constraint. Smaller σc,i corresponds to a stricter
constraint.

Inequality constraints can be converted to equivalent
equality constraints. For example, a scalar inequality con-
straint g(x) ≤ 0 can be expressed as

max (0, g(x)) = 0 , (10)
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and thus the corresponding likelihood can be expressed as

p (g(x) ≤ 0 | θ) =
1√
2πσ2c

exp

(
−

1

2σ2c
[max (0, g(x))]

2
)

. (11)

Imposing constraints through a likelihood function can
also be extended to disjunctive constraints. For example,
consider a constraint of the form g1(x) = 0 ∨ g2(x) = 0. By
the union rule of probability

p (g1(x) = 0 ∨ g2(x) = 0 | θ)

= p (g1(x) = 0|θ) + p (g2(x) = 0|θ) − p (g1(x) = 0 ∧ g2(x) = 0|θ)

=
1√

2πσ2c,1

exp

⎛⎝−
g1(F (θ))2

2σ2c,1

⎞⎠+
1√

2πσ2c,2

exp

⎛⎝−
g2(F (θ))2

2σ2c,2

⎞⎠

−
1√

(2π)2|Σc|
exp

⎛⎝−
1

2

[
g1(F (θ))

g2(F (θ))

]T
Σ
−1
c

[
g1(F (θ))

g2(F (θ))

]⎞⎠ , (12)

where Σc again defines the covariance matrix of constraints.
With the prior distribution, likelihood of the data, and

likelihood of the constraints now defined, the posterior prob-
ability distribution conditioned on the observed data D and
the constraints G(x) can be defined as

p(θ|D, G(x) = 0) =
p(D|θ)p(G(x) = 0|θ)p(θ)

p(D, G(x) = 0)

∝ p(D|θ)p(G(x) = 0|θ)p(θ) . (13)

Since the posterior distribution cannot be solved analytically
in general, it is commonly evaluated based on MCMC sam-
pling.

Constraints in Approximate Bayesian Inference
The direct Bayesian inference based on MCMC sampling
is usually intractable when the likelihood calculation in-
volves a computationally expensive model; instead approx-
imate Bayesian approaches are commonly used to provide
a more computationally tractable solution. The EnKF is one
such method, which is a variant of the standard Kalman fil-
ter where the covariance matrix is replaced by Monte Carlo
samples.

For EnKF, we combine the original hidden states x and
the unknown parameters θ into a new augmented state

z =
[
θ
T
, x

T
]T

, (14)

which will be updated during the filtering process accord-
ing to the observed data D. The initial ensemble is first ob-
tained by sampling the prior distribution p(θ) and evaluating
the model at each ensemble member
{
ẑ
(j)
}J

j=1
=

{[
θ̂
(j)

; x̂
(j)
]T}J

j=1

=

{[
θ̂
(j)

;F

(
θ̂
(j)
)]T}J

j=1

,

(15)
where J is the number of ensemble members. The probabil-
ity associated with each ensemble member is initially set to
be uniform

wj , p(z = ẑ
(j)

) =
1

J
, j = 1, 2, ..., J . (16)

Then the expectation and covariance matrix of the state vari-
ables are estimated from the ensemble as

E(ẑ) =
J∑

j=1

wjẑ
(j)

, (17)

C(ẑ) =
J∑

j=1

wj(ẑ
(j) − E(ẑ))(ẑ(j) − E(ẑ))T . (18)

If the observed data follows a normal distribution N(ȳ,Σl),
the prior ensemble can be updated by the observed data D
according to the Kalman update

z
(j)

= ẑ
(j)

+ C(ẑ)HT
(HC(ẑ)HT

+ Σl)
−1

(ȳ − Hz
(j)

),

j = 1, 2, ..., J . (19)

The posterior ensemble
{
z(j)

}J
j=1

represents a sampling for
the posterior probability distribution p(z|D), with the proba-
bility associated with each ensemble member equal to

p(z
(j)|D) = wj, ∀j = 1, 2, ..., J . (20)

Now we consider inclusion of constraints. The likelihood
of the constraint G(x) = 0 to be satisfied conditioned on each
member of the posterior ensemble can be computed as

Lg
(j) , p

(
G(x) = 0|z(j)

)

=
1√

(2π)dg |Σc|
exp

(
−

1

2
G

(
x
(j)
)T

Σ
−1
c G

(
x
(j)
))

.

(21)

By Bayes theorem, the posterior probability density of each
ensemble member conditioned on the observed data D and
constraints G(x) = 0 is given by

p

(
z
(j)|D, G(x) = 0

)
=

1

Z
p

(
G(x) = 0, z

(j)|D
)

=
1

Z
p

(
G(x) = 0|z(j)

)
p

(
z
(j)|D

)
=

1

Z
wjLg

(j) (22)

where Z is the normalization constant defined as

Z =

J∑
j=1

p

(
G(x) = 0|x(j)

)
p

(
x
(j)|D

)
=

J∑
j=1

wjLg
(j)

. (23)

The empirical distribution for p (z|D, G(x) = 0) can be de-
scribed by the posterior ensemble

{
z(j)

}J
j=1

, and the associ-
ated probability mass

p

(
z = z

(j)|D, G(x) = 0

)
=

wjLg(j)∑J
p=1 wjLg(p)

, ∀j = 1, 2, ..., J,

(24)
for each ensemble member. We here re-define the new
weights for each ensemble members as

w
′
j ,

wjLg(j)∑J
p=1 wjLg(p)

. (25)

The state estimation for the current iteration step is thus
computed as the expectation of the empirical posterior dis-
tribution conditioned on the data D and the prior knowledge
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that G(x) = 0 according to

z̄ = E (z|D, G(x) = 0) =
J∑

j=1

p

(
z = z

(j)|D, G(x) = 0

)
z
(j)

=
J∑

j=1

w
′
jz

(j)
. (26)

Then the estimation of the unknown parameters θ̄ can be
extracted from the estimation of the full augmented state.
Also, the covariance of the parameter θ with respect to
p (z|D, G(x) = 0) can be computed as

Σθ =
J∑

i=1

(
θ
(j) − θ̄

)
diag

{
w
′
j

}J
j=1

(
θ
(j) − θ̄

)T
. (27)

The new prior ensemble for the next iteration step is ob-
tained by sampling the following normal distribution

θ̂
(j) ∼ N(θ̄,Σθ), j = 1, 2, ..., J , (28)

to maximize the next step prior entropy (Penfield Jr 2010)
while keeping the mean and covariance the same as the pre-
vious posterior distribution. The iterative process continues
until a stopping criterion is satisfied or the maximum itera-
tion number is reached.

3 Results and Discussion
Model Test Problem
To verify the effectiveness of the constrained Bayesian infer-
ence framework described above, a simple test case is pre-
sented here. The forward model mapping from the parameter
space Θ ⊂ R2 to the state space X ⊂ R2 is defined as[

x1

x2

]
= F (θ) =

[
exp(−(θ1 + 1)2 − (θ2 + 1)2)

exp(−(θ1 − 1)2 − (θ2 − 1)2)

]
. (29)

The projection matrix mapping from state space to output is
given by

H = [−1.5,−1.0] , (30)
and thus the reconstructed output is

HF (θ) = −1.5 exp(−(θ1 + 1)
2 − (θ2 + 1)

2
)

− 1.0 exp(−(θ1 − 1)
2 − (θ2 − 1)

2
) , (31)

where HF (θ) ∈ R1. We consider the following constraint:

G(x) = −0.25 log x1 + 0.25 log x2 − 2 = 0 , (32)

which can be equivalently written in terms of θ,

G(F (θ)) = θ1 + θ2 − 2 = 0 . (33)

We assume the observed data follow the normal distribution
N(ȳ,Σl) where the mean ȳ = −1.0 and the covariance matrix
Σl is chosen based on the uncertainty associated with data.

This model is chosen to create a simple scenario with mul-
tiple local minimums. Namely, regardless of the prior infor-
mation and constraints, we seek the model parameters that
minimize the difference between the observed output and re-
constructed output, quantified by the cost function

I(θ) = ∥ȳ − HF (θ)∥2

=
(
1.5 exp(−(θ1 + 1)

2 − (θ2 + 1)
2
)

+1.0 exp(−(θ1 − 1)
2 − (θ2 − 1)

2
) − 1.0

)2
. (34)
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Figure 1: Contour plot of the cost function I(θ) with respect
to parameters θ = [θ1, θ2] The red “+” denote the local min-
ima of the cost function.
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Figure 2: (a) Sampling of the prior distribution; (b) Sam-
ple + data likelihood p(D|θ); (c) Sample + constraint like-
lihood p(G(x) = 0|θ); (d) Sample + posterior distribution
p(θ|D, G(x) = 0)

which has minimums at (a) θ∗ = (1, 1) ; and (b) θ on the circle
defined by

(θ1 + 1)
2
+ (θ2 + 1)

2
= log 1.5 . (35)

The contour plot of the cost function and the local mini-
mums are visualized in Figure 1. Here we assume θ∗ = (1, 1)

is the true value of the parameter θ, and the constraint (33)
will help to eliminate convergence to other local minima.

The situation of multiple local minima is a common chal-
lenge in solving inverse problems, because the observed out-
put information is usually not enough to uniquely determine
the unknown parameters. We show below that imposing con-
straints can help the solution to converge to the true value.

Exact Bayesian Inference
The prior distribution (6) is first sampled with J = 5000 sam-
ples. The mean and the covariance matrix are set to

θ̂ =

[
0

0

]
, Σθ =

[
3 0

0 3

]
. (36)

The distribution of the samples is visualized in Figure
2(a). The trivial zero mean represents non-informative prior
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θ1 θ2 x1 x2 y

True values 1 1 0 1 -1

No constraint -0.0448 -0.0722 0.1698 0.1063 -0.3610

With constraint: EXP 0.9926 0.9449 0.0004 0.9969 -0.9976

With constraint: MAP 0.9845 0.9698 0.0004 0.9988 -0.9994

Table 1: Parameters θ, states x and output y estimated us-
ing sample-based Bayesian inference with no constraint im-
posed and with constraint imposed.

knowledge of θ, and the large variance defined by Σθ above
denotes large uncertainty about the prior. Ideally if better
prior knowledge exists, we can specify a better prior here,
with more accurate mean and less uncertainty. After sam-
pling the prior, the likelihood function of data p(D|θ) is eval-
uated at each individual sample point

{
θ(j)

}J
j=1

. The like-
lihood of the data is plotted with respect to each sample in
Figure 2(b). The value of the likelihood is indicated by the
brightness of the sample. It can be clearly observed that the
brightest regions coincide with the local minimums in Fig-
ure 1, which shows the region of the highest likelihood of
data . Similarly, we evaluate the likelihood function of the
constraint p(G(x) = 0|θ) at each sample, and the likelihood is
visualized in Figure 2(c). The region with the highest likeli-
hood represents the form of the constraint in (θ1, θ2) space,
which is θ1 + θ2 − 2 = 0. The variance for the constraint is
set to be Σc = 0.5, which controls how strict the constraint is
enforced. Lastly, the posterior p(θ|D, G(x) = 0) is evaluated at
each samples, and the distribution of the sample along with
the posterior weights are plotted in Figure 2(d). It is clearly
observed that the location with the highest posterior density
correspond to the intersection between the regions with high
likelihood of data D and high likelihood of the constraint
satisfaction. This intersection region picks out the true value
of the parameter θ. Computing the weighted sum of the
parameter samples

{
θ(j)

}J
j=1

with respect to the posterior
weights yields the final estimation of the unknown parame-
ter θ∗Exp =

∑J
j=1 p

(
θ(j)|D, G(x) = 0

)
θ(j) =

∑J
j=1 wjθ

(j) . Or

simply taking the sample θ(j) that maximize the posterior
p
(
θ(j)|D, G(x) = 0

)
yields the maximum a posteriori estima-

tion (MAP) of the unknown parameter, i.e. θ∗MAP. Once the
parameter is estimated, the estimated value of the state vari-
ables x and output y can be computed by evaluating the for-
ward model F (θ∗). These estimated values are listed in Table
1 for the case of including and not including constraint. It
can be seen from this table that imposing the constraint sig-
nificantly increase the estimation accuracy in the case where
multiple local minimums exist.

Approximate Bayesian Inference
No constraint imposed. Iterative ensemble Kalman fil-
ter estimates the unknown model parameters θ in a iterative
manner. Since the cost function I(θ) has multiple local mini-
mums, different initial guesses of θ will converge to different
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Figure 3: Different initial guesses of the unknown parameter
θ (marked with red triangles) and their corresponding con-
verged values after 1000 EnKF iteration steps (marked with
blue circles), with no constraint imposed.

local minimums. We here define

Group I ,
{
θ
∗ ∈ R2|θ∗ = (1, 1)

}
, (37)

Group II ,
{
θ
∗ ∈ R2|(θ∗1 + 1)

2
+ (θ

∗
2 + 1)

2
= log 1.5

}
, (38)

which represent two different local minimum regions. θ∗

represents the converged value of the parameter after ensem-
ble Kalman filter iterations.

Here we simulated three different cases with different ini-
tial guesses: (a) θ0 = (−2,−2); (b) θ0 = (0, 0); (c) θ0 = (2, 2).
The covariance matrix of the prior and the covariance of the
data likelihood are given as Σθ = [1, 0; 0, 1] and Σl = 0.01. The
results for the three different simulations are visualized in
the parameter space of θ in Figure 3. It can be seen that the
upper right initial guess at (2, 2) converges to local minimum
Group I, and the other two initial guesses both converge to
local minimum Group II. The convergence processes of the
parameter θ for the three different initial guesses are plot-
ted in Figure 4. It can be seen that all converge to the corre-
sponding local minimum groups within about 400 iterations.
The main difference is that while Case (c) converges to the
local minimum (1, 1), i.e., Group I, directly after a few iter-
ations, Case (a) and (b) converge to θ = (−1,−1) first, which
is the center of the local minimum circle of Group II, and
then shift to a local minimum on the circle of Group II at
around the 200th iteration (indicated by the “jump”). The
reason behind this is that we use the mean of the ensemble
of each step as the estimated parameter value. When the en-
semble converges to the local neighborhood of Group II, the
mean of the ensemble will generally be the center of the lo-
cal minimum circle because the high likely ensemble mem-
bers are roughly symmetrically distributed around the cen-
ter (−1,−1). The mean of the ensemble will gradually shift
to certain points on the circle based on the distribution of
the ensemble members. The evolution of the ensemble for
different initial guesses is shown in Figure 5. It can be seen
that the variance of the ensemble gradually decrease until
all ensemble members collapse to the corresponding local
minimum.

The convergence results for the three different initial
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Figure 4: Results for the convergence of the parameter θ with no constraint imposed. (a) Initial guess θ0 = (−2,−2); (b) initial
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Figure 5: Evolution of the ensemble of the parameter θ with no constraint imposed. The points on the red circle centered at
(-1,-1) and the red point at (1,1) denote the local minimums of the cost function I(θ). (a) Initial guess θ0 = (−2,−2); (b) initial
guess θ0 = (0, 0); (c) initial guess θ0 = (2, 2).

guesses are summarized here,

θ
0
= (−2,−2) → θ

∗
= (−0.4080,−0.7598) ∈ Group II ,

θ
0
= (0, 0) → θ

∗
= (−0.3654,−1.0421) ∈ Group II ,

θ
0
= (2, 2) → θ

∗
= (0.9998, 0.9812) ∈ Group I .

The reconstructed outputs HF (θ∗) for the above cases all
converge to the target value ȳ = −1 within 1000 EnKf itera-
tions. However, with no constraint is imposed, the estimate
of the parameter θ will converge to the closer local mini-
mum group based on where the initial guesses are. The ini-
tial guess in the middle (0, 0) converges to the local minimum
Group II because Group II contains more local minimums
than Group I, and therefore the the solution is more likely
to converge to Group II when initial guess is in the middle.
More broadly, there is no guarantee that the estimate of the
parameter will converge to the the true parameter value (1, 1).

With constraint imposed For the local minimums in
Group I and Group II, only the true parameter value (1, 1)

satisfies the constraint. We test here whether imposing the
constraint can help the convergence of the parameter esti-
mation to the true value.

Three cases of different initial guesses are simulated with
constraint imposed by re-weighing individual ensembles
based on their likelihood of satisfying the constraint (see
(26)). The covariances are Σθ = [1, 0; 0, 1] and Σl = 0.01, which
are kept the same as previous simulations. The covariance of
the constraint used here is Σc = 2.0, which defines a certainty
about the constraint. The simulation results are shown in Ta-
ble 2 and visualized in Figure 6 (left). It can be seen that the
solution converges to the true value (1, 1) when starting from

(0, 0) and (2, 2), and the solution converges to the local min-
imum Group II when starting from (−2,−2). It is interesting
to note that the middle initial point (0, 0), which originally
converges to Group II, now is able to converge to the true
value (1, 1).

The reason that the solution starting from the lower left
initial guess (−2,−2) cannot converges to the true value (1, 1)

is because it is too far way from the true value and the vari-
ance of the prior is not large enough to sample the parame-
ter space near the true value (1, 1). Therefore, even though the
constraint has been imposed, the solution cannot converge to
the true value. To verify this, we simulated the three different
starting locations with a larger prior variance Σθ = [3, 0; 0, 3],
while the covariance of the data likelihood Σl = 0.01 and the
covariance of the the constraint Σc = 2.0 are kept the same.
The simulation results are shown in Table 3 and visualized
in Figure 6 (middle), demonstrating that all the three initial
guesses lead to the true parameter value (1, 1).

As a further test, we decreased the variance of the con-
straint Σc to 1.0 to see how this influences the parameter es-
timation. The results in Table 4 and Figure 6 (right) demon-
strate that (contrary to original conditions in the left panel)
all three initial guesses converge to the true parameter value
θ∗ = (1, 1). Thus decreasing the variance of the constraint
can also improve convergence to the true parameter value in
cases where the constraint is more certain.

Relation between Bayesian inference and
optimization
Using Bayesian inference framework to estimate the un-
known model parameters is intrinsically related to solving
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Figure 6: Parameter convergence results with constraint imposed. (Left) When Σθ = [1, 0; 0, 1] and Σc = 2.0, the initial guesses
at the (2, 2) and (0, 0) converge to the true local minimum (1, 1); (Middle) When Σθ = [3, 0; 0, 3] and Σc = 2.0, all initial guesses
converge to the true local minimum (1, 1); (Right) When Σθ = [1, 0; 0, 1] and Σc = 1.0, all initial guesses converge to the true local
minimum (1, 1).

θ0 (-2, -2) (0, 0) (2, 2)

θ∗ (-0.5685, -0.5173) (0.9839, 1.0013) (0.9837, 1.0015)

HF (θ∗) -0.9948 -0.9958 -0.9958

Group II I I

Table 2: Simulation results with the constraint imposed for
different initial guesses with Σθ = [1, 0; 0, 1], Σl = 0.01 and
Σc = 2.0 .

θ0 (-2 , -2) (0, 0) (2, 2)

θ∗ (0.9947, 0.9962) (0.9958, 0.9943) (0.9955, 0.9942)

HF (θ∗) -0.9859 -0.9897 -0.9908

Group I I I

Table 3: Simulation results with the constraint imposed for
different initial guesses with Σθ = [3, 0; 0, 3], Σl = 0.01 and
Σc = 2.0 .

a corresponding optimization problem (Aravkin, Burke, and
Pillonetto 2014). To see this, we write out the posterior prob-
ability distribution of the unknown parameter θ conditioned
on the observed data D and the fact that the constraint needs
to be satisfied,

p(θ|D, G(x) = 0) ∝ p(D|θ)p(G(x) = 0|θ)p(θ)

=
1

Z′ exp

⎛⎝−
1

2

Σ− 1
2

θ
(θ − θ̂)


2

−
1

2

Σ− 1
2

l
(y − HF (θ))


2

−
1

2

Σ− 1
2

c G(F (θ))


2
⎞⎠ , (39)

where Z′ is a normalization constant. As mentioned before,
the final estimation of the parameter θ can be taken as the
posterior expectation E(θ|D, G(x) = 0), or as the value that
maximizes the posterior probability (MAP)

θ
∗
= argmax

θ
p(θ|D, G(x) = 0) . (40)

θ0 (-2, -2) (0, 0) (2, 2)

θ∗ (0.9976, 0.9984) (0.9888, 1.0063) (0.9863, 1.0087)

HF (θ∗) -0.9888 -0.9957 -0.9962

Group I I I

Table 4: Simulation results with the constraint imposed for
different initial guesses with Σθ = [1, 0; 0, 1], Σl = 0.01 and
Σc = 1.0 .

Based on (39), solving the MAP estimation of θ is equivalent
to the following optimization problem:

min
θ

Σ− 1
2

θ
(θ − θ̂)


2

+

Σ− 1
2

l
(y − HF (θ))


2

+

Σ− 1
2

c G(F (θ))


2

,

(41)
where the three terms in the cost function from left to right
represent the contributions from the prior, the data and the
constraint. Therefore using Bayesian inference to estimate
model parameters is equivalently solving an optimization
problem of minimizing the miss-match between the ob-
served output and the reconstructed output, while penaliz-
ing based on the prior and satisfaction of the constraints. It
is easier to see the relations between different terms if we
assume all quantities are scalar:

min
θ

1

σ2
θ

∥θ − θ̂∥2 +
1

σ2
l

∥y − HF (θ)∥2 +
1

σ2c
∥G(F (θ))∥2 . (42)

It can be seen that the variances of the prior, the data and the
constraints define the relative importance of each individual
terms. The smaller the variance, the more important the cor-
responding term is in the cost function. This is reasonable
because the information source with smaller belief uncer-
tainty should naturally get more weight. Increasing the vari-
ance of the prior σθ not only samples a broader region but
also places more relative weight on satisfying the constraint,
which is why increasing the variance of the prior led to con-
vergence of all three initial guesses to the true value (see Ta-
ble 3 and Figure 6 (middle)). Similarly, decreasing the vari-
ance of the constraint can also put more relative weight on
the constraint, which is verified in the results shown in Table
4 and Figure 6 (right). In the cases of multiple constraints,
the variance for each constraint can be used to tune the rela-
tive importance of the constraint.
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Extensions
The constrained Bayesian inference approach here was de-
veloped to address non-uniqueness of the solutions for in-
verse problems. However, it can also be extended as a
way to solve more general constrained optimization prob-
lems. An advantage of this approach, compared to traditional
gradient-based optimization, is that it is derivative-free and
does not require construction of the cost function gradient.
Gradient information is implicitly represented by the ensem-
ble. This approach can also provide a potential framework to
incorporate domain knowledge in learning models to accel-
erate convergence and improve accuracy.

Although we assumed Gaussian distributions, this ap-
proach can be extended to non-Gaussian distributions. This
ultimately leads to a different “weighting” on the ensem-
ble members (see Eq. (25)). Applying different distributions
for the constraints, prior or data can be useful. For exam-
ple, assuming a Laplace likelihood for the constraint results
in L1-regularization instead of L2-regularization in (41), and
a skew likelihood for the constraint will result in different
strictness on either side of the constraint surface in parame-
ter space.

4 Conclusion
To address the non-uniqueness of the feasible solutions for
ill-posed inverse problems due to model complexity and
lack of observation dimension, we here proposed a general
method to constrain the inverse problem in a Bayesian in-
ference framework. The constraint is imposed by construct-
ing a likelihood function denoting the fitness of a solution.
Then the posterior distribution for the unknown parameter
conditioned on both the observation data and the constraint
is obtained, and the final parameter estimation is given by
the MAP estimation or the posterior mean. This method was
also extended to an approximate Bayesian inference frame-
work in terms of the ensemble Kalman filter, which was
shown to lead to a re-weighing of ensemble members based
on their fitness to the constraint. Numerical simulations were
carried out to demonstrate the effectiveness of this approach
for basic proof-of-concept.
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