
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Regular Boardgames

Jakub Kowalski, Maksymilian Mika, Jakub Sutowicz, Marek Szykuła
Institute of Computer Science, University of Wrocław, Wrocław, Poland

jko@cs.uni.wroc.pl, mika.maksymilian@gmail.com, jakubsutowicz@gmail.com, msz@cs.uni.wroc.pl

Abstract

We propose a new General Game Playing (GGP) language
called Regular Boardgames (RBG), which is based on the
theory of regular languages. The objective of RBG is to join
key properties as expressiveness, efficiency, and naturalness
of the description in one GGP formalism, compensating cer-
tain drawbacks of the existing languages. This often makes
RBG more suitable for various research and practical de-
velopments in GGP. While dedicated mostly for describing
board games, RBG is universal for the class of all finite deter-
ministic turn-based games with perfect information. We es-
tablish foundations of RBG, and analyze it theoretically and
experimentally, focusing on the efficiency of reasoning. Reg-
ular Boardgames is the first GGP language that allows ef-
ficient encoding and playing games with complex rules and
with large branching factor (e.g. amazons, arimaa, large chess
variants, go, international checkers, paper soccer).

Introduction
Since 1959, when the famous General Problem Solver was
proposed (Newell, Shaw, and Simon 1959), a new challenge
for the Artificial Intelligence has been established. As an al-
ternative for the research trying to solve particular human-
created games, like chess (Campbell, Hoane, and Hsu 2002),
checkers (Schaeffer et al. 2007), or go (Silver et al. 2016),
this new challenge aims for creating less specialized algo-
rithms able to operate on a large domain of problems.

In this trend, the General Game Playing (GGP) do-
main was introduced in (Pitrat 1968). Using games as a
testbed, GGP tries to construct universal algorithms that
perform well in various situations and environments. Pell’s
METAGAMER program from 1992 was able to play and
also to generate a variety of simplistic chess-like games (Pell
1992). The modern era of GGP started in 2005, with the an-
nual International General Game Playing Competition (IG-
GPC) announced by Stanford’s Logic Group (Genesereth,
Love, and Pell 2005). Since that time, GGP became a well-
established domain of AI research consisting of multiple do-
mains and competitions (Świechowski et al. 2015).

The key of every GGP approach is a well-defined domain
of games (problems) that programs are trying to play (solve).
Such a class of games should be properly formalized, so the

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

language used to encode game rules will be sound. For prac-
tical reasons, the language should be both easy to process
by a computer and human-readable, so conciseness and sim-
plicity are in demand. Finally, the defined domain has to be
broad enough to provide an appropriate level of challenge.
Existing languages. METAGAME is based on Dawson’s
Theory of Movements (Dickins 1971) that formalizes types
of piece behavior in chess-like games. It contains a large
number of predefined keywords describing allowed piece
rules, including exceptional ones like promotions or pos-
sessing captured pieces. Despite that, METAGAME’s ex-
pressiveness remains very limited and it cannot encode some
core mechanics of chess or shogi (e.g. castling, en passant).

Ludi system was designed solely for the sake of procedu-
ral generation of games from a restricted domain (Browne
and Maire 2010). The underlying GGP language is based on
a broad set of predefined concepts, which makes designing a
potential player a laborious task. It describes in a high-level
manner a rich family of combinatorial games (which, how-
ever, does not include e.g. the complete rules of chess).

Simplified Boardgames (Björnsson 2012) describes
chess-like games using regular expressions to encode move-
ment of pieces. It overcomes some of the METAGAME’s
limitations and does not require extended vocabulary. How-
ever, as allowed expressions are simplistic and applied only
to one piece at once, it cannot express any non-standard
behavior (e.g. promotions or piece addition). Actually, the
rules of almost all popular board games (except break-
through) cannot be fully expressed in this language.

GDL (Love et al. 2006), used in IGGPC, can describe any
turn-based, finite, and deterministic n-player game with per-
fect information. It is a high-level, strictly declarative lan-
guage, based on Datalog (Abiteboul, Hull, and Vianu 1995).
GDL does not provide any predefined functions. Every pred-
icate encoding the game structure like a board or a card deck,
or even arithmetic operators, must be defined explicitly from
scratch. This makes game descriptions long and hard to un-
derstand, and their processing is computationally very ex-
pensive, as it requires logic resolution. In fact, many games
expressible in GDL could not be played by any program at
a decent level or would be unplayable at all due to computa-
tional cost. For instance, features like longest ride in check-
ers or capturing in go are difficult and inefficient to imple-
ment. Thus, in such cases, only simplified rules are encoded.

1699



The generality of GDL provides a very high level of
challenge and led to many important contributions (Gene-
sereth and Thielscher 2014), especially in Monte Carlo
Tree Search enhancements (Finnsson and Björnsson 2008;
2010). However, the downside of domain difficulty is a fairly
low number of existing GGP players and competition en-
tries. GDL extensions, e.g. GDL-II (Schiffel and Thielscher
2014), which removes some of the language restrictions, are
even more difficult to handle.

TOSS (Kaiser and Stafiniak 2011), proposed as a GDL al-
ternative (it is possible to translate GDL into TOSS), is based
on first-order logic with counting. The language structure al-
lows easier analysis of games, as it is possible to generate
heuristics from existential goal formulas.

On the other hand, VGDL (Schaul 2013) used in currently
very popular General Video Game AI Competition (Perez et
al. 2016), is strictly focused on representing real-time Atari-
like video games (similarly as the Arcade Learning Envi-
ronment (Bellemare et al. 2013)). Instead of game descrip-
tions, the competition framework provides a forward model
that allows, and simultaneously forces, simulation-based ap-
proaches to play the game. By limiting knowledge-based ap-
proaches, which can learn how to play the game by analyz-
ing its rules, the competition in some sense contradicts the
idea of general game playing as stated by Stanford’s GGP.
Our contribution. The existing languages are designed
for different purposes and come with different shortcom-
ings concerning key issues as expressiveness, efficiency, and
structural description. We introduce Regular Boardgames
(RBG), a new GGP language, which presents an original
view on formalizing game rules, employing both new ideas
and the best ones from the other languages. Its main goal is
to allow effective computation of complex games, while at
the same time being universal and allowing concise and easy
to process game descriptions that intuitively correspond to
the game structure. The base concept is a use of regular lan-
guages to describe legal sequences of actions that players
can apply to the game state. While descriptions are intuitive,
RBG requires non-trivial formal basis to be well defined.

In this work, we formally introduce the language and pro-
vide its theoretical foundations. Our experiments concern
the efficiency of reasoning. The basic version presented here
describes perfect information deterministic games, but it can
be extended by randomness and imperfect information, and
is a basis for developing even more efficient languages. The
full version of this paper is available at (Kowalski et al.
2018a).

Regular Boardgames Language
An abstract RBG description is a 7-tuple G = (Players,
Board ,Pieces,Variables,Bounds, InitialState,Rules). It
is a complete formalization of a board game.
Players. Players is a finite non-empty set of players. For in-
stance, for chess we would have Players = {white, black}.
Board. Board is a representation of the board without
pieces, i.e., the squares together with their neighborhood.
It is a static environment, which does not change during
a play. Formally, Board is a 3-tuple (Vertices,Dirs, δ),

which describes a finite directed multigraph with labeled
edges. Vertices is its set of vertices, which represent the
usual squares or other elementary parts of the board where
pieces can be put. The edges of the graph have assigned la-
bels from a finite set Dirs , whose elements are called direc-
tions. For every v ∈ Vertices , we have at most one outgoing
edge from v with the same label. Hence, the edges are de-
fined by a function δ : Vertices ×Dirs → Vertices ∪ {⊥},
where δ(v, d) is the ending vertex of the unique outgoing
edge from v labeled by d, or δ(v, d) = ⊥ when such an
edge does not exist. The uniqueness of the outgoing edges
with the same label will allow walking on the graph Board
by following some directions.

The usual 8 × 8 chessboard can be defined as follows:
The set Vertices = {(i, j) | 1 ≤ i, j ≤ 8} represents the
64 squares, Dirs = {left , right , up, down} is the set of the
four directions, and the edges are given by δ((i, j), left) =
(i− 1, j) for i ≥ 2, δ((1, j), left) = ⊥, and analogously for
the other three directions.
Pieces. Pieces is a finite non-empty set whose elements are
called pieces; they represent the usual concept of the ele-
ments that may be placed on the board. We assume that
Pieces ∩ Players = ∅. During a play, there is a single
piece assigned to every vertex. Hence, in most game de-
scriptions, there is a special piece in Pieces denoting an
empty square. For instance, for chess we can have Pieces =
{empty ,wPawn, bPawn,wKnight , bKnight , . . .}.
Variables. There are many board games where game states
are not restricted to the board configuration. Counters, stor-
ages, or flags are commonly found; even chess requires ab-
stract flags for allowing castling or en passant. To express
such features naturally and without loss of efficiency, we
add the general concept of variables. Each variable has a
bounded domain and stores an integer from 0 to its maxi-
mum. The second purpose of having variables is to provide
the outcome of a play in a universal way, by allowing to
assign an arbitrary score for every player. Hence, for every
player, we have a variable whose value stores the score of
this player. Formally, Variables is a finite set of variables.
We assume Variables ∩ Pieces = ∅ and, since each player
has a variable storing his score, Players ⊆ Variables .
Bounds. Bounds : Variables → N is a function specifying
the maximum values separately for every variable.
Game state. A semi-state is a 4-tuple S = (player , P, V, s),
where player ∈ Players is the current player,
P : Vertices → Pieces is a complete assignment speci-
fying the pieces that are currently on the board’s vertices,
V : Variables → N is a complete assignment specifying
the current values of the variables, and s ∈ Vertices is the
current position. In every semi-state, we will have V (v) ∈
{0, . . . ,Bounds(v)} for all v ∈ Variables .

A game state is a semi-state S with additionally the rules
index r ∈ N. It indicates which part of the rules applies cur-
rently (explained later). We denote the game state with semi-
state S and rules index r by Sr; it contains all information
that may change during a play.
Initial state. InitialState is an arbitrary semi-state. A play
begins from the game state InitialState0.
Actions. An action is an elementary operation that can be

1700



applied to a semi-state S. It modifies S and/or verifies some
condition. Depending on S , an action may be valid or not.
The resulted semi-state after applying an action a is denoted
by S·a, which is a copy of S additionally modified as defined
for the particular action a. The actions are:

1. Shift: denoted by dir ∈ Dirs . This action changes the
position s to δ(s, dir). It is valid only if δ(s, dir) 6= ⊥.

2. On: denoted by a subset X ⊆ Pieces . This action
checks if P (s) ∈ X , i.e., if the piece on the current po-
sition is from X . It does not modify the semi-state and is
valid only if this condition holds. Note that the empty set ∅
is never valid and Pieces is always valid.

3. Off: denoted by [x] for x ∈ Pieces . This action sets
P (s) = x, i.e., the next semi-state S · a contains piece x on
the current square (the previous piece is replaced).

4. Assignment: denoted by [$ v = e] for v ∈ Variables
and e being an arithmetic expression. An arithmetic expres-
sion is either a single value r ∈ Z ∪ Variables ∪ Pieces , or
(recursively) e1⊕e2, where e1, e2 are arithmetic expressions
and ⊕ ∈ {+,−, ·, /} is a binary arithmetic operation (addi-
tion, subtraction, multiplication, and integer division). The
expression e is evaluated as follows. An r ∈ Variables takes
its value V (r) in the current semi-state, and r ∈ Pieces is
evaluated to the number of pieces r currently on the board,
i.e. the cardinality |{s ∈ Squares | P (s) = r}|. Opera-
tors +,−, ·, /} are evaluated naturally. If the value of e is in
{0, . . . ,Bounds(v)} then it is assigned to v and the action
is valid; otherwise the action is not valid.

5. Comparison: denoted by {$ e1⊗e2}, where e1, e2 are
arithmetic expressions defined as above, and ⊗ ∈ {<,≤,=
, 6=, >,≥} is a relational operator on integers. This action is
valid only if after evaluating the expressions, the relation is
true. It does not modify the semi-state.

6. Switch:→p, where p ∈ Players . This action changes
the current player player to p. It is always valid.

Offs, assignments, and switches are called modifiers.
Given a semi-state S, one can perform a sequence of ac-

tions a1 . . . ak, which are applied successively to S, and re-
sults in S · a1 · . . . · ak. The sequence is valid for S if all the
actions are valid when they are applied.
Example 1. One of the moves of a white knight in
chess can be realized by the following sequence:
{wKnight}[empty ] left up up {empty}[wKnight ]→black .
The first action (on) checks if there is a white knight on the
current square. Then this square becomes empty (off), and
we change the current square (shift) three times to the final
destination. The destination square is checked for emptiness
(on), and a white knight is placed on it (off). Finally, the
black player takes the control (switch).
Rules. If action is valid, it only means that it is applicable.
An action is legal for a game state Sr if it is a valid action
for S that also conform the rules, which depends on r.

To give a formal definition of legal actions, we will use
a bit of the theory of regular languages. We deal with reg-
ular expressions whose input symbols are actions and with
the three usual operators: concatenation · (the dot is omitted

usually), sum +, and the Kleene star ∗. We do not need the
empty word nor the empty language symbols. Given a reg-
ular expression E, by L(E) we denote the regular language
defined by E. This language specifies allowed sequences of
actions that can be applied to a game state.
Example 2. The regular expression specifying all white
knight’s moves in chess can look as follows:
(left∗+ right∗) (up∗+ down∗) {wKnight} [empty ]
(left left down + left left up+ left down down + . . .)
{empty , bPawn, bKnight , . . .} [wKnight ]→black .

The words from the language begin with an arbitrary number
of either left or right shift actions, which are followed by an
arbitrary number of up or down actions. By choosing a suit-
able number of repetitions, we can obtain the semi-state with
an arbitrarily selected current square. The next two actions
check if the current square contains a white knight and make
it empty. Then, we can select any of the eight knight’s direc-
tion patterns. After that, the current square is checked for if
it is empty or contains a black piece to capture. Finally, a
white knight is placed and the black player takes the control.

Regular expressions define sets of allowed sequences of
actions applied from the beginning of the game, but we want
to define them also when we have already applied a part of
such a sequence. For this, we have the rules position in a
game state, which indicates the current position in a regular
expression. Let pref(L) be the language of all prefixes of
the words from a language L. When the rules index is 0 –
the beginning of the expression – we will have the property
that every allowed sequence is from pref(L(E)).

However, after applying some actions, our rules index will
be changed so that the next available actions will form a
continuation: concatenated to the previously applied actions,
will be a prefix of a word from the language.

By Ê we denote the regular expression where all actions
are subsequently numbered starting from 1; thus they be-
come pairs ai of an action a and an index i. For exam-
ple, if E = up left + [x] (up [y])∗ then Ê = up1 left2 +
[x]3 (up4 [y]5)

∗. Indexing is used to distinguish the action
occurrences in a regular expression when the same action
appears multiple times because our rules index must point
a unique position. Hence we will be applying indexed ac-
tions to game states, similarly as non-indexed actions are
applied to semi-states. Suppose that we have already ap-
plied a word u; then we can apply any word v such that
uv ∈ pref(L(Ê)). The set of words w such that uw ∈ L(Ê)

is commonly known as a derivative of L(Ê) by u (Brzo-
zowski 1964); it is also a regular language. Because the in-
dexed actions in Ê occur uniquely, this set is completely de-
termined by the last indexed action ai in u = u′ai:
Proposition 1. For every indexed action ai, the non-empty
derivatives of L(Ê) by u′ai are the same for every word u′.

We denote this derivative by L(Ê)i, and when u is empty,
we define L(Ê)0 = L(Ê). Following our previous exam-
ple, if Ê = up1 left2 + [x]3 (up4 [y]5)

∗, then L(Ê)4 is the
language defined by [y]5 (up4 [y]5)

∗.
Finally, we define: for a game state Sr under a regular

expression E, an indexed action ai is legal if a is valid for

1701



semi-state S and ai ∈ pref(L(Ê)r). The resulted game state
is (S · a)i, i.e., consists of the resulted semi-state and the
index i of the last applied action. This definition is extended
naturally to sequences of indexed actions.

Rules is a regular expression as above. A move sequence
is an action sequence with exactly one switch, which appears
at the end. A play of the game starts from InitialState0.
The current player applies to the current game state a legal
move sequence under Rules , which defines his move. The
play ends when there is no legal move sequence.

We finally add two more advanced elements.
Patterns. There is another kind of action that can check
more sophisticated conditions.

7. Pattern: denoted by either {?M} or {!M}, where M
is a regular expression without switches. {?M} is valid for
a semi-state S if and only if there exists a legal sequence
of actions under M for S0 (equivalently if there is a valid
sequence of actions for S from L(M)). {!M} is the negated
version. These actions do not modify the semi-state.
Patterns can be nested; thus M can contain their own pat-
terns and so on.
Example 3. Using a pattern, we can easily implement the
special chess rule that every legal move has to leave the king
not checked, by ending the white’s sequences with:(
! (standard black actions) {$wKing = 0}

)
→black .

Suppose that “(standard black moves)” stands for all pos-
sible black’s action sequences (move a pawn, move a knight,
etc.) respectively. Then (! . . .) checks if the black player can
capture the white king. If so, the pattern is not valid, hence
a sequence of the white player containing it is illegal.
Keeper. There is a special player called keeper, who per-
forms actions that do not belong to regular players but to the
game manager, e.g. maintaining procedures, scores assign-
ment, ending the play. The keeper can have many legal se-
quences of actions, but we will admit only the proper game
descriptions, where his choice does not matter: the resulted
game state must be the same regardless of the choice. For ex-
ample, when the keeper removes a group of pieces, he may
do this in any order as long as the final game state does not
depend on it. Hence, the game manager can use an arbitrary
strategy for the keeper, e.g. apply the first found sequence.

The keeper is an important part of the language for ef-
ficiency reasons since he can be used to split players’ ac-
tion into selection and application parts. Hence, the keeper
can significantly improve the efficiency of computing all le-
gal moves (e.g. in MCTS), because player sequences can be
much shorter and we do not have to compute all their appli-
cations when we do not need to know all next game states.
For example, in reversi, the player during his turn just puts a
pawn on the board, which completely determines his move,
and after that, the keeper swaps the color of the opponent’s
pawns; then the next player takes control.

Formally, we assume that there is the unique object
Keeper ∈ Players representing the keeper, and a double ar-
row→→ denotes a switch to the keeper.
Example 4. A typical keeper usage is to check winning con-
dition and end the play.
→→

(
{?white wins} [$white=100] [$ black=0]→→∅

1 # p l a y e r s = w h i t e ( 100 ) , b l a c k ( 100 ) / / 0 - 100 s c o r e s
2 # p i e c e s = e , w , b
3 # v a r i a b l e s = / / no a d d i t i o n a l v a r i a b l e s
4 #board = r e c t a n g l e ( up , down , l e f t , r i g h t ,
5 [ b , b , b , b , b , b , b , b ]
6 [ b , b , b , b , b , b , b , b ]
7 [ e , e , e , e , e , e , e , e ]
8 [ e , e , e , e , e , e , e , e ]
9 [ e , e , e , e , e , e , e , e ]

10 [ e , e , e , e , e , e , e , e ]
11 [w , w , w , w , w , w , w , w]
12 [w , w , w , w , w , w , w , w] )
13 #anySquare = ( ( up* + down* ) ( l e f t * + r i g h t * ) )
14 #turn ( me ; myPawn ; opp ; oppPawn ; f o r w a r d ) =
15 anySquare {myPawn} / / s e l e c t any own pawn
16 [ e ] f o r w a r d ({e} + ( l e f t + r i g h t ) {e , oppPawn} )
17 –>> [ myPawn ] / / k e e p e r c o n t i n u e s
18 [ $ me=100 ] [ $ opp=0 ] / / win i f t h e p l a y ends
19 ( { ! f o r w a r d} –>> {}

/ / i f t h e l a s t l i n e t h e n end
20 + {? f o r w a r d} –>opp ) / / o t h e r w i s e c o n t i n u e
21 # r u l e s = –>w h i t e (
22 t u r n ( w h i t e ; w; b l a c k ; b ; up )
23 t u r n ( b l a c k ; b ; w h i t e ; w; down )
24 ) * / / r e p e a t moves a l t e r n a t i n g l y

Figure 1: The complete RBG description of breakthrough.

+ {! white wins}→black
)
.

This fragment is to be executed right after a white’s move.
The first option checks if white has already won the game
(subexpression “white wins”), sets the scores, and contin-
ues with the keeper that has the empty on action ∅, which is
always illegal thus ends the play. Note that the fragment is
deterministic, i.e., the keeper has exactly one legal sequence.

RBG Language
The simplest version of the RBG language is low-level RBG
(LL-RBG), which directly represents an abstract RBG de-
scription in the text. It is to be given as an input for pro-
grams (agents, game manager), thus it is simple and easy
to process. An extension of LL-RBG is the high-level RBG
(HL-RBG), which allows more concise and human-readable
descriptions. HL-RBG can be separately converted to LL-
RBG. This split joins human readability with machine pro-
cessability and allows to further develop more extensions
in HL-RBG without the need to modify implementations.
The technical syntax specification is given in (Kowalski et
al. 2018a), and here we give an overall view.
LL-RBG. In LL-RBG there are a few definitions of the form
#name = definition. We have #board specifying Board together
with the initial pieces assignment, #players and #variables speci-
fying the sets Players and Variables together with Bounds ,
#pieces specifying Pieces , and #rules defining the regular ex-
pression Rules . InitialState is the semi state where all vari-
ables are set to 0, the current player is the keeper, and the
current position and the pieces assignment are defined by
#board. The simplification of defining InitialState is not a re-

1702



striction since we can set any state at the beginning of Rules .
HL-RBG. In high-level RBG we add a simple substitution
C-like macro system. A macro can have a fixed number of
parameters and is defined by #name(p1;...;pk) = definition (with k
parameters) or #name = definition (without parameters). After the
definition, every further occurrence of name is replaced with
definition, where additionally every parameter occurrence in
definition is replaced with the values provided. There are a
few other HL-RBG extensions over LL-RBG, such as prede-
fined functions to generate typical boards (e.g. rectangular,
hexagonal, cubical, etc.).

A complete example of game breakthrough in HL-RBG is
given in Fig. 1. For instance, the corresponding expression
in LL-RBG obtained by unrolling turn macro in line 22 is:

( ( up*+down* ) ( l e f t *+ r i g h t * ) ) {w} [ e ] up
({e} + ( l e f t + r i g h t ) {e , b} ) –>>
[w] [ $ w h i t e =100 ] [ $ b l a c k =0 ] ({ ! up} –>> {} + {? up} –>opp )}

Note that the placement of the moved pawn is postponed to
line 18. The keeper performs this action instead of the player
since the move is already defined in line 17.

Proper RBG Description and Transition Model
We state two conditions that a proper RBG description must
satisfy. They will ensure that the game is finite, well defined,
and also allow reasoning algorithms to be more efficient.

In the first condition, we bound the number of modifiers
that can be applied during a play, including entering patterns.
This implies that we cannot reach the same game state after
applying a modifier in the meantime and that every play will
eventually finish. For example, the simplest forbidden con-
struction is [x]∗; however, (left [x])∗ is allowed if the num-
ber of valid repetitions of left shift action is bounded.

Let straightness of a word w be the number of modifier
occurrences in w. The straightness of a language L is the
maximum of the straightnesses of all w ∈ L; if the maxi-
mum does not exist, the straightness of L is infinite. Note
that the valid sequences for InitialState from L(Rules) de-
scribe all possible plays. However, to take into account pat-
terns, we need to introduce one more definition. For a semi-
state S and a language L of non-indexed action sequences,
we define the application language, which consists of all
valid sequences that we could apply when starting from S.
This includes all valid sequences from pref(L) and also the
valid sequences when we are allowed to “go inside” a pat-
tern. Formally, app(S,L) is defined recursively by:

app(S,L) = {u is a valid word for S from pref(L)}
∪ {uv | u is a valid word for S from pref(L),

u{?M} or u{!M} ∈ pref(L), v ∈ app(S · u,L(M))}.

Therefore, in app(S,L) there are valid sequences of the
form u0u1 . . . uh, where a ui is a valid prefix of a word from
a pattern language nested at depth i (and from L for i = 0).
We require that for the initial state and the rules, the straight-
ness of the application language is finite.

The second condition states that the keeper strategy does
not matter as his actions always eventually yield the same
game state when another player takes control. Formally, a

game state Sr is reachable if there exists a legal sequence
for InitialState0 under Rules that yields Sr. For a game
state, by its keeper completion we mean a game state af-
ter applying any legal move sequence as long as the current
player is the keeper and there exists such a sequence. Ap-
plying a move sequence can be repeated several times, and
if the current player is not the keeper, the keeper completion
is the very same game state. In Fig. 1, the keeper in lines 19–
20 always has exactly one choice, depending on whether
we can perform forward shift. However, the construction
→→(left + right)→p could possibly yield two keeper com-
pletions differing by the position, and then it is incorrect.

Finally, an RBG description is proper if:

1. The straightness of app(InitialState,L(Rules)) is finite.

2. For every reachable game state, there is exactly one
keeper completion.

Now we define precisely the game tree represented by
an RBG description, which is important, e.g. for drawing
moves at random during a Monte-Carlo search.

A move is a sequence of pairs (i, v), where i is the in-
dex of a modifier in ˆRules and s ∈ Vertices is the posi-
tion where the modifier is applied; the last indexed modifier
must be a switch, and there cannot be other switches. Every
legal move sequence defines a legal move in a natural way.
The number of legal move sequences can be infinite (e.g.
by (up + down)∗), but due to condition (1), there is a fi-
nite number of moves. For example, in Fig. 1, for the keeper
completion of the initial state, the white player has exactly
22 moves (containing the indices of [e] and→→).

The game tree in RBG is constructed as follows. The
root is the keeper completion of InitialState . For every le-
gal move of a node (game state), we have an edge to the
keeper completion of the game state obtained by applying
that move. The leaves are the nodes without a legal move,
where the outcome is the player scores stored in their vari-
ables. Note that in this way we do not count keeper game
states (unless they are leaves), which are only auxiliary.

Expressiveness and Complexity
Universality. RBG can describe every finite determinis-
tic game with perfect information (without simultaneous
moves, which are a form of imperfect information). To show
this formally, we can follow the definition of extensive-form
games (Rasmusen 2007), which has been used to show that
GDL and GDL-II are universal for their classes (Thielscher
2011), and prove that in RBG we can define an arbitrary fi-
nite game tree. It is enough to encode a game tree in Rules ,
where for every tree node we create a switch.

Theorem 2. RBG is universal for the class of finite deter-
ministic games with full information.

Straight RBG. We define subclasses of RBG that exhibit
better computational properties. By condition (1), the num-
ber of modifiers during every play is bounded, thus it is also
bounded during a single move, i.e., between switches. The
latter is our measure of the complexity of a description.

1703



Table 1: Complexity of basic decision problems.
Subclass Legal move? (Problem 1) Winning strategy? (Problem 2) Proper description? (Problem 3)
Unrestricted RBG PSPACE-complete EXPTIME-complete PSPACE-complete
k-straight RBG (k ≥ 1) O((|R| · |S|)k+1) EXPTIME-complete PSPACE-complete
GDL EXPTIME-complete 2-EXPTIME-complete EXPSPACE-complete

Given a language L, let mseq(L) be the set of all factors
(substrings) of the words in L that do not contain a switch.
We say that an RBG description is k-straight if the straight-
ness of mseq(app(InitialState,L(Rules))) is at most k.
When there are no patterns, the straightness is just the max-
imum length of a legal move (not counting the final switch).
For example, the description in Fig. 1 is 3-straight but not
2-straight, because there are three modifiers in lines 17–18
and no more than three modifiers can be applied between
switches. Straightness is difficult to compute exactly, but in
many cases a reasonable upper bound can be provided. In
a wide subclass of descriptions, the straightness is bounded
solely by the rules, independently on the game states, and
the bound can be easily computed.
Complexity. We consider three representative decision
problems, which are important for agents and game man-
agers and characterize the complexity of RBG. The in-
put is an abstract RBG description, but for more pre-
cise results, we split it into the generalized rules R =
(Players,Pieces,Variables,Rules) and a game instance
S = (Board ,Bounds, InitialState). By the lengths |R| and
|S| we understand the lengths of their straightforward text
representations similar to those in LL-RBG.
Problem 1. Does the first player have a legal move?
Problem 2. Does the first player have a winning strategy?
Problem 3. Is the game description proper?
Problem 1 is a very basic problem that every player and
game manager must solve to play the game. Problem 2 is the
classical problem of solving the game; we can assume that
winning means getting a larger score than the other players.
Problem 3 is important for game designers and is related to
exploring the whole game tree.

A basic reasoning algorithm for RBG is based on a DFS
on game states; its careful analysis leads to the following:
Theorem 3. For a given k-straight description (k ≥ 1), the
set of all legal moves can be found in O((|R| · |S|)k) time
and in O(k(|R| · |S|)) space.
Our results are summarized in Tab. 1. For our polynomial re-
sult, we made a simplifying assumption that arithmetic op-
erations on variables bounded by Bounds can be performed
in constant time, which is a practical assumption unless vari-
ables are exploited. The model where both R and S are
given is the common situation occurring in GGP, where a
player sees the game for the first time and must be able to
play it shortly after that. In another scenario, a player knows
the rules before and can e.g. spend some time on analyzing
and preprocessing, possibly even with human aid; then the
R can be considered fixed, and only S is given. In this sec-
ond case, all our hardness results hold as well.

In conclusion, the complexity of RBG seems to be a good
choice, especially for board games. Efficient (polynomial)
embeddings are possible because in most popular games
these problems can be solved polynomially in the size of the
representation (i.e., board). However, there are exceptions,
e.g. international checkers, where deciding if a given move
is legal is coNP-complete, thus polynomial complexity of
this task would be insufficient for a concise GGP language.

For a comparison, in Tab. 1 we included GDL (Saffidine
2014) (bounded GDL, the version that is used in practice).

Experiments
We have implemented a computational package for
RBG (Kowalski et al. 2018b): a parser (of HL-RBG and
LL-RBG), an interpreter that performs reasoning, a com-
piler that generates a reasoner with a uniform interface, and
a game manager with example simple players.

To test the efficiency of reasoning, we used two common
settings: computing the whole game tree to a fixed depth
(Perft), and choosing a legal move randomly and uniformly
(flat Monte-Carlo). They represent both extremal cases: MC
is dominated by computing legal moves, as for each visited
node we compute all of them, and in Perft the number of
computed nodes (plus one) is equal to the number of applied
moves. The results of our experiments are shown in Table 2.

For a comparison with GDL, we used the fastest avail-
able game implementations (when existing), which we took
from (Schreiber 2016). We tested on the same hardware one
of the most efficient GDL reasoner based on a propositional
network (propnet) from (Sironi and Winands 2017), together
with a traditional Prolog reasoner (Schiffel 2015). The idea
behind propnets is to express the dynamic of the game in a
logic circuit, which can be processed using fast low-level in-
structions. Although in general, the propositional networks
are the fastest known reasoning algorithm for GDL, ini-
tializing a propnet can be heavily time and memory con-
suming, which is troublesome for large games (Schiffel and
Björnsson 2014). For this reason, games exceeding some
complexity level are unplayable via the propnet approach.

Summarizing, for simple games both RBG and high-
speed GDL reasoners can achieve similar performance (e.g.
connect four), but a larger size or more difficult rules (e.g.
amazons, hex, reversi) usually start to make a significant
difference. An exception of chess is mostly caused by the
different logic in implementation: RBG uses a general rule
to test a check, while the GDL version is optimized with
an extensive case analysis (cf. chess without check game).
Also, our RBG reasoners are less memory consuming and
require smaller initialized time comparing to the propnet.
Finally, RBG allows playing even more complex games and

1704



Table 2: The average number of nodes per second for a selection of classical games. The tests were done on a single core of
Intel(R) Core(TM) i7-4790 @3.60GHz with 16GB RAM, spending at least ∼10 min. per test.

Game Straightness
RBG Compiler RBG Interpreter GDL Propnet GDL Prolog

Perft Flat MC Perft Flat MC Perft Flat MC Flat MC
Amazons 3 7,778,364 43,263 6,604,412 23,371 78,680 242 13
Arimaa ≤ 52 403,30* 18 21,940* 2 not available
Breakthrough 3 9,538,135 1,285,315 5,113,725 371,164 589,111 175,888 4,691
Chess 6 2,215,307 148,248 315,120 16,708 396,367 14,467 120
Chess (without check) 6 6,556,244 422,992 2,083,811 87,281 685,546 23,625 2,702
Connect four 2 8,892,356 3,993,392 2,085,062 1,024,000 3,376,991 985,643 10,606
Double chess 5 1,159,707 22,095 152,144 2,249 not available
English checkers 14 3,589,042 1,312,813 813,439 233,519 698,829† 225,143† 6,359†
Go 2 557,691 66,803 137,499 17,565 not available
Hex (9x9) 3 10,289,555 1,048,963 5,962,637 444,243 366,410 35,682 1,263
International checkers ≤ 44 924,288 208,749 118,227 26,754 not available
Reversi 7 2,505,279 526,580 263,945 93,601 172,756 22,994 0

* Arimaa’s perft was computed starting from a fixed chess-like position to skip the initial setup.
† English checkers in GDL splits capturing rides, allowing only a single capture per turn (no more accurate version is available).

using more accurate rules, which seems to be impossible in
GDL at all. Particularly difficult games for GDL reasoning
are those with many moves and moves consisting of multiple
steps. For example, games like go and international check-
ers, concisely expressible and efficient in RBG, were never
encoded in GDL, as they are very difficult to implement and
a possible implementation would be likely unplayable.

Finally, we mention the most complex game we have im-
plemented: arimaa – a game designed to be difficult for com-
puters (it took 12 years to beat the arimaa AI challenge (Wu
2015)). The small result for MC comes as a consequence of
that computing a single node is equivalent to compute all
legal moves for it, which are roughly 200, 000 (as flat MC
does not merge the moves that yield the same game state).
In fact, together with the perft result, this shows that arimaa
is quite playable, especially if one will be computing selec-
tively a subset of the moves, which is easy in RBG since it
defines intermediate game states.

Conclusions
Being more suitable for particular purposes, RBG fills cer-
tain gaps in the existing GGP languages and opens new pos-
sibilities. In particular, RBG allows what was not possible
with GDL so far. Applications lie in all areas of GGP like de-
veloping universal agents, learning, procedural content gen-
eration, and game analysis. Also, developing translations be-
tween RBG and GDL is an interesting direction for future
research. RBG has the following advantages:
Efficient reasoning. Essentially, all game playing approaches
(min-max, Monte-Carlo search, reinforcement learning,
evolutionary algorithms, etc.) require fast reasoning engines.

RBG allows very effective reasoning and is a step toward
achieving a high-level universal language with similar per-
formance to game-specific reasoners. In fact, the natural rea-
soning algorithm for RBG is a generalization of methods

commonly used in game-specific reasoners (e.g. modifying
game states with elementary actions and backtracking).
Complex games. RBG allows effective processing com-
plex games and games with potentially large branching fac-
tor (e.g. amazons, arimaa, non-simplified checkers, double
chess, go). In the existing languages, reasoning for such
games is extremely expensive and, in many cases, the game
cannot be played at all (except for languages like Ludi or
Metagame, which contain dedicated features to define e.g.
longest ride in checkers, but cannot encode them through
universal elements). Except for amazons and checkers, the
above-mentioned games were even not encoded in any GGP
language. Therefore, RBG makes very complex games ac-
cessible for GGP through a universal approach.
Board games structure. It is not surprising that a more spe-
cialized language makes developing knowledge-based ap-
proaches easier. RBG allows defining the game structure in
a natural way, especially for board games. It has the concept
of the board and pieces, and the rules form a graph (finite au-
tomaton). These are great hints for analyzing the game and
an easy source of heuristics, which also make it convenient
for procedural content generation.
Natural representations. Elementary RBG actions that play-
ers can perform on the game state directly correspond to
the usual understanding of game rules by non-experts, e.g.
removing and adding pieces, moving on the board to an-
other square. We can also encode in a natural way advanced
rules that usually are difficult to formalize (e.g. chess en pas-
sant, capturing ride in checkers). In our experience, encod-
ing rules in RBG is easier than in GDL, especially for com-
plex games, and the descriptions are considerably shorter.
Generalized games. Encoding any game in RBG directly
separates the generalized rules from a particular instance
(board). In the existing languages, such a separation requires
a special effort and is possible only to some extent (e.g. in

1705



GDL, if the rules are fixed and only the initial game state is
the input, the number of possible legal moves depends poly-
nomially on the input size, thus the full rules of checkers
cannot be encoded in this way, since we can have an ex-
ponential number of moves). Hence, RBG can open a new
investigation setting in GGP, where a player can learn the
rules in advance and then must play on any given instance.

Acknowledgements
This work was supported by the National Science Centre,
Poland under project number 2017/25/B/ST6/01920.

References
Abiteboul, S.; Hull, R.; and Vianu, V., eds. 1995. Foun-
dations of Databases: The Logical Level. Addison-Wesley
Longman Publishing Co., Inc., 1st edition.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research 47:253–279.
Björnsson, Y. 2012. Learning Rules of Simplified
Boardgames by Observing. In ECAI, volume 242 of FAIA.
IOS Press. 175–180.
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1):1–16.
Brzozowski, J. A. 1964. Derivatives of regular expressions.
J. ACM 11(4):481–494.
Campbell, M.; Hoane, A. J.; and Hsu, F. 2002. Deep Blue.
Artificial intelligence 134(1):57–83.
Dickins, A. 1971. A Guide to Fairy Chess. Dover.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
Approach to General Game Playing. In AAAI Conference
on Artificial Intelligence.
Finnsson, H., and Björnsson, Y. 2010. Learning Simulation
Control in General Game Playing Agents. In AAAI Confer-
ence on Artificial Intelligence, 954–959.
Genesereth, M., and Thielscher, M. 2014. General Game
Playing. Morgan & Claypool.
Genesereth, M.; Love, N.; and Pell, B. 2005. General Game
Playing: Overview of the AAAI Competition. AI Magazine
26:62–72.
Kaiser, L., and Stafiniak, L. 2011. First-Order Logic with
Counting for General Game Playing. In AAAI Conference
on Artificial Intelligence.
Kowalski, J.; Mika, M.; Sutowicz, J.; and Szykuła, M.
2018a. Regular Boardgames. arXiv:1706.02462 [cs.AI].
Kowalski, J.; Mika, M.; Sutowicz, J.; and Szykuła, M.
2018b. Regular Boardgames – source code. https://github.
com/marekesz/rbg1.0/.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General Game Playing: Game Description
Language Specification. Technical report, Stanford Logic
Group.

Newell, A.; Shaw, J. C.; and Simon, H. A. 1959. Report on a
general problem solving program. In IFIP congress, volume
256, 64.
Pell, B. 1992. METAGAME in Symmetric Chess-Like
Games. In Heuristic Programming in Artificial Intelligence:
The Third Computer Olympiad.
Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; and Lu-
cas, S. M. 2016. General Video Game AI: Competition,
Challenges and Opportunities. In AAAI Conference on Arti-
ficial Intelligence, 4335–4337.
Pitrat, J. 1968. Realization of a general game-playing pro-
gram. In IFIP Congress, 1570–1574.
Rasmusen, E. 2007. Games and Information: An Introduc-
tion to Game Theory. Blackwell, 4th ed.
Saffidine, A. 2014. The Game Description Language Is
Turing Complete. IEEE Transactions on Computational In-
telligence and AI in Games 6(4):320–324.
Schaeffer, J.; Burch, N.; Björnsson, Y.; Kishimoto, A.;
Müller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Checkers
is solved. Science 317(5844):1518–1522.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In IEEE Conference on
Computational Intelligence and Games, 1–8.
Schiffel, S., and Björnsson, Y. 2014. Efficiency of GDL Rea-
soners. IEEE Transactions on Computational Intelligence
and AI in Games 6(4):343–354.
Schiffel, S., and Thielscher, M. 2014. Representing and
Reasoning About the Rules of General Games With Imper-
fect Information. Journal of Artificial Intelligence Research
49:171–206.
Schiffel, S. 2015. General Game Playing. http://www.
general-game-playing.de/downloads.html.
Schreiber, S. 2016. Games – base repository. http://games.
ggp.org/base/.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529:484–503.
Sironi, C. F., and Winands, M. H. M. 2017. Optimiz-
ing Propositional Networks. In Computer Games. Springer.
133–151.
Świechowski, M.; Park, H.; Mańdziuk, J.; and Kim, K.
2015. Recent Advances in General Game Playing. The Sci-
entific World Journal 2015.
Thielscher, M. 2011. The General Game Playing Descrip-
tion Language is Universal. In International Joint Confer-
ence on Artificial Intelligence, 1107–1112.
Wu, D. 2015. Designing a winning arimaa program. ICGA
Journal 38(1):19–40.

1706


