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Abstract

Utilizing recently introduced concepts from statistics and
quantitative risk management, we present a general variant
of Batch Normalization (BN) that offers accelerated conver-
gence of Neural Network training compared to conventional
BN. In general, we show that mean and standard deviation are
not always the most appropriate choice for the centering and
scaling procedure within the BN transformation, particularly
if ReLU follows the normalization step. We present a Gen-
eralized Batch Normalization (GBN) transformation, which
can utilize a variety of alternative deviation measures for scal-
ing and statistics for centering, choices which naturally arise
from the theory of generalized deviation measures and risk
theory in general. When used in conjunction with the ReLU
non-linearity, the underlying risk theory suggests natural, ar-
guably optimal choices for the deviation measure and statis-
tic. Utilizing the suggested deviation measure and statistic,
we show experimentally that training is accelerated more so
than with conventional BN, often with improved error rate as
well. Overall, we propose a more flexible BN transformation
supported by a complimentary theoretical framework that can
potentially guide design choices.

1 Introduction
Training a deep neural network has traditionally been a dif-
ficult task. Issues such as the vanishing and exploding gradi-
ent, see e.g., (Pascanu, Mikolov, and Bengio 2013), make the
use of gradient based optimization techniques difficult from
the perspective of stability and fast convergence. However,
new, seemingly simple tools have emerged to help practi-
tioners overcome common pitfalls of neural network train-
ing. Two prominent examples are the use of Batch Normal-
ization (BN) and Rectified Linear Units (ReLU).

Originally proposed by (Ioffe and Szegedy 2015), BN
provides a simple transformation which incentivizes the ho-
mogenization of neural network layer outputs, so as to have
the same scale and mean, eliminating what is referred to as
internal covariate shift. Intuitively, this allows the ‘signal’
flowing through the neural network to maintain a consis-
tent center and scale, potentially stabilizing gradients and
the training procedure as a whole.
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Consider a single layer of the network which first re-
ceives output from the previous layer h and then applies
an affine transformation to get x = Wh + b, followed by
an element-wise non-linearity to produce output g(x) which
is fed to the next layer. Let x = [x1, x2, · · · , xn]

T de-
note its individual components so that we can write g(x) =
[g(x1), g(x2), ..., g(xn)]

T .
The BN transformation is based upon the following trans-

formation on each dimension j of the input,

x̂j ←
xj − E[xj ]√

E[(xj − E[xj ])2]
,

where E[xj ] and
√
E[(xj − E[xj ])2] are the mean and stan-

dard deviation of the random variable xj , which are esti-
mated during training with a batch of training examples.

In this paper, we begin by asking the question: Are mean
and standard deviation the right choice for every network
architecture? This simple question leads us to the main con-
tribution of this paper, which is the observation that batch
normalization can naturally be generalized and improved by
considering the general transformation,

x̂j ←
xj − S(xj)

D(xj)
,

where D is some measure of deviation, not necessarily the
standard deviation, and where S is a statistic which is not
necessarily the mean. While arising from a specific set of
axioms in risk theory, one can think of D as a general mea-
sure of the non-constancy of x and S as a type of ’center.‘

We show that there exist many different choices for D
and S besides standard deviation and mean, and that by for-
mulating the batch normalization transformation with these
alternatives one can accelerate neural network training com-
pared to conventional BN and, in some settings, obtain im-
proved predictive performance. Additionally, we show how
the choice of D and S are driven not only by straightfor-
ward intuition, but also by recently developed theoretical
tools from statistics and risk theory. Specifically, the theory
of generalized deviation measures provides us with a wealth
of choices for deviation measureD, which includes standard
deviation as a special case. In addition, for any choice of D,
there is a naturally corresponding statistic S. Thus, choosing
D implies natural choices for S and vice versa.
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Besides the simple observation that mean and standard
deviation can be replaced by alternatives, our analysis is
also driven by the observation that the appropriateness of
the choice of D and S is directly tied to the choice of non-
linearity which follows the normalization transformation.
We focus our analysis on the ReLU non-linearity from (Glo-
rot, Bordes, and Bengio 2011) and (Nair and Hinton 2010),
which has played a significant role in stabilizing and accel-
erating neural network training (Krizhevsky, Sutskever, and
Hinton 2012; Dahl, Sainath, and Hinton 2013). We show that
mean and standard deviation are not natural choices for cen-
tering and scaling if ReLU follows the normalization trans-
formation. Risk theory and simple intuition suggest more
natural choices. In fact, we see that one of these choices,
the superquantile deviation, allows explicit control over the
level of sparsity of activation’s; hypothesized to be an impor-
tant property of ReLU (Glorot, Bordes, and Bengio 2011).
While we focus on ReLU, this intuition can also be applied
to any asymmetric non-linearity such as Leaky ReLU (Maas,
Hannun, and Ng 2013), Exponential Linear Unit (Clevert,
Unterthiner, and Hochreiter 2015), or any other arising from
the ReLU family (e.g. (He et al. 2015)).

We demonstrate on MNIST, CIFAR-10, CIFAR-100, and
SVHN datasets that the speed of convergence of stochastic
gradient descent (SGD) can be increased by simply choos-
ing a different D and S and that, in some settings, we obtain
improved predictive performance. Our experimental analy-
sis also serves to support the intuition that ReLU paired with
D =

√
E[(x− E[x])2] and S = E[x] is a mismatch and

that asymmetric choices for D and S which are suggested
by risk theory and intuition do, in fact, work better.

Although much further analysis is needed in this direc-
tion, we show that the use of ReLU’s in tandem with BN
can be tied directly to risk theory via a recently intro-
duced concept called Buffered Probability of Exceedance
(bPOE). Specifically, the use of normalization followed by
a ReLU gives rise to what can be considered to be the
tightest convex approximation to the 0 − 1 loss. This is
intriguing given the history of neural networks began with
the concept of 0 − 1 loss (indicator function) neural output
which were then approximated with the sigmoid transforma-
tion as a differentiable surrogate (see e.g. (Rosenblatt 1958;
McCulloch and Pitts 1943)).

2 Batch Normalization
The BN transformation is based upon the following trans-
formation on each dimension j of the input,

x̂j ←
xj − µj√
σ2
j + ϵ

,

where σj and µj are the empirical standard deviation and
mean of the random variable xj , which are estimated during
training with a batch of training examples. Throughout this
paper, we will view x as a random vector which is observed
empirically via the training batches. Thus, during training,
µj = 1

|B|
∑|B|

i=1 x
(i)
j with |B| denoting the size of the train-

ing batch.

The BN procedure follows the actual normalization with
the following linear transformation, where γj , βj are param-
eters which will be tuned during training,

γj x̂j + βj .

The BN procedure is then followed by the final non-linear
transformation g(γj x̂j + βj). Why is this linear transforma-
tion needed? As noted by (Ioffe and Szegedy 2015), the BN
transformation may not be appropriate or work well in con-
junction with the non-linear transformation g that follows.
Thus, the authors introduced a way to adjust the BN trans-
formation if necessary. However, there is no guarantee that
training will find the right linear transformation and be able
to properly counteract a poor choice of scale and center. In
some sense, this is why it is argued in (Mishkin and Matas
2015) that proper initialization is all that is needed. Assum-
ing that the centering and scaling are not correct, which is
to say that the trainable linear transformation is necessary to
adjust the center and scale, then BN can be loosley viewed as
a type of data dependent initialization strategy. In this sense,
the additional linear transformation can be used within our
proposed scheme in exactly the same way, but with more
control over the initialization where one would hope to se-
lect a more appropriate data-dependent centering and scaling
factor.

Cases where the standard BN may not work well in
conjunction with the non-linearity g can be easily illus-
trated, particularly if g is the ReLU non-linearity. Con-
sider a set of outputs {x1, · · · , xN} from a network layer
which have mean zero, i.e., 1

N

∑N
i=1 xi = 0, with order-

ing x1 < · · · < xk < 0 < xk+1 < · · · < xN . As-
sume that we are then going to divide by some normaliza-
tion factor, such as standard deviation, and then feed these
values into a ReLU non-linearity max{0, xi}. The ReLU
non-linearity will map points x1, · · · , xk to zero. Consid-
ering this fact, does it make sense to first divide the whole
set of N points by the standard deviation? Intuitively, it
would make more sense to divide by the variance of only
the set of points {xk+1, · · · , xN}. The variation of the set
of points {x1, · · · , xk} is irrelevant given the fact that a
ReLU will follow, sending all of these points to zero. This
consideration is particularly important if the conditional dis-
tributions {x1, · · · , xk} and {xk+1, · · · , xN} exhibit very
different scales and variation. In this case, it may be more
appropriate to use a one-sided measure of deviation D for
the normalization step such as the Right Semi-Deviation
(RSD) 1

N

∑N
i=1 max{0, xi}. Furthermore, a similar argu-

ment can be applied to the centering operation. Assume, for
instance, that the distribution {x1, · · · , xN} is heavy-tailed,
with {x1, · · · , xN−1} having mean zero and variance 1, but
with xN = 100. The mean of all N points will be very
large, and centering the data via mean subtraction will yield
xN − µ as the only term with value larger than zero. Thus,
the application of the ReLU will leave only one sample as
having non-zero value (and gradient), with much of the valu-
able learning signal lost because of poor choice of centering
statistic S.

This paper shows that there are other ways to perform
batch normalization, potentially avoiding the need to ad-

1683



just the normalization with the affine transformation (or at
least reducing the amount by which it would need to be
adjusted), offering accelerated convergence. Generalizations
and variants of BN have been proposed before. For example,
Klambauer et al. (2017) proposed a self-normalizing net-
work layer, but is limited to standard feed-forward architec-
tures. Ba, Kiros, and Hinton (2016) altered BN to work with
recurrent neural networks. Mishkin and Matas (2015) argue
that BN is simply another way to perform initialization, thus
proposing initialization methods that produce similar ef-
fects. The idea of BN was altered to weight normalization by
reparameterizing the weights (Salimans and Kingma 2016;
Chunjie, Qiang, and others 2017). Our proposed approach,
while relying on simple principles, is grounded in a broader
theory and maintains all important flexibility of conventional
BN.

3 Asymmetric Deviation Measures in Risk
Theory

As alluded to in the introduction, it is easy to question the
use of variance as the scale normalizing factor if it is fol-
lowed by the ReLU transformation. This gives rise to the ob-
vious question: What other options do we have that may be
more appropriate? We find, in general, that risk theory pro-
vides us with an entire class of generalized deviation mea-
sures to choose from. In this section, we briefly introduce
risk theory before discussing generalized deviation mea-
sures in Section 4 where we introduce the GBN transforma-
tion and show that generalized deviation measures provide
us with an array of alternatives to mean and standard devia-
tion.

Over the past 25 years, risk management theory has
played a crucial role in the development of fundamental
statistical concepts that not only measure risk (Artzner et
al. 1999; Föllmer and Schied 2002; Szegö 2002), but have
proven fundamental to statistical theory and optimization
under uncertainty. A full review of risk theory is beyond the
scope of this paper, but a simple example in the context of
financial engineering can be used to illustrate. Consider an
investment which will yield a loss of x, with x being a ran-
dom monetary loss. Assume we knew the distribution of x,
and we were to ask: How risky is this investment? How can
we measure risk to compare it against other investments y?
An obvious choice would be to look at the expected loss
E[x]. However, this may be inappropriate, as investor ob-
jectives (or distribution of x) may be highly asymmetric.
It may be more appropriate to measure risk with an asym-
metric quantity. One example would be to use the quan-
tile qα(x) = min{z|P (x ≤ z) ≥ α}, where α ∈ [0, 1]
is a probability level. Its inverse, called Probability of Ex-
ceedance (POE), given by P (x > z) where z ∈ R is some
known threshold, may also be desirable if some threshold z
is known and exceeding such a threshold is undesirable.

One of the primary drivers of risk theory, however, has
been the need to quantify risk in such a way that optimiza-
tion can take place (e.g. finding the portfolio with minimal
risk). The quantile, also called the Value-at-Risk, and POE
are numerically troublesome in this context. Specifically,

these functions often prove to be non-convex and discontin-
uous, essentially reducing to sums of indicator (0 − 1 loss)
functions. From this difficulty, more amenable alternatives
have arisen.

Two popular alternatives that are relevant to our discus-
sion are the superquantile and Buffered Probability of Ex-
ceedance (bPOE) (Rockafellar and Uryasev 2000; Rockafel-
lar and Uryasev 2002; Acerbi and Tasche 2002; Mafusalov
and Uryasev 2015). The superquantile is a measure of un-
certainty similar to the quantile, but with superior mathe-
matical properties. Formally, the superquantile, also called
Conditional Value-at-Risk (CVaR) in the financial engineer-
ing literature, for a continuously distributed x is defined as

q̄α(x) = E [x|x > qα(x)] .

For general distributions, the superquantile can be defined
by the following formula,

q̄α(x) = min
γ

γ +
E[x− γ]+

1− α
, (1)

where [·]+ = max{·, 0}.
Similar to qα(x), the superquantile can be used to assess

the tail of the distribution. The superquantile, though, is far
easier to handle in optimization contexts. It also has the im-
portant property that it considers the magnitude of events
within the tail. Therefore, in situations where a distribution
may have a heavy tail, the superquantile accounts for mag-
nitudes of low-probability large-loss tail events while the
quantile does not account for this information.

bPOE is the inverse of the superquantile. In other words,
bPOE calculates one minus the probability level at which the
superquantile equals a specified threshold z. It is calculated
by the formula

p̄z(x) = min
a≥0

E[a(x− z) + 1]+ = min
γ<z

E[x− γ]+

z − γ
,

where [·]+ = max{·, 0}. In addition, we have the following
formula which will be important for our case. Assuming that
p̄z(x) = 1− α, we have that

p̄z(x) =
E[x− qα(x)]

+

q̄α(x)− qα(x)
.

Roughly speaking, bPOE calculates the proportion of worst
case outcomes which average to z.

As it relates to POE, bPOE can be viewed as an opti-
mal convex approximation. More specifically, among law-
invariant functions of x, p̄z(x) is the minimal (tightest)
quasi-convex upper bound of P (x > z) = E[I(x > z)].

These ideas, though, have not been limited to risk man-
agement and finance. Machine Learning has also been im-
pacted by this theory. For example, new support vector clas-
sifiers have been generated with superquantile and bPOE
concepts (Takeda and Sugiyama 2008; Norton, Mafusa-
lov, and Uryasev 2017; Gotoh and Uryasev 2017) and se-
quential decision problems are being formulated with risk
in mind (Galichet, Sebag, and Teytaud 2013; Chow and
Ghavamzadeh 2014).
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4 Generalized Batch Normalization
In this paper, we define Generalized Batch Normalization
(GBN) to be identical to conventional BN but with stan-
dard deviation replaced by a more general deviation mea-
sure D(x) and the mean replaced by a corresponding statis-
tic S(x). In other words, we have the transformation,

x̂j ←
xj − S(xj)

D(xj)
.

Here, each choice of D is naturally paired with some S,
which we discuss in the following section. In Section 5, we
implement a suite of these new measures and test them on
the MNIST, CIFAR-10, CIFAR-100, and SVHN datasets,
showing that convergence can be accelerated, and sometime
accuracy improved, by use of different deviation measures
and statistics.

4.1 Generalized Deviation Measures and
Statistics

In (Rockafellar, Uryasev, and Zabarankin 2006), the con-
cept of a generalized deviation measure was introduced to
broaden the statistical view of deviation beyond the single
case of standard deviation, specifically for use in quantita-
tive risk analysis. These deviation measures follow a very
general set of axioms which we will not delve into here.
However, some examples can be found in Table 1, and they
can be understood intuitively as follows: Deviation measures
quantify the non-constancy of a random variable. As seen in
Table 1, standard deviation is only one of many possibilities,
such as the asymmetric deviation measures RSD and SQD
with α > 0. These measures of deviation look at the vari-
ation only in the right-tail of the distribution of x. It’s easy
to see how this type of asymmetric measure would be of in-
terest in finance, where it may be important to analyze the
variation of only the largest losses within the right-tail.

The theory of generalized deviation measures is also com-
plemented by the recently introduced theory of the Risk
Quadrangle. Utilizing functional relationships that are be-
yond the scope of this paper, (Rockafellar and Uryasev
2013) shows that measures of deviation are intimately re-
lated to similar measures of risk, regret, and error. Further-
more, associated with any measure of deviation is a unique
statistic. In short, however, without getting into too much
detail, one can think of the statistic as a type of ‘center.’ In
Table 1, we see how this intuition plays out, with the corre-
sponding statistics listed in the right column. For SD, MAD,
and RSD, we see that S(x) is simply the expectation. How-
ever, for SQD with α = .5, we see that S(x) = q.5(x) the
median, certainly a different notion of the ‘center.’ Further-
more, we see that for RBD, the statistic is the center of the
range. However, for SQD it is important to notice that we can
achieve very different statistics by moving α, which gives us
different quantiles.

4.2 Choosing D or S: General Intuition
Now that we are given more options for deviation measures
and statistics, we can begin to think about the benefits and
drawbacks of each within the neural network architecture

and the GBN transformation. Utilizing standard deviation
seems like an intuitive choice. However, this depends heav-
ily on the shape of the (empirical) distribution of x. If the
distribution is relatively symmetric, then standard deviation
will be indicative of the overall scale and the mean will be
indicative of the ‘center’. Similarly, this may hold true if the
distribution does not have heavy tails or outliers on one side
or the other. However, if the distribution of x has e.g. heavy
tails, is highly asymmetric, has outliers, or is multimodal;
then the mean may be a poor choice for the ‘center’ and
the deviation of values to the right of the mean may be dra-
matically different than the deviation of values to the left of
the mean. In this case, a quantile may be a more appropri-
ate notion of the ‘center.’ Choosing, for example, the median
instead of the mean assures that we are truly ‘centering’ the
data, with half of the points on the ‘left’ and half on the
‘right.’

Even if the distribution of x is not asymmetric or heavy
tailed, the choice of center is particularly important if nor-
malization is followed by the ReLU activation. Specifically,
the choice of center controls the sparsity of activation’s pro-
duced by the ReLU, since any elements left-of-center will
be sent to zero. ReLU induced sparsity has been hypothe-
sized as critical to its success (Glorot, Bordes, and Bengio
2011). In this case, the quantile is a natural choice for cen-
ter that provides precise control over such sparsity. If the
normalization centers w.r.t. the quantile at α, exactly α% of
activation’s across the batch will have zero value.

Driving our intuition from the beginning was the idea that
the non-linearity, deviation measure, and statistic should be
chosen in tandem. As mentioned in Section 2, the pairing
of ReLU with typical BN (i.e. standard deviation and mean
normalization) does not seem appropriate given the fact that
standard deviation is symmetric while ReLU is asymmetric.
Thus, in light of Section 2, we find that asymmetric deviation
measures are more appropriate such as RSD or SQD for any
α > 0. In Section 5, we see this intuition confirmed, with
RSD and SQD outperforming SD in terms of convergence
rate and, often times, test error. Although not explored in our
experiments, this intuition applies to any asymmetric non-
linearity such as the Leaky ReLU (Maas, Hannun, and Ng
2013), Exponential Linear Unit (Clevert, Unterthiner, and
Hochreiter 2015), or any other arising from the ReLU family
(e.g. (He et al. 2015)).

4.3 An Optimal Choice
Beyond this simple intuition, we can utilize connections to
risk theory to provide evidence that the ReLU should be used
in tandem with an asymmetric deviation measure. Specifi-
cally, we show that the use of SQD and RSD followed by
ReLU is approximately equivalent to a probabilistic trans-
formation which mimics an optimal quasiconvex approxi-
mation to the 0− 1 (indicator) loss function.

Intuitively, ReLU’s should be paired with an asymmet-
ric measure of deviation, with candidates including RSD
and SQD. However, a natural choice arises when looking
at the similarities between bPOE and the combination of
the GBN transformation and ReLU non-linearity. Consider
a GBN transformation followed by a ReLU non-linearity.
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Deviation Measure D(x) Statistic S(x)
Standard Deviation (SD)

√
E[(x− E[x])2] E[x]

Mean Absolute Deviation (MAD) E[|x− E[x]|] E[x]
Right-Semi-Deviation (RSD) E[x− E[x]]+ E[x]
Superquantile Deviations (SQD) for α ∈ (0, 1) q̄α(x− E[x]) qα(x)
Range-Based Deviation (RBD) supx− inf x 1

2 (supx+ inf x)
Worst-Case Deviation (WCD) supx− E[x] supx

Table 1: Examples of deviation measures and their corresponding statistics.[x]+ = max{0, x}

Now, for the GBN transformation let us choose SQD devi-
ation measure D(xj) = q̄α(xj − µj) where α is chosen so
that qα(xj) = µj , meaning that we are choosing the prob-
ability level on which the mean sits. This gives us the fol-
lowing transformation, where the superscript denotes the ith
sample from a batch:

x̂
(i)
j ←

[
x
(i)
j − qα(xj)

q̄α(xj)− qα(xj)

]+

.

This can be re-written as,

x̂
(i)
j ←

[
x
(i)
j − µj

E[xj − µj |xj > µj ]

]+

.

One will immediately notice that this is almost identical to
a conventional BN transformation followed by ReLU with
the only difference being that we are dividing by a one-
sided semi-deviation rather than the two-sided standard de-
viation. One will notice, however, the following connection
to bPOE:

p̄z(xj) = E

[
xj − qα(xj)

q̄α(xj)− qα(xj)

]+
for threshold z = q̄α(xj). Thus, we see that the combina-
tion of GBN and ReLU yields a transformation based upon
bPOE. If also divided by sample size N , each individual

sample x
(i)
j will yield output 1

N

[
x
(i)
j −qα(xj)

q̄α(xj)−qα(xj)

]+
∈ (0, 1)

with the sum,

1

N

[
x
(i)
j − qα(xj)

q̄α(xj)− qα(xj)

]+

= ¯̂pz(xj) ,

where ¯̂pz(xj) simply denotes the empirical bPOE calculated
from a sample. This means that the overall output distribu-
tion will consist of values in the range [0, 1] with non-zero
items being those that are in the bPOE-tail of the empirical
distribution of xj .

Thus, by combining GBN and ReLU we are effectively
performing a probabilistic transformation, with the transfor-
mation mimicking the optimal quasiconvex approximation
to the 0− 1 loss.

5 Experimental Evaluation
Overall, the first goal of our experiments is to demonstrate
the obvious: All other things being equal, different normal-
ization methods (i.e. different choices for deviation measure

and statistic) lead to different network properties. We then
explore the specifics of these changes. First, we show that
convergence rate and stability of NN training via SGD can
often be improved by utilizing alternative deviation mea-
sures. Improvement is measured relative to conventional
BN, which uses mean and standard deviation as its statistic
and deviation measure. Overall, we find that SQD, MAD,
and RSD often lead to increased convergence rates and,
sometimes, increased stability in terms of smoothly decreas-
ing test error during SGD. Second, we see that these alterna-
tive choices often lead to testing error that is nearly as good
as, or better, than that achieved by standard BN.

For all experiments, GBN is implemented in exactly the
same manner as standard BN, only with mean and variance
replaced by generalized S and D within the batch normal-
ization transformation. This includes appropriate inclusion
of the chosen deviation measure and statistic within the gra-
dient calculation as well as the batch-based estimation of
D(xj) and S(xj) during training and population-based es-
timation for inference. This also includes the additional lin-
ear transformation which typically follows the normaliza-
tion step, before application of non-linearity. See (Ioffe and
Szegedy 2015) for specifics.

We performed experiments on MNIST, CIFAR-10,
CIFAR-100, and SVHN datasets. We compared the perfor-
mance of GBN transformations with 7 different deviation
measures and statistics, including the conventional mean
and standard deviation. As indicated in Table 1, we utilized
standard SD along with MAD, RSD, RBD, and SQD with
α = .25, .5, and .75 which we denote by SQD1, SQD2,
and SQD3 respectively. We omit WCD since centering w.r.t.
supx is obviously a poor choice when paired with ReLU.
Subtracting supx would make all points less than or equal
to zero and the ReLU would send them all then to zero, pro-
ducing an untrainable network without activations.

5.1 MNIST
GBN transformation over time To illustrate the effect
that an asymmetric deviation measure and statistic have on
the distribution of network activations when paired with
ReLU, we observe the predictive error rate and the distri-
bution over one feature before and after the GBN transfor-
mation. We conduct classification on MNIST (LeCun et al.
1998) with neural network architecture LeNet with the input
size of 28x28 and two convolutional layers with kernel size
5, and number of filters 20 and 50 respectively. The batch
normalization is added after each of the convolutional layers
and then followed by a ReLU non-linearity. The comparison
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(a) Before the standard BN (b) After the standard BN

(c) Before the GBN with SQD1 (d) After the GBN with SQD1

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8
SQD1
SD

(e) Error rate on held out test set

Figure 1: (a, b) The distribution evolution of standard BN on
a selected feature along with the iteration steps. (c, d) The
same figure over the GBD with SQD1 deviation measure.
(e) The error rate of two settings on the held out test set.
GBN with SQD1 help the network converges faster and also
achieves better error rate that standard BN.

is performed on standard BN and GBN with deviation mea-
sure SQD1, which has statistic equal to the α = .25 quan-
tile. We choose to observe one feature pixel of the second
convolutional layer’s feature map. Figure 1(a,b) shows this
feature’s distribution density before and after standard BN.
Figure 1(c,d) shows the same feature’s distribution density
before and after applying GBN with SQD1. All the distribu-
tions before batch normalization exhibit significant change
in terms of mean and variance. Both of the two normaliza-
tion approaches removed the covariate shift effect and out-
put a stabilized distribution over time. And after GBN with
the deviation measure of SQD1, most of the values appear
larger than 0 compared to the symmetric distribution of stan-
dard BN having the mean of 0. As one would expect, cen-
tering w.r.t. the α = .25 quantile forces α% of the activa-
tions to be less than zero before applying the non-linearity.
In Figure 1(e), this consistent asymmetric distribution of the
GBN’s output helps it achieve faster convergence rate and
better error rate compared to the standard BN.

GBN performance on MNIST To compare the perfor-
mance of various deviation measures and statistics on
MNIST, we use the same experimental setting of neural net-
work above with vanilla SGD as the optimizer, with learn-
ing rate equal to .01, and batch size equal to 1000. Figure 2
shows the error rate of 6 different choices for deviation mea-
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Figure 2: Performance comparison of the MNIST classifica-
tion with LeNet. X-axis: Number of epochs; Y-axis: Train-
ing loss/Test error rate.

sure and statistic. All settings are evaluated on the training
loss and test error rate. We see that GBN with SQD1, RSD,
SQD2, and MAD all perform better than standard BN in
terms of converge rate and test error rate. And GBN with
deviation measures of SQD1 and RSD converge remarkably
faster than others.

5.2 CIFAR-10, CIFAR-100, and SVHN
We compare the performance and convergence rate on the
CIFAR-10, CIFAR-100, and Street View House Numbers
(SVHN) datasets. The CIFAR-10 and CIFAR-100 dataset
consist of 60,000 tiny color images (32x32) with 10 and 100
classes respectively for image recognition task (Krizhevsky
and Hinton 2009). The SVHN Dataset consists of Google
Street View images with 10 house digit classes (Netzer et al.
2011).

We trained LeNet networks on the CIFAR-10 (200
epochs) and the SVHN (200 epochs) datasets. The setting
is set similar to that used with MNIST dataset: SGD with
learning rate 0.1 and 0.01, batch size 1024. Figure 3 and Fig-
ure 4 illustrate the performance comparison of six different
choices of deviation measure on the CIFAR-10 and SVHN
datasets respectively.

We also train a ResNet architecture with 20 layers (ex-
actly the same architecture and settings used in (He et al.
2015)) for 200 epochs on the CIFAR-10 and CIFAR-100
dataset. We trained the ResNet with and without data aug-
mentation (i.e., random crop and random horizontal flip).
For the CIFAR-10 dataset, we observe that with data aug-
mentation, the proposed methods achieve the similar per-
formance as standard BN. However, if we do not augment
data (less symmetric distribution), both RSD and MAD per-
form better than standard BN (Figure 5). For the CIFAR-100
dataset, even with data augmentation, RSD and MAN out-
perform standard BN (Figure 6).

Most methods (MAD, SQD1, SQD2, and RSD) converge
faster than standard SD. The error rates of these methods are
similar, but with slight improvement achieved by the pro-
posed alternative deviation measures. Table 2 contains more
detailed results, including the best error rate for a few ex-
tra settings. However, faster converging alternatives achieve
similar error rates. Here, we see that not only can faster con-
vergence be achieved with alternative deviation measures,
but increased accuracy as well.
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Dataset Architecture Learning Rate Batch Size SD MAD RSD RBD SQD1 SQD2 SQD3
CIFAR-10 LeNet 0.1 256 30.73 29.70 30.04 30.38 33.29 29.53 29.07
CIFAR-10 LeNet 0.1 1024 29.31 28.58 28.85 31.05 33.33 28.63 28.03
CIFAR-10 LeNet 0.1 2048 28.96 29.32 27.51 36.28 39.94 28.79 29.18
CIFAR-10 LeNet 0.01 256 29.69 29.03 29.90 33.32 29.99 27.96 27.36
CIFAR-10 LeNet 0.01 1024 28.29 28.37 29.44 47.51 30.62 29.33 30.97
CIFAR-10 LeNet 0.01 2048 31.64 30.53 30.81 57.08 32.45 31.35 37.26
CIFAR-10 ResNet20 0.1 1024 29.67 29.33 30.55 20.49 23.64 24.86 24.99
CIFAR-10 ResNet20 0.01 1024 34.57 33.59 35.52 47.17 32.20 32.02 47.89

SVHN LeNet 0.1 1024 10.68 10.17 10.91 12.17 80.41 10.60 10.08
SVHN LeNet 0.1 2048 10.46 10.18 10.57 13.58 22.03 10.68 9.75
SVHN LeNet 0.01 1024 10.83 10.46 10.30 20.62 11.62 10.87 11.29
SVHN LeNet 0.01 2048 12.60 11.74 11.22 43.04 11.99 11.83 12.80

Table 2: Performance Comparison of Test Error Rate (%) on the CIFAR-10 and SVHN datasets.
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Figure 3: Performance comparison on the CIFAR-10 dataset
using LeNet. X-axis: Number of epochs; Y-axis: Training
loss/Test error rate (%).
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Figure 4: Performance comparison on the SVHN dataset. X-
axis: Number of epochs; Y-axis: Training loss/Test error rate
(%).

5.3 Discussion
When choosing S andD, it is important to consider their es-
timation properties. For example, it is well-known that em-
pirical estimates of the mean are more stable, and converge
more quickly to the true mean, than empirical estimates of
the superquantile. This also applies to SD and one-sided de-
viation measures like RSD. Clearly, since only one side of
the distribution is involved, more samples will be needed for
accurate, low variance estimation of asymmetric (one-sided)
deviation measures or statistics. Compared with small batch
size, we observe that training with large batch size improves
the convergence rate. However, this small-batch degradation
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Figure 5: Performance comparison on the CIFAR-10 dataset
using ResNet20. X-axis: Number of epochs; Y-axis: Train-
ing loss/Test error rate (%).

0 25 50 75 100 125 150 175 200

2

4

6

8

10
SD
RSD
SQD1
RBD
SQD3
MAD

(a) Training Loss

0 25 50 75 100 125 150 175 200

40

50

60

70

80

90

100 SD
RSD
SQD1
RBD
SQD3
MAD

(b) Test Error Rate

Figure 6: Performance comparison on the CIFAR-100
dataset using ResNet20. X-axis: Number of epochs; Y-axis:
Training loss/Test error rate (%).

is not a new consideration and has been observed with stan-
dard BN. (Ioffe 2017) discusses this issue and shows that
there do exist techniques to help alleviate this affect for BN.
Although we leave this discussion to future work, it would
seem straightforward to apply the same techniques to GBN
in general.

6 Conclusion
In this paper, we have proposed a generalized variant of
batch normalization which can be used to improve the con-
vergence rate and, often, the error rate compared to vanilla
batch normalization. As a generalization, we show that there
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are many other natural choices for the scaling and center-
ing factors which we pose as general deviation measures
and statistics. We also show that conventional normalization
is not optimal if followed by the ReLU non-linearity and
we provide alternatives that are justified both intuitively and
theoretically, showing also that these new methods increase
convergence speed experimentally.
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