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Abstract

Automatic story generation is a challenging task, which in-
volves automatically comprising a sequence of sentences or
words with a consistent topic and novel wordings. Although
many attention has been paid to this task and prompting
progress has been made, there still exists a noticeable gap be-
tween generated stories and those created by humans, espe-
cially in terms of thematic consistency and wording novelty.
To fill this gap, we propose a cache-augmented conditional
variational autoencoder for story generation, where the cache
module allows to improve thematic consistency while the
conditional variational autoencoder part is used for generat-
ing stories with less common words by using a continuous la-
tent variable. For combing the cache module and the autoen-
coder part, we further introduce an effective gate mechanism.
Experimental results on ROCStories and WritingPrompts in-
dicate that our proposed model can generate stories with con-
sistency and wording novelty, and outperforms existing mod-
els under both automatic metrics and human evaluations.

Introduction
Story writing is the new frontier in the research of text gen-
eration, and it involves various challenges that exist in the
current neural generation systems (Wiseman, Shieber, and
Rush 2017). Conventionally, case-based reasoning (Gervás
et al. 2005; Swanson and Gordon 2012), agent-based sim-
ulation (Brenner 2010), planning (Porteous, Cavazza, and
Charles 2010), and plot graphs (Li et al. 2013) are stud-
ied for this task. Recently, deep neural networks are em-
ployed for open story generation without being limited by
prior engineered domain knowledge (Martin et al. 2017;
May and Knight 2018). Despite the encouraging progress,
the thematic consistency and creativity of generated stories
are still not satisfactory, which requires modeling long-range
dependencies across the whole story and improving wording
novelty respectively (Fan, Lewis, and Dauphin 2018).

For story composition, thematic consistency and wording
novelty are to some extent mutually exclusive: consistent
stories may have restricted word choice, while diversified
wordings could lead to the risk of inconsistency. For one
thing, all sentences of a well composed story are supposed to
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be connected with believable logic and thematic consistency.
Previous story generation methods mainly focus on learning
mid-level representations, e.g., event sequences (Martin et
al. 2017) and prompts (keywords) (Fan, Lewis, and Dauphin
2018) to plan a story, where each sentence is generated with
a specific event or keyword. Such a strategy is risky since the
mid-level representations are generated in a single pass with-
out considering the previous generated sentences. For an-
other, stories generally contain vivid wordings, i.e. wording
novelty. However, most of previous works have not formu-
lated such an aspect and thus cannot guarantee the wording
novelty of stories. These story generation models with recur-
rent neural networks (RNNs) are prone to generate common
words with high occurrence frequencies (Zhang et al. 2017).
The issue stems from the fact that RNN is inclined to learn
local word co-occurrences, which fails to capture global se-
mantic information such as topic (Bowman et al. 2015).

In fact, the above requirements, i.e. consistency and word-
ing novelty, are not specific to the task of story generation,
but also essential aspects for any text generation task out-
putting a long passage. In the paradigm of deep learning
based text generation, one initial attempt for tackling these
issues is to combine RNN with autoencoder for sequence
learning, where the latent representation learned by the au-
toencoder has been proven appealing in modeling global at-
tributes such as syntactic, thematic and discourse informa-
tion (Li, Luong, and Jurafsky 2015). Later on, researchers
enhanced autoencoder with the advantage of variational in-
ference (Kingma and Welling 2014), also known as VAE,
which can generate not only fluent but also novel word se-
quences (Bowman et al. 2015). To extend VAE for broader
scenarios, conditional variational autoencoders (CVAE) are
proposed to supervise the generation process of VAE con-
ditioned on certain attributes while retaining the merits of
VAE. It is confirmed in dialogue generation (Serban et al.
2017; Shen et al. 2017; Zhao, Zhao, and Eskenazi 2017)
and poem composition (Yang et al. 2017) that CVAE can
generate better responses and poems with creative words.
Apart from autoencoders, researchers also explored enhanc-
ing deep neural models with memory unit, which is proven
effective for modeling long-range dependencies, as demon-
strated in machine translation (Feng et al. 2017; Meng et al.
2018) and poem generation (Zhang et al. 2017).

In this paper, we tackle the challenges of story genera-
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tion with a novel model, which simultaneously takes care
of the thematic consistency and wording novelty. The fun-
damental module of our model is a generative model, i.e.
CVAE, for improving wording novelty. As the introduced la-
tent variable could bring in sentence-level diversity and even
inferior consistency along with the accumulation of gener-
ated sentences, we propose to augment CVAE with a private
cache 1 for capturing long-range dependencies so as to keep
the consistency for the whole story. Moreover, we present
an effective gate mechanism for integrating the cache with
the CVAE part. To evaluate our proposed model, we con-
duct experiments on two challenging datasets, ROCStories
and WritingPrompts (Fan, Lewis, and Dauphin 2018). Ex-
perimental results confirm that through generating sentences
with the latent variable and the cache mechanism, the pro-
posed model can generate stories with better consistency and
wording. Quantitative and qualitative studies show that our
model yields substantial improvement over state-of-the-art.

Preliminaries
VAE and CVAE
VAE comprises an encoder and a decoder, corresponding to
the encoding process, i.e., mapping the input x to a latent
variable z (x 7→ z), and the decoding process, i.e., recon-
structing x from the latent variable z (z 7→ x). More con-
cretely, the encoding process takes x as input to compute a
posterior distribution qθ(z |x), interpreted as the probability
distribution of generating z conditioned on x. In a similar
fashion, the decoding process is to compute a distribution
pθ(x | z), representing the probability distribution of recon-
structing x conditioned on z, where z has a pre-specified
prior distribution pθ(z), i.e. standard Gaussian distribution.
θ denotes the parameters of both encoder and decoder. How-
ever, in the practical situation, the integral of the marginal
likelihood pθ(x) is intractable (Kingma and Welling 2014),
especially for large-scale datasets. Alternatively, the true
posterior qθ(z |x) is substituted by its variational approxi-
mation qφ(z |x) to model the encoding process, where φ is
the parameters of q.

For training a VAE model, the objective is to maximize
the log-likelihood of reconstructing the input x, denoted as
log pθ(x). To facilitate learning, maximizing log pθ(x) is
converted to push up its variational lower bound:

L(θ, φ;x) =− KL(qφ(z|x) ‖ pθ(z))
+Eqφ(z|x)[log pθ(x|z)]

(1)

as a result of which the original objective log pθ(x) is op-
timized. Herein KL(·) represents the KL-divergence term,
which serves as the regularization for encouraging the ap-
proximated posterior qφ(z|x) to approach the prior pθ(z),
i.e. a standard Gaussian distribution. E[·] is the term of re-
construction loss, reflecting how well the decoder performs.

CVAE, as an extension of VAE, supervises the genera-
tion process under an extra condition c. Correspondingly,

1We use the word “cache” here since it only stores the context
information of the current story and will be cleared once the story
is done.
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Figure 1: The overall diagram of our proposed cache
augmented conditional variational auto-encoder generation
model. For generating each story, the private cache of the
current story will be updated and loaded to generate each
sentence until the story end is generated.

the objective of CVAE has the term of log pθ(x|z, c) (in-
stead of log pθ(x|z)), which represents the reconstruction
log-likelihood of x conditioned on c. In consistent with
VAE, the log-likelihood objective log pθ(x|c) is maximized
through pushing up its variational lower bound:

L(θ, φ;x, c) =− KL(qφ(z|x, c) ‖ pθ(z|c))
+Eqφ(z|x,c)[log pθ(x|z, c)]

(2)

where each item corresponds to Equation 1 except the intro-
duced condition c, e.g., qφ(z|x, c) and pθ(z|c) represent the
approximated conditional posterior and the conditional prior
respectively, log pθ(x|z, c) represents the probability of re-
constructing x conditioned on both z and c.

Problem Formulation
We follow the same generation setting as in the previous
story generation works (May and Knight 2018; Fan, Lewis,
and Dauphin 2018), where each story is generated in a
sentence-by-sentence fashion. As illustrated in Figure 1, the
previous generated sentence serves as the input to generate
the next one. We introduce some necessary notations as be-
low to describe the generation process.
• INPUT. A title T = (w1, w2, . . . , wN ) is first given by a

user as the input of the entire model to create a story, where
wi represents the i-th word and N is the length of the given
title. Notice that the first sentence is outputted by only con-
sidering the title T . Thereafter, the model takes the previous
generated sentence and the cache information to generate the
next one until the story end is written.
• OUTPUT. A story {S1, . . . , Sn} will be created incre-

mentally as the output of the whole model, where there are
totally n sentences in a generated story. Each sentence is
represented as Si = (wi,1, wi,2, . . . , wi,l), where wi,j ∈ V
is the j-th word in the i-th sentence, and l is the length of Si.

The Model
As shown in Figure 1, our cache-augmented CVAE model
(CVAE-Cache) consists of two module, CVAE and a cache,
where details are presented in the following parts.

The Cache Module
The cache module is introduced in our model for addressing
the issue of thematic inconsistency for long passage gener-
ation. To achieve this goal, it provides to the decoder the
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Figure 2: The detailed architecture of our CVAE-Cache model. The entire model is used during the training stage, while only
the part with solid lines is used during the test stage, such as the prior network. Operations colored in yellow comprise the gate
mechanism to integrate information from the cache and the decoder of CVAE.

cached information about the generated portion of the pas-
sage, thus the decoder’s output, i.e. the current sentence in
generation, is tied to the preceding portion of the story. Dif-
ferent from the global memory-like cache used in machine
translation (Tu et al. 2017), our cache mechanism is a private
one that works only for the current story in generation. The
workflow of our private cache mechanism is as follows.
• Cache Building. In the sentence-by-sentence story gen-

eration fashion, the sentence in generation Si is immediately
tied up with the previous generated sentence Si−1, while
simultaneously demanding to summarize gist or logic line
from the generation history as the hint for keeping thematic
consistency. Thus, the generation history can be decom-
posed into two different parts, i.e. Si−1 and the rest S1...i−2.
As information in Si is well learned by the encoder of the
CVAE which is presented in the next subsection, the cache
is implemented for summarizing gist from S1...i−2. In doing
so, the cache storesM words of S1...i−2 right before the sen-
tence Si−1 as the generation history, which can be denoted
as Cache = (m1,m2, . . . ,mk, . . . ,mM ), where the cache
size is M and mk represents a word.
• Cache Reading. To read the words stored in Cache,

we use a bidirectional GRU network (Chung et al. 2014) to
encode these words into their corresponding hidden states,
written as (hcache1 ,hcache2 , . . . ,hcachek , . . . ,hcacheM ), where
hcachek is the vector representation of word mk in Cache.
Note that this GRU network is different from the one of
the encoder in CVAE part because the information in cache
needs to be compressed to extract thematic hint. After ac-
quiring the hidden state representations, we use an attention
mechanism (Bahdanau, Cho, and Bengio 2014) to compute
a weighted sum over all words in the cache at each decoding
step, denoted as Ccachet .
• Cache Updating. The cache is devised as a queue-like

structure for updating: it basically follows a first-in-first-out
updating mechanism, but a batched enQueue operation is
adopted. Concretely, after the sentence Si is generated from
Si−1, the cache enQueues the entire Si−1 at the front, with
the cache size kept as M , the deQueue operation happens at

the rear for extra cached words.

Cache-Augmented CVAE
We exploit a CVAE as the key portion of our CVAE-Cache
model to improve wording novelty. The reason is that RNNs
generate sentences via breaking the word sequence into
next-step predictions, which can be easily trapped into lo-
cal statistics, resulting in frequently occurred phrases or sen-
tence segments (Li et al. 2015). CVAE explicitly introduces
a latent variable for learning representation of global fea-
tures like the topic or high-level syntactic properties to force
RNNs to escape from the “local statistics” trap. As a result,
sentences generated by CVAE consists of novel and mean-
ingful words rather than common ones, which is also ob-
served in sentence generation (Bowman et al. 2015).

The CVAE-Cache model consists of an encoder and a
decoder. As demonstrated in Figure 2, we use a bidirec-
tional GRU network (Chung et al. 2014) as the encoder
to encode each sentence with shared parameters. At each
step, the sentence Si−1 and its subsequent sentence Si are
mapped into the concatenated backward and forward vec-
tors hi−1 = [

−→
h i−1,

←−
h i−1] and hi = [

−→
h i,
←−
h i], respec-

tively. Notice that hi−1 corresponds to the condition c while
hi corresponds to x in Equation 2. In consistent with pre-
vious works (Kingma and Welling 2014; Zhao, Zhao, and
Eskenazi 2017), we hypothesize that the approximated vari-
ational posterior follows an isotropic multivariate Gaussian
distribution N , i.e. qφ(z|x, c) = N (µ, σ2I), where I repre-
sents the diagonal covariance. Thus modeling qφ(z|x, c) is
converted to learn µ and σ. Herein we parameterize µ and σ
with the following neural network:[

µ
log
(
σ2
)] = Wr

[
x
c

]
+ br (3)

which is presented as the recognition network in Fig-
ure 2. Wr and br are trainable parameters. Similarly, the
prior follows another multivariate Gaussian distribution, i.e.
pθ(z|c) = N (µ

′
, σ

′2I). Its key parameters µ
′

and σ
′

are
learned by a single-layer fully-connected neural network
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(the prior network in Figure 2) with tanh(·) as the activa-
tion function: [

µ′

log
(
σ′2
)] = MLPp (c) (4)

The decoder is a one-layer GRU network to output the
sentence in generation, which is shown in the right hand of
Figure 2. Take the sentence Si as an example, the initial state
of the decoder is calculated as:

si,0 =Wd[z, c] + bd (5)

where Wd is a trainable matrix for dimension transforma-
tion. At each decoding step, the decoder takes Inpt as in-
put to compute its cell state si,t and outputs a word wi,t,
where Inpt is the combination of the previous decoding
state si,t−1, the cache information Ccachet , and the context
information Ct in the previous generated sentence Si−1.
Specifically, the cached information is loaded by an atten-
tion mechanism, formulated by:

Ccachet =

M∑
k=1

αt,kh
cache
k (6)

where αt,k is the alignment probability (Bahdanau, Cho,
and Bengio 2014) calculated by measuring the similarity be-
tween the current decoding state and each word’s hidden
state representation in the cache. Similarly, the context in-
formation Ct corresponds to summing up information in the
previous sentence Si−1 through using an attention function
identical with the cache reading.

To facilitate the combination of cache information and the
decoder, we use a gate mechanism (Tu et al. 2017), which
can be formulated as follows:

λt = σ(Usi,t−1 + V Ct +WCcachet ) (7)

where si,t−1 is the decoding state of CVAE decoder at time
t− 1 and Ct is the encoder context. The final input for com-
puting the decoding state used in generation step t is com-
puted as:

Inpt = (1− λt)⊗ Ccachet + λt ⊗ Ct (8)

For our cache-augmented CVAE model, the optimization
objective is thus to maximize:

L(θ, φ; c, x, Cache) = −KL(qφ(z | x, c) ‖ Pθ(z | c))
+Eqφ(z|c,x)[log p(x | z, c, Cache)]

(9)

where the KL terms is same as the one described in Equa-
tion 2, while the decoding process is to generate x from z, c,
and the Cache conditioned on the variational posterior qφ.
Note that θ and φ mentioned in the preliminary of VAE are
not explicitly corresponded to a specific neural network de-
scribed in this part, where φ refers to the parameters of the
variational posterior, i.e φ =Wr, br, while θ corresponds to
all the remaining parameters.

Experiment
Datasets
To train our story generation model, we conduct experiments
on two corpora: the ROCStories 2, and the WritingPrompts
dataset. Specifically, the ROCStories corpus is created for
the shared-task of Story Cloze Test (Cai, Tu, and Gimpel
2017; Schwartz et al. 2017), which is man-made with the
following two merits: 1) It captures a rich set of common-
sense relations of daily life; 2) It is a high-quality collection
of life stories which can be used to learn story understanding
and generation. As presented in Figure 3, each story of ROC-
Stories comprises of exactly five sentences. The Writing-
Prompts dataset is collected from Reddit’s WritingPrompts
forum 3 for hierarchical story generation (Fan, Lewis, and
Dauphin 2018), where each story has some correspond-
ing prompts (i.e.keywords). Stories in WritingPrompts con-
tain 734 words on average, which is substantially longer
than those in ROCStories. Figure 4 shows an example story
and its corresponding prompts, where the average length of
prompts is 28.4.

Morgan and her family lived in Florida. They heard
a hurricane was coming. They decided to evacuate to
a relative’s house. They arrived and learned from the
news that it was a terrible storm. They felt lucky they
had evacuated when they did.

Figure 3: An example of ROCStories dataset. Each story
contains exactly five sentences written by humans.

Prompts:The Mage, the Warrior, and the Priest
A light breeze swept the ground, and carried with it
still the distant scents of dust and time-worn stone.
The Warrior led the way, heaving her mass of armour
and muscle over the uneven terrain. She soon crested
the last of the low embankments, which still bore the
unmistakable fingerprints of haste and fear. She lifted
herself up onto the top the rise, and looked out at the
scene before her. [...]

Figure 4: An example of WritingPrompts dataset (Fan,
Lewis, and Dauphin 2018).

Totally, there are 98,159 stories in ROCStories and
303,358 in WritingPrompts. To preprocess ROCStories, we
first applied NLTK for tokenization, and then we randomly
split the data into 78,527/9,816/9,816 stories for train-
ing/validation/test. For WritingPrompts, we followed (Fan,
Lewis, and Dauphin 2018) for preprocessing: The dataset is
randomly split into 272,600/15,138/15,620 stories as train-
ing/validation/test sets; NLTK is utilized to tokenize these
stories; Words with frequencies from 10 to 1000 will be
loaded in the vocabulary, which results in a vocabulary size
of 19,025 for the prompts and 104,960 for the stories.

2http://www.cs.rochester.edu/nlp/rocstories/
3www.reddit.com/r/WritingPrompts/
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Baselines
In our experiments, we employ several highly related and
strong story generation methods as our baselines.

C-LM, the conditional language model, straightforwardly
utilizes an RNN language model with GRU cells to gener-
ate each word of a story in one pass conditioned on a given
title, where the title is represented by a vector learned from
another RNN language model.

AS2S, the standard scheme of sequence to sequence with
attention (Bahdanau, Cho, and Bengio 2014). We use AS2S
as our baseline since it serves as the benchmark of var-
ious language generation tasks and the recent story gen-
eration approaches are built upon it (Martin et al. 2017;
Jain et al. 2017). This model creates a story incrementally
in a sentence-by-sentence fashion. In details, the n-th sen-
tence will be generated given the (n-1)-th sentence as input.

Cont-AS2S enhances the AS2S model by taking context
information into account, which also creates a story in an
incremental scheme, sentence-by-sentence, conditioned on
the given title. Unlike AS2S, the Cont-AS2S generates the
n-th sentence with all previous n-1 sentences as the input.

Hierarchical, the state-of-the-art story generation model
on WritingPrompts (Fan, Lewis, and Dauphin 2018). This
baseline is used to calibrate the performance of our proposed
CVAE-Cache model on the WritingPrompts dataset.

CVAE, the conventional conditional variational autoen-
coder, utilizes the same generation pipeline with the AS2S,
i.e. a whole story is generated by a sentence-by-sentence
fashion with a title as the input. This baseline is used to
investigate the performance of CVAE for story generation
without the cache and gate mechanism.

AS2S-Cache, the combination of AS2S and our proposed
cache, is utilized for studying whether our proposed cache
and gate mechanism can improve the performance of AS2S.

Note that the Hierarchical model is not applicable to
ROCStories dataset because there is no prompts in this
dataset and the length of stories is five sentences. We thus
launch all the baselines mentioned-above, except Hierarchi-
cal, to calibrate the performance of our proposed CVAE-
Cache. As the Hierarchical model is proven to be better than
existing models on the WritingPrompts, we only compare it
with our CVAE-Cache model on this dataset.

Model Settings
We trained our model by adopting the following parameters
and hyperparameters. Both encoder and decoder are formed
by one layer. The hidden states dimension of encoder and
decoder are both set to 500. The word embedding size is
300 and shared across everywhere. The vocabulary size is
comprised of most frequent 30,000 words. The Cache size
is set to {20, 30, 50, 70} for the ROCStories and {50, 100,
200, 300} for the WritingPrompts corpus. The size of the
latent variable z is 300. The prior network consists of 1
hidden layer with dimension of 400 and tanh activation
function. All initial weights are uniformly sampled from
[−0.08, 0.08]. The batch size is set to 80. We use Adam opti-
mizer (Kingma and Ba 2014) with learning rate of 0.001 and
gradient clipping of 5 to train our models in an end-to-end
fashion.

Readability (Rd.) Is the story grammatically formed?
Consistency (Con.) Does the story display a consistent theme?
Wording (Wod.) Does the story narrate with novel words?
Overall (Ovr.) The average score of the above three criteria.

Table 1: Criteria of human evaluation.

Evaluation
It is generally difficult to judge the quality of stories gener-
ated by computers. We put forward to evaluate the experi-
mental results from three different aspects.

Overlap-Based Metric. The BLEU scores (Papineni et
al. 2002) are designed for analyzing the word overlapping
between the ground-truth and generated ones, and employed
by previous works for evaluating generated stories (Martin
et al. 2017; Wang et al. 2018).

Distinct Score. To evaluate the wording of generated sto-
ries, we adapt the distinct score from the dialogue task (Li
et al. 2015) to measure the wording diversity of the stories,
which counts the proportion of distinctive [1,4]-grams in the
generated stories, shown as D-1, D-2, D-3, D-4 in Table 2.
The final distinct scores are normalized to [0,100].

Human Evaluation. There are five well-educated human
evaluators to score each story from three aspects: readabil-
ity, consistency, and wording, as defined in Table 1. Each
aspect is annotated with three score levels: 1, 2, and 3, and
a higher score means a better performance. Totally, 150 ran-
domly selected stories for each model are evaluated in a
blind way. Following the conventional setting (Fan, Lewis,
and Dauphin 2018), the story length is limited to 200 words
for models trained on the WritingPrompts dataset.

Results
The Effect of CVAE
Table 2 presents the result of both automatic and human
evaluations on ROCStories and WritingPrompts, respec-
tively. Table 3 supplements the automatic evaluations of dif-
ferent cache size settings on two datasets. We analyze these
results from the following perspectives.

CVAE part effectively improves wording novelty. As
demonstrated in Table 2 and Table 3, CVAE outperforms all
baselines in terms of distinct score, i.e. a fairly large propor-
tion words of generated stories are distinctive. With the di-
versified wordings, the wording score of human evaluation
also confirms that stories generated by CVAE provide bet-
ter user experience. These results support the intuition that
CVAE can address the issue of common wordings in RNNs
through introducing a variational latent variable.

The latent variable in CVAE module introduces the-
matic departure. Note again that thematic consistency and
wording novelty are to some extent mutually exclusive.
Not surprisingly, CVAE yields a worse thematic consistency
since there is no mechanism in CVAE for keeping thematic
consistency while the latent variable produces more uncer-
tainty than in RNNs, which is supported by the consistency
score in human evaluation.
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Datasets Model Automatic Evaluation Human Evaluation
B-1 B-2 B-3 B-4 D-1 D-2 D-3 D-4 Rd. Con. Wod. Ovr.

ROCStories

AS2S 19.7 5.42 1.91 0.78 0.28 1.46 3.71 6.92 1.28 1.13 1.10 1.17
C-LM 23.5 8.32 3.14 1.12 1.34 10.12 28.0 49.3 2.22 2.19 1.30 1.90
Cont-AS2S 23.6 6.79 1.86 0.58 1.42 12.3 32.0 55.5 2.43 2.19 1.37 1.95
CVAE 25.5 7.55 2.31 0.84 1.75 16.8 49.0 78.7 2.65 1.47 2.05 2.05
AS2S-Cache 25.7 8.54 2.52 1.15 1.48 15.3 39.6 63.6 2.38 2.32 1.48 2.06
CVAE-Cache 27.8 9.52 3.20 1.20 1.61 17.9 52.1 81.6 2.68 2.55 1.61 2.28

WritingPrompts Hierarchical 31.1 6.05 1.56 0.33 0.31 4.33 17.9 40.2 2.24 1.71 1.60 1.85
CVAE-Cache 30.5 5.89 1.84 1.03 1.02 11.4 24.3 59.2 2.11 1.82 2.04 1.99

Table 2: Results of automatic (p<0.01) and human evaluations. B-n represents BLEU scores on [1,4]-grams; D-n corresponds
to the distinct score of n-gram, with n = 1 to 4; Rd., Con., Wod., Ovr. represent readability, consistency, wording, and overall.

The Influence of the Cache
As mentioned previously, the cache module is introduced for
modeling long-distance dependencies in generation history
so as to improve thematic consistency. We conduct the fol-
lowing two groups experiments, i.e. AS2S-Cache VS AS2S
and CVAE-Cache VS CVAE, as ablation study to investigate
how the cache module affect the generated stories. Besides,
we also explore the influence of different cache size. Fol-
lowing observations are concluded from these experiments,
which verifies that the cache module substantially enhances
existing models in thematic consistency modeling without
producing other effects.

The cache module is effective for modeling thematic
consistency. As illustrated by the thematic consistency score
in Table 2, CVAE and AS2S can generate stories with bet-
ter thematic consistency with the enhancement of cache
module. Automatic evaluations, i.e. BLEU-[1,4] scores, also
confirm that the cache module can improve the overlapping
between generated stories and corresponding ground-truth
stories, which reflects the generated stories are more rele-
vant to thematically consistent cases.

The cache does not damnify the readability of generated
stories. As the cached information is introduced as extra
“hint” at each decoding step, the cache module is expected
to not yield inferior fluency compared to the RNNs decoder
that it is based on. The results of readability score confirm
that CVAE-Cache and AS2S-Cache achieve comparable per-
formance with CVAE and AS2S.

The cache does not affect the wording novelty. The mo-
tivation of utilizing cache module is to enhance the CVAE
model with better thematic consistency while limiting infe-
rior effect on wording novelty. The results of distinct scores
in Table 2 prove that the cache module does not affect the
wording novelty. Although there is a gap between the per-
formance of CVAE and CVAE-Cache in terms of wording
novelty score, the CVAE-Cache still outperforms all other
baselines.

A relative small cache size is enough for modeling the-
matic consistency. As presented in Table 3, automatic eval-
uation results on ROCStories suggest that a relative small
cache size, i.e. 20 or 30, achieves the best performance. A
similar observation is also observed on the WritingPrompts
dataset, i.e. the cache size is set to 100 which is a small one
considering the average length of 734 words in stories.

Datasets Size BLEU-1 BLEU-2 BLEU-3 BLEU-4

ROCS

20 27.8 9.52 3.20 1.20
30 27.7 9.49 3.26 1.25
50 25.6 8.71 3.07 1.17
70 24.6 7.98 2.70 0.98

WritingPs

50 30.1 5.34 1.76 0.98
100 30.5 5.89 1.84 1.03
200 29.6 5.28 1.70 0.94
300 28.5 5.03 1.55 0.87

Table 3: BLEU scores of different cache size settings.

Discussion
For the ROCStories dataset, our proposed CVAE-Cache
model substantially outperforms all baseline models in both
human evaluations and automatic metrics. Especially for
wording novelty and thematic consistency, CVAE-Cache
achieves significant improvement on both sides, where
wording novelty and thematic consistency are enhanced by
the CVAE and Cache module, respectively. With the en-
hancement of the gate mechanism, the cache module and
CVAE part are seamlessly integrated with their merits re-
served while limiting inferior effects on other aspects. For
results on WritingPrompts, we observe that our CVAE-
Cache achieves comparable BLEU-1, BLEU-2, readability
results with the strong baseline Hierarchical. Since there are
various pre-train strategies and much more parameters in the
Hierarchical story generation model, the comparable results
is a promising one for a simple cache mechanism and CVAE
model. Moreover, our model achieves better diversity perfor-
mance and overall score in human evaluations, which repre-
sents a better user experience. We also observe that the over-
all human evaluation performance on the WritingPrompts is
worse than those results on ROCStories, which can be ex-
plained by the difficulty of automatically generating long
stories with thematic consistency and readability.

Case Study
Figure 5 shows a few example stories generated by CVAE-
Cache model on the ROCStories dataset. We can observe
that the model can generate stories with good consistency,
which is represented by the character gender and events.
With the given short titles, the generated stories are read-
able and correlate well with the titles. Figure 6 presents
an example story generated on the WritingPrompts corpus,
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Title:Bonus Round
Nola wanted to get a bonus for twenty dollars. She was sure she
would not pay the bills. She waited for the price and started
running. But Nola did not get the card and counted. She was
unhappy for it!
Title:Picnic
Amy loved to cook in her new picnic. She took them outside
and watched for the kids. She immediately made her lunch.
Amy was finally able to finish the sandwich. Amy was happy
she could eat potato salad for lunch.
Title:The Art Museum
We were enjoying the science fair. The teachers were thrilled to
find the great art museum was there. We bought it a try. It was
funny and didn’t need to do anything. We made a new show
and went back to class.

Figure 5: Example stories generated by the CVAE-Cache
model, which is trained on the ROCStories corpus.

which is much longer than stories generated on ROCStories
dataset. The result shows that our CVAE-Cache model can
improve both the wording novelty and thematic consistency.
Although there exists a gap between generated stories and
human-comprised ones, the readable long story still demon-
strates the superiority of our proposed CVAE-Cache model.

In the experiments, we also observed a few inferior cases
generated by our models. A notable pattern is that there ex-
ists fine-grained inconsistency in the stories, e.g., sentiment,
emotion, logic. To address such issue, one potential solution
is to add corresponding mechanisms in our model such as
sentiment controlling, event planning. Another error pattern
is that there exist a few extraordinary worse cases for long
story generation on WritingPrompts, which can be explained
by the accumulation of randomness introduced by the latent
variable in CVAE. To alleviate such issue, one can combine
strategies such as editing or polishing during the generation
process. Besides, it is worth to use generative adversarial
network (GAN) (Goodfellow et al. 2014) for story genera-
tion. These results point out the direction of future work.

Related Work
Story Generation
Automated story generation involves automatically out-
putting a sequence of events or actions that meets a set of
criteria (Martin et al. 2017), e.g., requiring thematic con-
sistency and creativity (Fan, Lewis, and Dauphin 2018).
In early years, researchers mainly focused on designing
planning-based algorithms (Riedl and Young 2010), case-
based reasoning methods (Gervás et al. 2005). However,
these systems are limited to the topics that are covered by
specific domain knowledge. To address domain limitations
of story generation, the SayAnything system (Swanson and
Gordon 2012) is proposed for collaboratively writing tex-
tual narratives with human users through using knowledge
extracted from a large repository of nonfiction personal sto-
ries. Recently, researchers have paid attention to generate
coherent stories with sequential information (Huang et al.
2016). Jain et al. (2017) explored to address the task of co-
herent story generation from independent descriptions. Mar-

Prompts:Rewrite your favorite song as a story.
There is a lot of commotion at the club, I know I am supposed
to be a good person, I don’ t like the girl noticed the sound of
a light at the time and the door was shut off, but the look on
her shoulder made me a dull. The young woman put the device
back into her seat and pushed her way into the back seat of her
chair. The feeling of the stomach tightened into a warm, the
girl was still staring. The man dropped the knife and threw the
rag into the air, the noise of the door slid away from the corner.
The driver stood up and the door shut, the girl’s eyes were still
worried about me as well. I had the seat.

Figure 6: An example story outputted by the CVAE-Cache
model, which is trained on the WritingPrompts dataset.

tin et al. (2017) decompose the open story writing process
into two steps, i.e., generating event sequences, and generat-
ing a sentence from an event to address the issue of event
sparsity. Fan et.al (2018) combine hierarchical generation
pipeline with the convolutional sequence to sequence model
for improving the thematic consistency and creativity of sto-
ries.

Conditional Variational Autoencoder
Bowman et al. (2015) first propose to employ VAE to gen-
erate sentences from a latent space. As a extend schema of
VAE, the Conditional Variational Auto-Encoder is originally
introduced for image generation given a certain attribute as
the condition (Sohn, Yan, and Lee 2015; Yan et al. 2016).
To alleviate the problem of vanishing latent variable, Zhao
et al. (2017) have proposed a Bow loss. Yang et al. (2017)
and Li et al.. (2018) proposed to combine CVAE for gener-
ating thematic poems. We proposed a novel model that com-
bines CVAE with a private cache mechanism to improve the
consistency of the generated story.

Conclusion
In this study, we proposed an effective method that combines
cache and conditional variational autoencoder for address-
ing the story generation task. Specifically, we utilized CVAE
to generate stories with diverse and novel words. To further
improve the document-level thematic consistency, we aug-
ment the CVAE model with a cache module for capturing
long-range dependencies. Through using a gate mechanism,
the two parts are seamlessly integrated. Experimental re-
sults on two challenging datasets, ROCStories, and Writing-
Prompts, indicate that our model can generate stories with
both thematic consistency and wording novelty. The qualita-
tive study also confirms the validity of our proposed model.
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