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Abstract

We study classic fair-division problems in a partial informa-
tion setting. This paper respectively addresses fair division
of rent, cake, and indivisible goods among agents with car-
dinal preferences. We will show that, for all of these settings
and under appropriate valuations, a fair (or an approximately
fair) division among n agents can be efficiently computed us-
ing only the valuations of n − 1 agents. The nth (secretive)
agent can make an arbitrary selection after the division has
been proposed and, irrespective of her choice, the computed
division will admit an overall fair allocation.
For the rent-division setting we prove that well-behaved util-
ities of n − 1 agents suffice to find a rent division among
n rooms such that, for every possible room selection of the
secretive agent, there exists an allocation (of the remaining
n− 1 rooms among the n− 1 agents) which ensures overall
envy freeness (fairness). We complement this existential re-
sult by developing a polynomial-time algorithm for the case
of quasilinear utilities. In this partial information setting, we
also develop efficient algorithms to compute allocations that
are envy-free up to one good (EF1) and ε-approximate envy
free. These two notions of fairness are applicable in the con-
text of indivisible goods and divisible goods (cake cutting),
respectively.
One of the main technical contributions of this paper is the
development of novel connections between different fair-
division paradigms, e.g., we use our existential results for
envy-free rent-division to develop an efficient EF1 algorithm.

1 Introduction
The theory of fair division addresses the fundamental prob-
lem of dividing resources/goods in a fair manner among
agents with heterogeneous valuations, but equal entitlements
(Moulin 1986). Many recent results in artificial intelligence
and algorithmic game theory address computational aspects
of fair division, see, e.g., (Brandt et al. 2016) and (Rothe
and others 2015) for excellent expositions. A central thread
of research here is to design algorithms that complement
nonconstructive existential results. This computational per-
spective has lead to notable algorithms, hardness results, and
the development of novel solution concepts; in fact, a num-
ber of such notions and algorithms have been integrated into
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widely-used websites (e.g., Spliddit and Adjusted Winner 1),
which provide methods for fair division of resources, rent,
and tasks. This works contributes to computational thinking
in fair division and, in particular, studies algorithmic aspects
of existential results which show that the preferences of only
n− 1 agents suffice to find a fair division among n agents.

Such an existential result for the case of two agents and
a divisible good (which is metaphorically represented as a
cake) follows directly from the standard divide-and-choose
protocol: considering the valuation of just the first agent we
can partition the cake into two parts of equal value (for the
first agent) and, then, the second agent can select her most
preferred piece. This protocol leads to an envy-free cake di-
vision, i.e., in the resulting allocation no agent has a strictly
stronger preference for the other agent’s piece. Envy free-
ness is a standard notion of fairness ((Foley 1967), (Var-
ian 1974), (Stromquist 1980)) and the divide-and-choose
method shows that a fair division with respect to this no-
tion can be found even if the second agent is secretive and
just selects a piece after we partition the cake.

Asada et al. (2018) showed that this result extends to
higher number of agents who are endowed with ordinal pref-
erences: there exists a division of the cake into n parts,
which depends on the (subjective) preferences of only n− 1
agents, such that the nth (secretive) agent can select an arbi-
trary piece and still we would be able to allocate the remain-
ing n − 1 pieces in an envy free manner. In other words,
independent of the choice of the secretive agent, there ex-
ists an allocation in which no agent has a strictly stronger
preference for the piece of any other agent (including the
secretive one). This result of Asada et al. relies on a fixed-
point argument–specifically, it uses a version of the Knaster-
Kuratowski-Mazurkiewicz (KKM) Lemma (1929).

Frick et al. (2017) show that an analogous result holds
in the context of fair rent division. Rent division is another
well-studied problem in the fair-division literature, and it en-
tails allocating n rooms among n agents and splitting the
rent such that envy freeness is achieved; see, e.g., Su (1999),
Alkan et al. (1991), Aragones (1995), Klijn (2000) and Gal
et al. (2017). Considering agents who have ordinal pref-
erences over the rooms (for every possible division of the

1http://www.spliddit.org/, http://www.nyu.edu/projects/
adjustedwinner/
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rent), Frick et al. (2017) proved that the preferences of n−1
agents suffice to find a rent division such that secretive agent
can select an arbitrary room (at its price) and still an overall
envy-free allocation of the remaining n − 1 rooms (at their
respective prices and among the n− 1 agents) would exist.

In this paper we will consider agents who have cardi-
nal valuations over the good(s) and develop efficient algo-
rithms for secretive fair division in multiple settings. Specif-
ically, we will study fair division of rent, cake, and indivisi-
ble goods. We will show that, under appropriate valuations,
for all of these settings a fair (or an approximately fair) divi-
sion among n agents can be efficiently computed using only
the valuations of n− 1 agents. The nth (secretive) agent can
make an arbitrary selection after the division has been pro-
posed and, irrespective of her choice, the computed division
will continue to admit a fair allocation.

Overall, this work establishes existential and algorithmic
results for secretive analogues of standard fair-division
problems.

Fair rent division: This problem entails splitting the rent
and allocating n rooms among n agents such that, under the
imposed rents, each agent prefers the room allocated to it
over that of any other agent. In the cardinal version of this
problem the preferences of the agents for the rooms are ex-
pressed via functions (one for each agent-room pair) which
specify agents’ utility for the rooms at every possible room
rent. The works of Svensson (1983) and Alkan et al. (1991)
shows that if the utility functions of all the n agents for
each of the n rooms are continuous, strictly decreasing, and
bounded, then an envy-free rent division is guaranteed to ex-
ist. We extend these results and prove that, considering the
utility functions of n− 1 agents,2 we can propose a rent di-
vision among the n rooms such that for every possible room
selection of the secretive agent there exists an allocation (of
the remaining n − 1 rooms among the n − 1 agents) which
ensures overall envy freeness (Theorem 4). Hence, analo-
gous to the result of Asada et al. (which considered ordinal
preferences), we show that fair rent division with a secretive
agent can be achieved in the cardinal setting as well.3

Efficient algorithms for fair rent division are known for
the quasilinear utility model (Aragones 1995), (Gal et al.
2017) and (Klijn 2000). In this setup every agent a has a
base value for each room r, and a’s utility for room r when
its rent is pr is equal to the base value minus pr. We show
that, under quasilinear utilities, an efficient, fair-division al-
gorithm exists even in the secretive case (Theorem 6).
EF1 Allocations of indivisible goods: As mentioned previ-
ously, envy-free divisions always exist for divisible goods.
By contrast, such a universal existential guarantee does not
hold in the context of indivisible goods.4 To address this is-

2As in the standard rent-division case, these utilities are as-
sumed to be continuous, strictly decreasing, and bounded.

3The assumptions considered in (Asada et al. 2018) render that
result incomparable with the cardinal setting of the present paper.

4For a single indivisible good and two agents (with nonzero
valuation for the good), the losing agent will be envious in any
allocation

sue and motivated by allocation problems that involve dis-
crete resources (such as courses at universities (Budish et al.
2016)), a number of recent results have formulated and stud-
ied fairness notions that specifically address discrete goods
(Budish 2011), (Procaccia and Wang 2014), (Bouveret and
Lemaı̂tre 2016). A prominent notion in this line of work is
that of envy freeness up to one good (EF1), which is a com-
pelling analogue of envy freeness in this setting (2011).

Specifically, an allocation is said to be EF1 if every agent
prefers her own bundle over any other agent’s bundle, up to
the removal of one good from the other agent’s bundle. Lip-
ton et al. (2004) proved that if the valuations of the agents
(over subsets of goods) are monotone, then an EF1 alloca-
tion always exists and can be computed in polynomial time.
The result is notably general, since it encompasses all mono-
tone (combinatorial) valuations. We prove that, even with a
secretive agent, fairness in terms of EF1 can be guaranteed.
In particular, we show that, given n − 1 agents with mono-
tone valuations, we can efficiently partition the set of indi-
visible goods into n disjoint subsets, S = {S1, S2, . . . , Sn},
such that every collection of n−1 subsets from S can be as-
signed (among the n− 1 agents) to obtain an EF1 allocation
overall (Section 4). Note that our result shows that an EF1
allocation exists if n − 1 agents have monotone valuations;
the valuation of the nth agent can be completely arbitrary.
Hence, as a corollary, we get a strengthening of the exis-
tence guarantee of Lipton et al. (2004).

Proportionality: Proportionality is another fundamental
fairness criterion and, in the context of cake cutting, it deems
a partition among n agents to be fair if each agent receives
a piece of value at least 1/n times her value for the entire
cake (Steinhaus 1948). Note that additivity of the valuations
ensure that an envy free allocation satisfies proportionality.
However, in contrast to envy freeness, a proportional divi-
sion of the cake can be efficiently achieved by following the
moving-knife procedure of Dubins and Spanier (1961). We
show that, interestingly, this moving-knife procedure can be
executed with n− 1 agents to obtain an n-partition which is
proportionally fair even with a secretive agent.

In the context of indivisible goods, maximin fairness pro-
vides a natural relaxation of proportionality and this no-
tion has been extensively studied in recent years.5 Our work
develops an efficient algorithm that, even with a secretive
agent, finds a 1/19-approximate maximin fair allocation (of
indivisible goods) under submodular valuations of the non-
secretive agents. An improved approximation guarantee of
1/2 is obtained for additive valuations. In the interest of
space, results on proportional and maximin fairness have
been deferred to the full version of the paper.

Overall, the paper shows that a broad spectrum of fair di-
vision problems can be addressed in a partial information
setting. Indeed, with respect to a specific agent, these results
prove that a limited number of valuation queries suffice to
find a fair division. Furthermore, our work implies stronger
versions of standard existential and algorithmic results, e.g.,
the rent-division result developed in the paper shows that as

5In the case of indivisible goods, proportional fair divisions are
not guaranteed to exist.
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long as n − 1 agents have quasilinear utilities, an envy-free
rent division can be computed efficiently. Here, the utility
function of the nth agent can be arbitrary; this is in contrast
to prior works, which require all the agents to have quasi-
linear utilities. We obtain these results by developing con-
nections between different fair division paradigms; in par-
ticular, we establish the result for EF1 by using the rent-
division guarantees. These connections are mentioned be-
low, and they might be of independent interest.
Our Techniques: We use the generalization of the KKM
lemma developed in Asada et al. (2018) to establish the exis-
tence of fair rent division with a secretive agent. It is relevant
to note that the work of Frick et al. (2017) (which addresses
ordinal preferences) does not encompass the cardinal setting
considered in this paper. In particular, the existence guaran-
tee in Frick et al. (2017) requires that each agent prefers a
room with zero rent over any room with nonzero rent. Since,
in general, this assumption is not satisfied even for quasilin-
ear utilities, the result of Frick et al. (2017) does not directly
hold for cardinal preferences.

Our efficient algorithm for quasilinear utilities draws
upon the equivalence between envy-free rents and Walrasian
equilibria. Specifically, the Second Welfare Theorem for
Walrasian equilibrium ensures that if the n − 1 agents have
quasilinear utilities, then every maximum weight matching
between the agents and the rooms induces an envy-free so-
lution; here the weights between agents and rooms are set
to be the corresponding base values. We use this property
to formulate a linear program whose solution is a fair rent
division which is robust to the choice of the secretive agent.

Instantiating the result for quasilinear utilities, we show
that if n − 1 agents have monotone valuations, then an EF1
allocation (with a secretive agent) always exists and can be
computed efficiently. Specifically, we develop an algorithm
that iteratively allocates goods to bundles and maintains the
EF1 property as an invariant. We use the rent-division result
to show that in each iteration the algorithm can efficiently
find a bundle and allocate the next good to it such that the
invariant continues to hold. Note that, in contrast to the exis-
tential result of Lipton et al.—which relies on a direct parity
argument—our work uses a novel connection between rent
division and discrete fair division.

The developed EF1 algorithm in turn provides an effi-
cient method to find an approximate envy-free cake division
through the reduction employed by Lipton et al (2004) : we
partition the cake into pieces such that, for each of the n− 1
agents, the value of any piece is at most ε. Then, consider-
ing these low-valued pieces as indivisible goods, we execute
the EF1 algorithm to obtain an approximately envy-free di-
vision which can accommodate an arbitrary selection by the
secretive agent. The formal description of the problem and
the reduction can be found in the full version of the paper.

2 Notation and Preliminaries
Envy Free Rent Division: An instance of the (standard)
envy-free rent division problem is represented by the fol-
lowing tuple 〈A,R, {va(r, ·)}a∈A,r∈R 〉 wherein A := [n]
denotes the set of n agents and R := [n] denotes the set of
n rooms. The cardinal preference of each agent a ∈ A for

every room r ∈ R is specified via a utility function va(r, ·),
i.e., a’s utility for r at price (rent) pr ∈ R is va(r, pr) ∈ R.

A solution to the rent division problem comprises of the
tuple (π, p), where π : A 7→ R is a bijection from the set of
agents to the set of rooms and p ∈ Rn is a price vector for
the set of rooms. The tuple (π, p) is said to be an envy-free
solution of the given instance if for all a ∈ A and r ∈ R we
have va(π(a), pπ(a)) ≥ va(r, pr), i.e., under the given price
vector, no agent strongly prefers (envies) any other room to
the one allocated to her.
Envy-Free Rent Division with a Secretive Agent: A
rent-division instance with a secretive agent is a tuple
〈A,R, {va(r, ·)}a∈A\{n},r∈R〉, wherein A = [n] and R =
[n] denote the set of n agents and n rooms, respectively.
We will use va(r, ·) to denote the utility function of agent
a ∈ A \ {n} for room r ∈ R. Here, in contrast to the
standard rent division setting, the problem instances have
a distinguished, “secretive” agent, n, who gets to pick any
room of her choice after the prices for the rooms have been
proposed.6 A secretive envy-free solution is a price vector
p ∈ Rn that satisfies the following property: for every room
k ∈ R, there exists a bijection πk : A\{n} 7→ R\{k} such
that (πk, p) is envy-free, i.e., for all a ∈ A \ {n} and r ∈ R
we have va(πk(a), pπk(a)) ≥ va(r, pr).

Intuitively, a price vector p ∈ Rn constitutes a solution in
the secretive setting if for any arbitrary room choice, k ∈ R,
of the secretive agent, the properties of p allow us to allocate
the remaining rooms (using πk) among the agents such that
no agent strictly prefers any other agent’s room. Note that
such a price vector p is computed before the choice k is made
by the secretive agent and without taking into account any
information about her utilities.

We will focus on two classes of utility functions. First, we
will establish existential results for bounded, continuous and
monotone (strictly) decreasing utilities. The utility functions
{va(r, ·)}a∈A\{n},r∈R are bounded in the sense that there
exists M ∈ R+ such that for all agents a ∈ A \ {n} and
all pairs of rooms r, r′ ∈ R the following inequality holds
va(r,M) < va(r′, 0).

A special, well-studied subclass of bounded, continuous
and monotone decreasing utility functions is that of quasi-
linear utilities in which each utility function va(r, x) is of
the form Bar − x; here Bar ∈ R+ is the base value of room r
for agent a. In other words, in the quasilinear setup the util-
ity of agent a for room r is equal to her base value for the
room minus the rent of r.
Secretive EF1 Allocations of Indivisible Goods: An in-
stance of the fair division problem with indivisible goods
and a secretive agent is a tuple 〈A,G, {va}a∈A\{n}〉 in
which A := [n] stands for the set of n agents, G := [m]
denotes the set of m indivisible goods, and vas specify the
valuation of each agent a ∈ A \ {n} over the set of goods.
The valuation functions va : 2G 7→ R+ are assumed to be
nonnegative and monotone for all agents a ∈ A\{n}.7 Write

6Note that the instances do not contain any information about
the utilities of the (nth) secretive agent.

7Note that, analogous to the rent-division case, the instance tu-
ple contains no information about the valuation function of agent
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Πn(G) to denote the set of all n-partitions of G.
In the standard (non-secretive) context with n agents

and set of indivisible goods G, an n-partition A =
(A1, . . . , An) ∈ Πn(G) is said to be envy-free up to one
good (EF1) iff for all agents a, b there exists a good g ∈ Ab
such that va(Aa) ≥ va(Ab \ {g}); here, each agent a is
assigned the subset of goods (bundle) Aa. Note that the def-
inition ensures that each agent prefers its own bundle over
the bundle of any other agent up to the removal of one good.

This definition extends to address fair division of indivis-
ible goods with a secretive agent. Formally, an n-partition
P = (P1, ..., Pn) ∈ Πn(G) of the set of goods G is said to be
a secretive EF1 allocation iff it satisfies the following prop-
erty: for each choice of bundle Pk from partitionP , there ex-
ists a bijection πk : A\{n} 7→ [n]\{k} such that the alloca-
tion defined by πk on (P1, . . . , Pk−1, Pk+1, . . . , Pn) is EF1,
i.e., for all a ∈ A\{n} and all bundles Pb, with b ∈ [n], there
exists a good g ∈ Pb such that va(Pπk(a)) ≥ va(Pb \ {g}).

In other words, for every choice of bundle Pk made
by the secretive agent, the secretive EF1 solution P =
(P1, P2, ..., Pn) allows for an EF1 allocation of the remain-
ing bundles among the first n− 1 agents.

Remark. Note that the secretive agent gets to pick her first
choice. Therefore, in all the settings mentioned above (cake
cutting, division of indivisible goods, and rent division), the
secretive agent can achieve envy freeness.

Framework for Secretive Solutions Concepts
Note that in all the solution concepts defined above, the bi-
jections/permutations {π1, . . . , πn} (that enable a fair divi-
sion after the secretive agent makes a choice) are not an ex-
plicit part of the solution. However, for all settings consid-
ered in this work, these permutations can be computed in
polynomial time.

We now provide a formalism for secretive solutions
which, in particular, will be used for finding secretive EF1
allocations. Let P = (P1, . . . , Pn) represent a collec-
tion of n bundles that constitute a candidate solution to a
fair division problem with agents A and known valuations
{va}a∈A\{n}. In this abstract setting, the bundles can be di-
visible goods, or indivisible goods, or even a combination of
both (e.g., a bundle can comprise of a room and its rent).

Write H to denote the bipartite graph with the two vertex
parts beingA\{n} and {P1, P2, . . . , Pn}, respectively.8 The
edge set of H is constructed to account for the underlying
fairness property: edge (a, Pi) is included in H iff bundle
Pi satisfies the fairness criterion for agent a. For example,
in the context of rent division—wherein each bundle Pi is a
tuple of a room i and its rent pi—edge (a, Pi) is included iff
assigning room i to agent a ensures envy freeness for a, i.e.,
iff va(i, pi) ≥ va(r, pr) for r ∈ R.

Note that the collection of bundles P is a secretive so-
lution (satisfying the required fairness criterion) iff for ev-
ery k ∈ [n] (i.e., each choice Pk of the secretive agent),

n, who is designated to be the secretive agent.
8Note that the two bipartite vertex sets of H are of size n − 1

and n, respectively.

there exists a perfect matching πk in the bipartite graph ob-
tained by removing (vertex) Pk fromH. This property leads
to the following characterization: a collection of bundles P
is a secretive solution, with respect to the underlying fair-
ness property, iff for every subset S ⊆ A \ {n} we have
|ΓH(S)| ≥ |S|+1; here ΓH(S) denotes the set of neighbors
of S in the graphH.

3 Envy-Free Rent Division
This section presents our results for fair rent division. We
show that, for any rent-division instance with reasonably
general utility functions, a secretive envy-free solution is
guaranteed to exist. We complement this existential result
by developing an efficient algorithm for computing such so-
lutions for when the known utilities are quasilinear.

Existential Result
This subsection considers rent-division instances I = 〈A =
[n],R = [n], {va(r, ·)}a∈A\{n},r∈R 〉 with a secretive agent
and utilities, {va(r, ·)}a∈A\{n},r∈R, that are bounded, con-
tinuous, and monotone decreasing.

Recall that for bounded utility functions
{va(r, ·)}a∈A\{n},r∈R there exist parameter M ∈ R+

such that for all agents a ∈ A \ {n} and all pairs of rooms
r, r′ ∈ R:

va(r,M) < va(r′, 0) (1)

Write {ei}i∈[n] to denote the standard basis vectors of Rn
and let ∆n be the standard simplex in Rn, i.e., ∆n :=
conv({ei}i∈[n]).

First we define KKM covers of the simplex and then state
the KKM generalization of Asada et al. (2018).

Definition 1 (KKM Cover). A collection of n closed sets
C1, C2, ..., Cn ⊂ Rn is said to form a KKM cover of the
simplex ∆n, if and only if for all I ⊆ [n], the convex hull of
the basis vectors corresponding to I is covered by

⋃
i∈I Ci,

i.e., iff for all I ⊆ [n], we have conv ({ei}i∈I) ⊆
⋃
i∈I Ci.

The following lemma, proved by Asada et. al (2018), es-
tablishes a useful property of any n− 1 KKM covers of ∆n.
The lemma states that for every index k ∈ [n], it is possi-
ble to pick one set from each KKM Cover such that no two
sets have the same index and the index k is not used, with
the property that the intersection of these selected sets is non
empty.

Lemma 2 ((Asada et al. 2018)). Given (n−1) KKM Covers
C1, C2, . . . , Cn−1 (here each Ci = {Ci1, Ci2, . . . , Cin} is a
collection of n sets) of the standard simplex ∆n, there exists
a point x ∈ ∆n and n bijections πk : [n − 1] 7→ [n] \ {k}
with 1 ≤ k ≤ [n] such that, x ∈

⋂
i∈[n−1] C

i
πk(i)

.

To apply this lemma we will map points in the sim-
plex to room rents (price vectors). Such a mapping enables
us to construct KKM covers from the utilities of the first
n − 1 agents. Specifically, we define a function h(z) :=
M(1 − nz), where M ∈ R+ is a large enough real num-
ber satisfying the boundedness condition (1) for the given
rent-division instance. Given a simplex point x ∈ ∆n, we
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apply h component-wise to generate the price (rent) of each
room, i.e., price vector p is generated from x by setting
pr := h(xr) for all r ∈ [n]. Note that h(0) = M and
h(M) = 0.

For each agent a ∈ [n− 1], we define a collection of sets
Ca = {Ca1 , Ca2 , ..., Can} such that the set Car consists of all
the simplex points whose corresponding prices render room
r as a “first choice” of agent a. Formally,

Car := {x ∈ ∆n | va(r, h(xr)) ≥ va(r′, h(xr′)) ∀r′ ∈ [n]}
(2)

The following claim establishes that each agent’s collec-
tion of sets forms a KKM cover. The proof can be found in
the full version.

Claim 3. For each agent a ∈ [n − 1], the set Ca =
{Ca1 , Ca2 , ..., Can} (as defined above) is a KKM cover of the
simplex ∆n.

With the n− 1 KKM covers (one for each agent a ∈ A \
{n}) at our disposal, we apply Lemma 2 to find a secretive
envy-free solution.

Theorem 4. Let I =
〈
A,R, {va(r, ·)}a∈A\{n},r∈R

〉
be a

rent-division instance with a secretive agent. If the utilities,
{va(r, ·)}a∈A\{n},r∈R}, of the instance are bounded, con-
tinuous, and monotone decreasing, then I admits a secretive
envy-free solution p ∈ Rn.

Proof. Consider the n − 1 KKM covers, C1, . . . , Cn−1,
obtained by Definition 1 with valuation functions
{va(r, ·)}a∈A\{n},r∈R. Lemma 2 ensures that there exists a
point x∗ ∈ ∆n and n bijections πk : [n − 1] 7→ [n] \ {k},
with 1 ≤ k ≤ n, such that x∗ ∈

⋂
i∈[n−1] C

i
πk(i)

. We will
show that the price vector, p∗, obtained by componentwise
applying function h on x∗ is a secretive envy-free solution.

Say, under price vector p∗, the secretive agent selects
room k ∈ [n]. Then, the property of the bijection πk :
[n − 1] 7→ [n] \ {k} gives us x∗ ∈

⋂
i∈[n−1] C

i
πk(i)

, i.e.,
for all agents a ∈ [n − 1], the point x∗ is contained in the
set Caπk(a)

. The definition of KKM covers (see definition in
Equation 2) implies that the room πk(a) is a first choice of
each agent a ∈ A \ {n}.

Therefore, for any k ∈ R = [n], the allocation (πk, p
∗)

provides an envy-free solution. Overall, we get that p∗ is
a secretive envy-free solution of the rent-division instance.

Algorithmic Result for Quasilinear Utilities
Efficient algorithms for finding envy-free rent divisions (in
the non-secretive setting) have been developed in prior work
under quasilinear utilities, see, e.g., (Aragones 1995). In this
utility model each function va(r, pr) is of the form Bar − pr,
i.e., agent a’s utility for room r when its rent is pr is equal to
the base value, Bar , minus pr. Note that Theorem 4 applies
to quasilinear utilities, since they are a subclass of bounded,
continuous, and monotone decreasing utilities.

For a given rent-division instance I =
〈A,R, {va(r, ·)}a∈A\{n},r〉 with a secretive agent and
quasilinear utilities, throughout this subsection we will use

write H = (A \ {n} ∪ R,A × R) to denote the complete,
weighted bipartite graph (between agents and rooms) in
which weight of each edge (a, r) is equal to the base value
Bar . Also, write Hk to denote the weighted, bipartite graph
obtained by removing the kth vertex from the rooms’ side
inH.

The subsequent lemma provides an analogue of the sec-
ond welfare theorem for the secretive context. The lemma
shows that if πk is a maximum weight matching in bipartite
graph Hk, for all k ∈ [n], then for any secretive envy-free
solution p∗ and any (room) choice k of the secretive agent,
one can use πk to find an allocation that achieves envy free-
ness overall.

We use this result to establish the correctness of Algo-
rithm 1 and its proof appears in full version.

Lemma 5. Let I = 〈A,R, {va(r, ·)}a∈A\{n},r〉 be a rent-
division instance with a secretive agent and quasilinear util-
ities (i.e., va(r, x) = Bar −x for all a ∈ A\{n} and r ∈ R).
In addition, for all k ∈ [n], let πk be a maximum weight
perfect matching in the bipartite graph Hk and p∗ ∈ Rn+
be any secretive envy-free solution (price vector) of I. Then,
(πk, p

∗)—for all k ∈ [n]—is an envy-free solution of I, i.e.,
va(πk(a), pπk(a)) ≥ va(r, pr) for all k ∈ [n], a ∈ A \ {n}
and r ∈ R.

Algorithm 1 Secretive Envy-Free Rent Division under
Quasilinear Utilities
Input: A rent-division instance with a secretive agent and
quasilinear utilities 〈A,R, {va(r, ·)}a∈A\{n},r∈R 〉 (here,
va(r, x) = Bar − x for all a ∈ A \ {n} and all r).
Output: A secretive envy-free solution p∗ ∈ R+

n and n bi-
jections {πk}k∈R

1: For all k ∈ R, set πk to be a maximum weight perfect
matching in graphHk.

2: Set p∗ ∈ Rn+ to be the solution of the following linear
program
{Here we find a single price vector under which each πk
is an envy-free allocation}

min
x∈Rn

∑
r∈[n]

xr

subject to xr ≥ 0 for all r ∈ [n]

Baπk(a)
− xπk(a) ≥ B

a
r − xr

for all a ∈ A \ {n} and k, r ∈ [n]

3: return price vector p∗ and the n bijections {πk}k∈R.

Theorem 6 establishes the correctness of Algorithm 1.

Theorem 6. Given any rent-division instance I =
〈A,R, {va(r, ·)}a∈A\{n},r∈R 〉 with a secretive agent and
quasilinear utilities, a secretive envy-free solution p ∈ Rn+
of I can be computed in polynomial time.

Proof. Theorem 4 ensures that the given instance I admits
a secretive envy-free solution p ∈ Rn. We can assume that p
is componentwise nonnegative–uniform, additive shifts on a
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price vector maintain envy freeness under quasilinear util-
ities. In addition, using Lemma 5, for each πk (a maxi-
mum weight matching in Hk) we have va(πk(a), pσk(a)) ≥
va(r, pr), i.e., πks provide envy-free allocations for every
choice k of the secretive agent.

Therefore, p certifies the feasibility of the linear pro-
gram (LP) formulated in Algorithm 1. Since this LP is also
bounded, the algorithm will necessarily find a price vec-
tor p∗ which (paired with the bijections {πk}k∈R) explic-
itly satisfies the definition of a secretive envy-free solution.
Given that the number of variables and constraints in the LP
are polynomial, it can solved efficiently. Therefore, Algo-
rithm 1 runs in polynomial time.

We conclude this section by stating and proving a com-
binatorial lemma, which will be essential while establishing
the EF1 results. The lemma asserts that for with respect to
maximum weight matchings πks (in graphs Hks) there will
always be a room that is “universally despised” by all agents
and across all the n bijections πks.

Lemma 7. Let I = 〈A,R, {va(r, ·)}a∈A\{n},r〉 be a rent-
division instance with a secretive agent and quasilinear util-
ities (i.e., va(r, x) = Bar −x for all a ∈ A\{n} and r ∈ R).
In addition, for all k ∈ [n], let πk be a maximum weight per-
fect matching in the bipartite graph Hk. Then, there always
exists a room ρ ∈ [n] such that Baπk(a)

≥ Baρ , for all agents
a ∈ A \ {n} and all bijections πk, with k ∈ [n].

Proof. Write p to denote a secretive envy-free solution of
the quasilinear instance I; such a price vector always ex-
ists (Theorem 4). Consider a room ρ ∈ R with the small-
est rent under p: ρ ∈ arg minr∈R pr. Since p is a secretive
envy-free solution, for any choice k ∈ R of the secretive
agent, πk provides an envy-free allocation (Lemma 5). In
particular, at the imposed prices, no agent a strongly prefers
room ρ to the room allocated to her, i.e., to πk(a). There-
fore, va(πk(a), pπk(a)) ≥ va(ρ, pρ). Since the utilities are
quasilinear we have Baπk(a)

− pπk(a) ≥ Baρ − pρ. Finally,
the definition of ρ (i.e., pρ ≤ pπk(a)) gives us the desired
inequality Baπk(a)

≥ Baρ .

4 EF1 Division of Indivisible Goods
In this section, we address indivisible goods and show that a
secretive EF1 allocation always exists and can be computed
efficiently, as long as the valuations of the non-secretive
agents are monotone increasing. The full version also pro-
vides results for divisible goods (i.e., cake cutting). In par-
ticular, we reduce the problem of finding a secretive ε-EF
solution (in the cake-cutting setup) to that of computing a se-
cretive EF1 allocation (over indivisible goods), by employ-
ing the reduction of Lipton et al. (2004) for the same two
problems in standard settings. Therefore, using the results
developed here, we can obtain existential and algorithmic
results for secretive ε-EF cake division.
We begin by stating notation which will be required for de-

tailing the algorithm that efficiently finds a secretive EF1
allocation (Algorithm 2). Consider a fair division instance
I = 〈A = [n],G = [m], {va}a∈A\{n} 〉 with a secretive

agent and indivisible goods G. Let P = (P1, P2, ...Pn) be
an n-partition of of a subset of goods ∪iPi ⊆ G; we will
refer to such an n-partition P as a partial allocation.

Given any partial allocation P , write HP :=
((A \ {n}) ∪ {Pi}i, (A \ {n})× {Pi}i) to denote the
weighted bipartite graph with the two vertex parts being the
set of agents A \ {n} and the bundles {P1, . . . Pn}, respec-
tively. Here, an edge (a, Pi) ∈ (A\ {n})×{P1, . . . , Pn} is
said to be satisfy the EF1 property iff for all bundles Pj in P
there exists a good g ∈ Pj such that va(Pi) ≥ va(Pj \ {g}).
Write EP to denote the set of edges that satisfy the EF1
property and EcP to denote the set of edges that do not,
EcP = ((A \ {n})× {Pi}i) \ EP . In HP , the weight of
each edge (a, Pi) that satisfies the EF1 property is set to be
va(Pi) and all edges (b, Pj) ∈ EcP are assigned a weight
equal to −m

(
maxa∈A\{n} va(G)

)
, where m is the total

number of goods.
Finally, we will use HkP to denote the bipartite graph ob-

tained by removing vertex Pk from the graphHP . Note that
the partition P is a secretive EF1 allocation (of the subset of
goods ∪iPi ⊆ G) if and only if, for every possible (choice
of the secretive agent) k ∈ [n], there exists a perfect match-
ing πk in HkP that contains only EF1 edges, i.e., satisfies
πk ⊆ EP .9 Here, the choice of edge weights ensures that
if there is a perfect matching in HkP consisting solely of
EF1 edges, then any maximum weight matching will also
be composed entirely of EF1 edges.

Next, we will use these constructs to describe Algorithm
2 and prove its correctness in Theorem 9. A key argument
in the proof is an application of Lemma 8 to show that Step
5 of Algorithm 2 always succeeds. In particular, Lemma 8
guarantees the existence of a “universally-despised” bundle.
Lemma 8. Let P = (P1, . . . , Pn) be a partial al-
location of the indivisible goods in an instance I =
〈A,G, {va}a∈A\{n} 〉 and let πk be a maximin weight per-
fect matching in the bipartite graph HkP , for each k ∈ [n].
If the matching πks are composed entirely of EF1 edges
(πk ⊆ EP ), then there exists an index (bundle) ρ ∈ [n]
such that va(Pπk(a)) ≥ va(Pρ) for all a ∈ A \ {n} and
all k ∈ [n].

Proof. From the given instance I and partial allocation
P = (P1, . . . , Pn), we construct a rent-division instance
Î = 〈A,R = [n], {va(r, ·)}a∈A\{n},r∈R〉 in which the ith
room corresponds to the ith bundle Pi. The utilities in Î are
set to be quasilinear, va(i, z) := Bai − z. Here, Bai (the base
value of room i for agent a) is assigned to the weight of
the edge (a, Pi) in the bipartite graph HP . That is, if edge
(a, Pi) satisfies the EF1 property then Bai = va(Pi). Other-
wise, if (b, Pj) is not an EF1 edge, then Bbj = −mT .

An application of Lemma 7 over rent-division instance Î
shows that there exists a room ρ ∈ [n] such that—for all
agents a ∈ A \ {n} and maximum weight matchings πk—
we have Baπk(a)

≥ Baρ .10

9Here, for ease of presentation, we overload notation and use
πk to represent both a bijection and a matching (subset of edges).

10By construction of Î, the bipartite graph Hk considered in
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Using the fact that every edge in the matching πk is an
EF1 edge, we get Baπk(a)

= va(Pπk(a)) for all agents a ∈
A \ {n}.

Now, if for an agent a edge (a, Pρ) satisfies the EF1 prop-
erty then Baρ = va(Pρ) and we get the desired inequality
va(Pπk(a)) ≥ va(Pρ). Otherwise, if edge (a, Pρ) is not an
EF1 edge, then there must exist a bundle Pj such that for all
g′ ∈ Pj the inequality va(Pρ) < va(Pj \{g′}) holds. Again,
using the fact that (a, Pπk(a)) is an EF1 edge, we get that
there exists g̃ ∈ Pj for which va(Pπk(a)) ≥ va(Pj \ {g̃}).
Hence, the desired inequality va(Pπk(a)) ≥ va(Pρ) holds in
all cases.

Algorithm 2 Computation of Secretive EF1 Allocations
Input: Instance I = 〈A,G, {va}a∈A\{n} 〉 with a secretive
agent, m indivisible goods along with nonnegative and
monotone valuations va : 2[m] → R+ for a ∈ A \ {n}
Output: An allocation (P1, . . . , Pn) and n bijec-
tions {πk}k∈[n] that provide a secretive EF1 solution

1: Initialize t ← 0 and set P ta = ∅ for 1 ≤ a ≤ n, i.e.,
partial allocation P0 = (∅, . . . , ∅).

2: while G 6= ∅ do
3: For partial allocation Pt = (P t1 , . . . , P

t
n), construct

the bipartite graphHPt

4: For each k ∈ [n], set πk to be a maximum weight
perfect matching in the graphHkPt

5: Find a bundle P tρ such that for all k ∈ [n] and all
a ∈ A \ {n} we have va(P tπk(a)

) ≥ va(P tρ) {We
will prove that such a “universally-despised” bundle
always exists and can be found efficiently}

6: Select an arbitrary good g ∈ G and set P t+1
ρ = P tρ ∪

{g}. For all i ∈ [n] \ {ρ} set P t+1
i = P ti . Update

t← t+ 1 and G ← G \ {g}.
7: end while
8: return Partition P t = (P t1 , P

t
2 , ..., P

t
n) and the n bijec-

tions {πk}k∈[n]

Theorem 9. Let I = 〈A,G, {va}a∈A\{n} 〉 be a fair di-
vision instance with indivisible goods, G, and a secretive
agent. If the valuations {va}a∈A\{n} are nonnegative and
monotone (increasing), then a secretive EF1 allocation P =
(P1, P2, . . . , Pn) for I is guaranteed to exist and can be
computed in polynomial time.

Proof. We will use an inductive argument to establish the
correctness of Algorithm 2. Write Pt to denote the partial
allocation considered by Algorithm 2 in the tth iteration
of the while-loop. We will show that the maximum weight
matching matchings computed by algorithm during any iter-
ation t, say πks, satisfy πk ⊆ EPt , i.e., in all iterations, the
computed matchings are composed entirely of EF1 edges. In
conjunction, we will prove that there exits a bundle P tρ such

Lemma 7 is identical to Hk
P . Hence, we can apply the lemma to

πks, the maximum wight perfect matchings ofHk
Ps.

that the inequality va(P tπk(a)
) ≥ va(P tρ) holds for all agents

a ∈ A \ {n} and all matchings πk.
Both of these conditions hold when t = 0, since P 0

i = ∅
for all i ∈ [n]. This gives us the base case for induction.
Now, say—via the induction hypothesis—that the condi-
tions hold for the (t− 1)th iteration. In particular, if π̂ks are
the maximum weight matchings considered in the (t− 1)th
iteration, then we have π̂k ⊆ EPt−1 and va(P t−1π̂k(a)

) ≥
va(P t−1ρ̂ ) for some room ρ̂.

By construction, P tρ̂ = P t−1ρ̂ ∪{g} and P ti = P t−1i for all
i 6= ρ̂. Note that, even after this update, the edges in match-
ings π̂ks continue to satisfy the EF1 property: if (a, P t−1i ) is
an edge in π̂k (i.e., i = π̂k(a)), then va(P t−1i ) ≥ va(P t−1ρ̂ ).
Therefore, va(P ti ) ≥ va(P tρ̂ \ {g}). Since no other bundle
receives a good, the ith bundle satisfies the EF1 property for
a in the new partial allocation Pt = (P t1 , . . . , P

t
n) as well.

This implies that there exists a perfect matching in the
bipartite graphHkPt (specifically, π̂k) which is entirely com-
posed on EF1 edges. The weight of all the edges in EcPt is
low (negative) enough to ensure that ifHkPt admits a perfect
matching composed entirely of EF1 edges, then a maximum
weight matching, πk, inHkPt will satisfy πk ⊆ EPt .

Furthermore, Lemma 8 (applied to Pt) implies that there
exists a bundle P tρ which satisfies the desired inequalities
va(P tπk(a)

) ≥ va(P tρ). This concludes the inductive argu-
ment and shows that Step 5 will necessarily succeed in find-
ing bundle P tρ . Also, note that with matchings πks in hand,
an exhaustive search can be performed to efficiently find P tρ .
Hence, the algorithm runs in polynomial time.

Finally, note that if P is the final partition and πks are
the corresponding (returned) matchings, then we know that
πks are composed entirely of EF1 (with respect to bundles
in P) edges. Therefore, P is a secretive EF1 allocation and
the claim follows.

5 Conclusion

This paper addresses a setup wherein soliciting valuations
from a specific (secretive) agent is prohibited and shows
that, even with such a constraint, fairness can be achieved
in terms of various solution concepts. Extending this work
to encompass multiple secretive agents and, in general, ad-
dressing other partial-information settings remains an inter-
esting direction of future work.11 In the context of maximin
fairness, it would be relevant to improve the approximation
guarantees or establish a separation—with respect to achiev-
able approximation bounds—between the secretive and the
standard setting.
Acknowledgment. Siddharth Barman was supported by a
Ramanujan Fellowship (SERB - SB/S2/RJN-128/2015).

11Note that, in the presence of multiple secretive agents, to ob-
tain meaningful results one must assume that the secretive agents
do not compete for the same good after a division is proposed.
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